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Abstract—A new concept of Quadratic-Nonlinearity Power-
Index spectrum, QN LPI(f), that can be used in signal detection
and classification, is proposed based on bicoherence spectrum.
The proposed QN LPI(f) is derived as a projection of the three-
dimensional bicoherence spectrum into two-dimensional spec-
trum that quantitatively describes how much of the mean square
power at certain frequency f is generated by nonlinear quadratic
interaction between different frequencies. The proposed index,
QNLPI(f), can be used to simplify the study of bispectrum and
bicoherence signal spectra. It also inherits useful characteristics
from the bicoherence such as high immunity to additive gaussian
noise, high capability of nonlinear-systems identifications, and
amplification invariance. Concept of the proposed index and its
computational considerations are discussed first using computer
generated data and then applied to real-world vibration data
from a helicopter drive-train to assess health conditions of dif-
ferent mechanical faults as part of condition based maintenance
(CBM).

Index Terms—Higher-Order Statistics (HOS), Bispectrum,
Bicoherence, Condition-Based Maintenance (CBM), Helicopter
Maintenance, Vibration Monitoring.

I. INTRODUCTION

ONDITION based maintenance (CBM) is an approach
where troubleshooting and repairing machines are per-
formed based on continuous monitoring of their part’s con-
ditions [1]-[5]. Nevertheless, maintenance actions are taken
based on observation and analysis rather than following a strict
maintenance time schedule as in the case of time based main-
tenance (TBM). Over the past decade, success in achieving
CBM goals has resulted in large-scale deployment of HUMS
(Health and Usage Monitoring Systems) in military helicopters
using Vibration Management Enhancement Program (VMEP)
hardware [6], [7]. Condition monitoring of critical components
in the aircraft is achieved through processing variety of time-
varying signals (waveforms) collected using sensors attached
to those critical components. The vibration signals are the
most common and popular waveform data used in condition
monitoring of rotating and reciprocating components [8]-[13].
Bispectrum and its normalized version bicoherence have
shown to be useful tools in machine condition monitoring
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fields (e.g., [14]-[20]). One of the major advantages of using
bispectrum over the conventional power spectral density is
its ability to detect and to quantify quadratic nonlinearities
associated with machine faults. The nonlinearities result in var-
ious frequencies to mix forming new spectral components in
frequency domain that exhibit phase coherence to the primary
interacting frequencies. Bispectrum describes this frequency
coupling relation between the source and the result of the
interaction process in bi-frequency space.

However, investigation of quadratic nonlinearities using
bispectrum/bicoherence becomes a challenging task when the
studied signal contains wide range of frequency interactions.
The three dimensional nature of these spectra requires careful
design of the view and expert personnel to interpret the
results in the frequency domain. Therefore, it is easier to
use features extracted from those spectra to summarize and
describe nonlinearities in the monitored signals. For example;
bispectrum mean-magnitude and phase-entropy have been
used in blind detection of photo-montage [21], normalized bis-
pectrum entropy and normalized bispectrum squared entropy
have been used in health assessment of human cardiac [22],
and invariant phases of integrated bispectrum has been used to
detect mines in acoustic images [23], [24]. Since machine fault
diagnostic is better archived by linking certain frequency to a
particular rotating component, quadratic-nonlinearity power-
index (QNLPI(f)) spectrum has been proposed as a way
to summarize information in the 3D bicoherence into 2D
frequency spectrum [25].

In this paper, the proposed concept of the QNLPI(f)
is discussed in more details including considerations in its
computation and boundary limits. The quadratic-nonlinear
power spectral density Ponr(f) and percentage of quadratic
nonlinear power PQQNLP are also introduced based on the
QNLPI(f), as will be discussed in section II. Based on
higher order statistical (HOS) analysis, this paper presents
applications of the proposed nonlinearity measures to real-
world vibration data obtained from a dedicated condition
based maintenance experimental helicopter drive-train, as will
be shown in section III. Health condition of different ro-
tating components in the drive train is assessed including
different combinations of drive-shaft and gearbox faults. The
QNLPI(f) spectrum enables us to gain more details about
nonlinear harmonic generation patterns that can be used to dis-
tinguish between different cases of mechanical faults, which in
turn helps to gaining more diagnostic/prognostic capabilities.
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II. QUADRATIC-NONLINEARITY POWER-INDEX
SPECTRUM

Higher order spectra (polyspectra) are spectral represen-
tation of higher order moment or cumulant statistics. The
bispectrum B, (f1, f2) for a zero-mean stationary random
signal x(t) is the third order spectrum and it is defined as
follows [26]:

By (f1, f2) = E{X(f1)X(f2) X" (/1 + f2)} (D

where E{.} denotes an expected value operator, X (f) is the
Fourier transform of z(t), and * denotes a complex conjugate.
For a given experimental situation, we generally do not have
knowledge of the relevant joint probability density function.
Therefore, in practice, the expected value operation in equation
(1) is carried out using average over ensemble of a collected
sample spectra.

Symmetry properties of the bispectrum in addition to
Nyquist frequency limit imply that when bispectrum is dig-
itally computed, it is usually plotted over the triangle area
denoted “A” that is bounded between the three lines fo = 0,
fo= f1,and f1 + fo = fs/2 in the f; — f5 plane, shown in
Figure 1, where fg is the sampling frequency [26].

The definition of the bispectrum in (1) shows how it
measures phase coupling in three signals due to quadratic non-
linearity where B,(f1, f2) will be zero unless the following
two conditions are met:

(a). Signals must be present at the frequencies fi, fo, and
f1 + f2. That iS, X(fl), X(fg), and X(fl + fg) must be
non-zero, and

(b). A phase coherence must be present between the three
frequencies f1, fo, and f1 + fs.

Thus, the magnitude of the bispectrum at coordinate point
(f1, f2) measures the degree of phase coherence between the
three frequency components fi, fo, and f; + fo. However,
this magnitude is also dependent on the magnitude of the
relevant Fourier coefficients. Therefore, a common function
used to normalize the bispectrum magnitude is the bicoherence
b, (f1, f2) [27] as given in equation (2).

‘Bm(fla f2)|2
(flan) E{|X(f1) (fQ)IQ}E{|X(f1+f2)‘2}

The bicoherence in (2) is independent of the magnitude of
the Fourier transform and bounded by 0 < b, (f1, f2) <1
where unity means full three-waves coupling (i.e., interaction
has taken place between the waves), and zero implies an
absence of coherence or interaction. Moreover, it has been
proven in [27] that the squared bicoherence, b2 (f1, f2), quan-
tifies the fraction of mean square power at f3 = f; + fo due
to the quadratic coupling between the waves at f; and fs.
This previous property inspired us to propose a metric that
shows the quadratic interaction relation (3 waves coupling) in
terms of the “result” instead of the “source” of the interaction.
Hence, the bi-frequency space required to plot the bicoherence
(showing the source of interaction) can be reduced to a single-
frequency space (showing the accumulative results).

The Quadratic-Nonlinearity Power-Index, QNLPI(f),
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Fig. 1. Region of computation (ROC) for the bispectrum/bicoherence
assuming aliasing is absent: triangle “A” is the conventional ROC, region
“A — B” is used to calculate the proposed QNLPI(f), and dashed line
indicates the direction of integration to calculate the QNLPI(f)

spectrum is proposed as an implementation of the idea dis-
cussed above, and hence it should quantify the fraction of the
mean square power at a certain frequency f produced by all the
possible combinations of quadratic interactions that may cause
the creation of this frequency, f. This idea can be achieved
by integrating the bicoherence spectrum along a straight line

f1 + fo = f represents the locus of all quadratic interactions
in f; — fo space that result in f, as represented by equation
3).
QNLPI(f) = bz (f1, f2) dfs (3)
fit+fo=f

This integration along f;+ fo = f is depicted by the dashed
line in Figure 1. However, we should be very careful when
we apply this integration in (3) to the conventional region of
computation indicated by the triangle “A” shown in Figure 1.
Due to the symmetry properties, the bicoherence of interacted
frequencies in the fourth quadrant (positive f; and negative f5)
has a redundant copy in this “A” region. Therefore, the region
of computation in f; — f5 plane is modified to fully map the
quadratic interaction between different frequencies as shown in
Figure 1. The area covered by triangle “ B’ maps the difference
part of the interaction between two frequencies (f1, —f2),
while area covered by the upper triangle “A” maps only the
sum part (f1, f2). Based on this new region of computation,
QNLPI(f) in (3) can be rewritten as follows:

4 1s
4

QNLPI(f) = b3 (fi f = fu) dfs

+ f1, - fi) dfy “4)
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Equation (4) indicates that all the information contained
in the bicoherence is represented in the QNLPI(f) which
is function in one variable, f. Moreover, the QNLPI(f)
inherits useful characteristics from the third order statistics,
bicoherence, such as high capability of nonlinear-systems
identifications, high immunity to additive gaussian noise, and
amplification invariance. Furthermore, it can be proven that
QNLPI(f) is theoretically bounded between zero and one
(0 < QNLPI(f) < 1) as shown in appendix A. Zero value
of QN LPI(f) means that no quadratic-nonlinearity produces
any power at this frequency, while one means all the power
at frequency f result from quadratic-nonlinearity.

A. Digital Computation of QNLPI(f)

The same procedure described in [27] can be followed in
order to calculate digital bicoherence taking into consideration
the modified region of computations described before in Figure
1 to separate and account for both positive and negative parts
of frequency interactions. Next, digital computation of the
QNLPI(f) can be carried out by replacing integration in
(4) by summation as shown in (5).

> (L nan.d —nap)

_N_
n=5-1

QNLPI(f) =

where Af is the elementary band width determined from
the resolution of DFT calculation. Af = fn/N, fv = fs/2,
and N is the number of points used in DFT calculation. The
frequency resolution A f should be smaller than the difference
between the smallest two frequencies expected to interact in
any particular case.

B. Nonlinear Power Spectral Density

Power spectral density P,(f) is the Fourier transform of
the auto-correlation function R, (7) for a stationary random
process x(t) according to Wiener-Khintchine theorem [28].
Thus, it can be estimated using the following equation:

Po(f) = E{X(/)X*(f)} = E{IX(f)I*} (6)

P.(f) has the dimensions of mean square values/Hz and
it indicates how the mean square value is distributed over
frequency.

Based on the proposed QNLPI(f) index discussed in
the preceding subsection, one can estimate how much of the
mean square power at certain frequency is generated due to
the second order nonlinearity by multiplying the QN LPI(f)
index at this frequency by the power spectral density P, (f),
as follows:

Poni(f) = @QNLPI(f) - P:(f) ™)

where Ponr(f) is the nonlinear power spectral density
showing the distribution of quadratic-nonlinearly-generated
mean square power over frequency, and it also has the
dimensions of mean square values/Hz. Thus, integration of
Poni(f) over the whole range of frequencies estimates the
total quadratic nonlinear power contained in the signal. It
would be also useful to quantify the percentage of quadratic

nonlinear power (PQN LP) to the total mean square power
as follow:

Nz_l QNLPI(nAf) - Po(nAf)
PQNLP = *=° (8)

N—1
2::0 Py(nAf)

where denominator in equation (8) estimates the total
power in the signal while the numerator estimates the overall
quadratic nonlinear power. PQN LP is a single-value metric
that is useful in monitoring the severity of nonlinear behavior
of the signal under study which can be used to monitor fault-
progress, as will be shown in section III-C.

C. Numerical Example of QNLPI(f)

Before we apply the proposed indices to study nonlinear
coupling in real world vibration data, we will use simple signal
to illustrate the usefulness of these metrics and help understand
the physical interpretation of their values. Thus, a computer-
generated test signal has been used as shown in equation (9).

x(t) = Ap cos(2m fyt + 0y) + Ao cos(2mfot + 6.)
+A. cos(2m fet + 8e) + Ay cos(2m fgt + 0,)
+Ape cos(2m ft + 0p) X cos(2m fot + 6,)
+Acqcos(2mfet + 8.) % cos(2m fot + 6,)
+Agcos(2m fat + 64) + n(t) 9

Ay =A.=Ag=Ac = Ay =2, Ay = Aey = 4, sampling
frequency fs = 2fny = 4.8 kHz, f,/fnv = 022, f./fn =
0.375, fe/fn = 0.292, fy/fnv = 0.303 and fq = fo + fo =
fe + fq. All the phases are independently taken from a set of
uniformly distributed random numbers. The n(t) is a small
amplitude additive Gaussian noise (-20dB) to simulate the
maximum estimated noise levels in our experimental setup.

In this testing signal x(t), the total power at fj is a share of
three equal source; the independent excitation, the quadratic
nonlinear interaction between f, and f., and the quadratic
nonlinear interaction between f. and f,. The power spec-
trum of the test signal, the modified bicoherence b2 (f1, fa),
the quadratic-nonlinearity power-index QNLPI(f), and the
quadratic-nonlinear power spectrum Pgxr(f) are shown in
Figure 2.

From Figure 2-(b), b2(f., f) = 0.324, and b2(fy, f.) =
0.329 are lined up on the same f; + fo = fy axis. This
means that each group contributes to the quadratic-nonlinearity
power-index in Figure 2-(c) by approximately one third.
b2(fy,—fe) = 1 and b2(f.,—fp) = 1 lie in the “B” zone
of the modified bicoherence and represent the negative part
of the interaction for both f. — f and f; — f.. The detailed
bicoherence spectrum in Figure 2-(b) is represented by the
QNLPI(f) in Figure 2-(c). QNLPI(fs) = 0.653 which
means that two-thirds of the total power at frequency fy is
coming from quadratic-nonlinear interaction between different
frequencies. Putting the QNLPI(f) along with the power
spectrum of the signal would help to better understand some
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Fig. 2. (a) Power spectral density, (b) Modified bicoherence, (c) QNLPI,
and (d) Quadratic-nonlinear power spectral density; for test signal in (9)

details about the signal that is not clear in the power spectrum
alone. The power spectral contents that generated only by
quadratic nonlinearity are separated in the Ponr(f) as shown
in Figure 2-(d). Total quadratic-nonlinearity in this signal is
quantified using the percentage of quadratic nonlinear power
(PQNLP) presented in equation (8) and the PQNLP is
found to be = 42.93%.

III. APPLICATION OF QN LPI(f) IN HEALTH ASSESSMENT
OF HELICOPTER DRIVE TRAIN COMPONENTS

We now demonstrate the application of the proposed
QNLPI(f) by using two different real-world vibration data

to assess health conditions of rotating mechanical components
in an Apache helicopter tail-rotor drive-train. In the first case,
nonlinearity signature of different fault types associated with
drive shafts are studied in subsection III-B. In the second case,
development of nonlinearity in the vibration collected from
faulted gearbox is studied as will be discussed in subsection
1I-C.

A. AH-64 tail rotor drive train test stand

The CBM center at the University of South Carolina (USC)
has a complete AH-64 (Apache helicopter) tail rotor drive train
(TRDT) test stand for on-site data collection and analysis,
as shown in Figure 3-(b). The TRDT test stand emulates the
complete tail rotor drive train from the main transmission tail
rotor takeoff to the tail rotor swash plate assembly, as shown
in Figure 3-(a).

All drive train parts on the test stand are actual aircraft
hardware. The prime mover for the drive train is an 800hp
AC induction motor controlled by variable frequency drive.
An absorption motor of matching rating is used to simulate the
torque loads that would be applied by the tail rotor blade and it
is controlled by another variable frequency drive. The signals
being collected during the operational run of the apparatus
include vibration data measured by the accelerometers, tem-
perature measured via thermocouples, and speed and torque
measurements. The measurement devices are placed at the
forward (FHB) and afterward (AHB) hanger bearings and two
gearboxes as shown in Figure 3-(b).

(@)

Fig. 3. (a) Actual TRDT on AH-64, and (b) TRDT test stand at USC
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B. QNLPI(f) of different drive-shaft faults

Focus of this study is centered on studying different com-
binations of drive-shafts faults using both conventional power
spectral density (P.SD) and the proposed QN LPI(f). Shafts
numbered 3-5 in Figure 3-(a) operate at a rotation speed of
4863 RPM (81.05Hz) corresponding to full-speed of shaft
rotation on the fielded rotorcraft. The vibration signals denoted
as FHB and AHB, measured at forward and afterward hanger
bearings respectively, are gathered at two minutes intervals at
a sampling rate of 48 kHz over the course of thirty minute
test runs. The measurements are taken for different drive-
shafts setting under test which include baseline shaft and
bearing configuration, unbalance in different shafts configu-
ration, and shaft misalignment, all common issues on AH-
64 drivetrains. Misalignment of the shafts is studied at 1.3°
between drive-shafts #3 and #4, 1.3° between drive-shafts #4
and #5. Unbalance is studied at drive-shafts #3, #4 and #5
by 0.140 oz-in, 0.135 oz-in 0.190 oz-in respectively. Different
combination of misalignment and unbalance are tested with
Table I summarizing these test conditions and their coded
designations.

TABLE 1
TAIL ROTOR DRIVESHAFT EXPERIMENTAL SETTINGS
Shaft Status || Balanced | Unbalanced
Aligned 00321 10321
Misaligned 20321 30321

Due to the loading scheme of the TRDT test stand with
the intermediate gear box (IGB) and the output motor torque,
the 3"% harmonic of the tail rotor drive shaft (243 Hz) is
dominating the power spectrum of the AHB vibrations in the
studied cases with some other different harmonics in each
setting, as shown in Figures 4 and 5. The power spectra
of the baseline (00321) and the misaligned (20321) cases in
Figure 4 have the same dominating spectral peaks with very
slight changes in the minor peaks. A similar situation occurs
when we compare the unbalanced (10321) and the misaligned-
unbalanced (30321) cases in Figure 5. It is not an easy task
to distinguish between different cases by looking at the whole
power spectrum.

Conventional PS D comparison with the baseline is usually
done on a logarithmic amplitude scale with increases of 6-
8 dB considered to be significant and changes greater than
20 dB from the baseline considered serious [29]. Table II
summarizes the results of the spectral peak comparison of
the three faulted cases (10321, 20321, and 30321) with the
baseline case (00321) in terms of the first three spectral

TABLE II
COMPARISON WITH BASELINE CASE IN TERMS OF SP1, SP2, AND SP3
(DB)
y | A/UB(10321) | MA/B (20321) | UB/MA(30321) |
SP1 5311 -0.081 4.799
SP2 9.997 10.255 8.661
SP3 -2.001 -2.0667 -8.141

(a)
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Fig. 4. Power spectral density of the AHB: baseline (00321) in (a), and

misaligned (20321) in (b)
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Fig. 5.  Power spectral density of the AHB: unbalanced (10321) in (a), and
misaligned-unbalanced (30321) in (b)

peaks (SP1, SP2, and SP3) of the faulted drive-shafts (first
three harmonics of the shaft rotating speed (81Hz, 162Hz and
243Hz)). As shown in Table II, values of the SP2 for all faulted
cases exceed the 6 dB threshold compared to the baseline
and therefore it provides a good indicator for all of the three
faulted cases. In fact, SP2 is currently employed in the HUMS
system to detect unbalanced and/or misaligned shafts in a tail
rotor drive-train of a rotorcraft [30]. However, this Condition
Indicator (CI) has limited diagnostic capabilities in specifying
whether the fault is unbalance, misalignment or a combination
of both faults. The maintainers are told to check for more than
one source that might cause that CI to exceed its limit.

The vibration data is then investigated using the pro-
posed QNLPI(f) discussed in section II. Figure 6-(a)
shows QN LPI(f) spectrum for the baseline case for which
nonlinearly-generated frequencies located at 1°* and 7¢" har-
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monics of the drive-shaft with values 0.68 and 0.77, respec-
tively. These values can be result of interaction between the
dominating 3"¢ harmonic with the 4** to produce 68% and
77% of the power at 1°* and 7'" harmonics, respectively.
The remaining fraction of the power may be independently
excited or coming from other forms of nonlinearities. Due
to different experimental settings, different interaction pattern
exists in the case of misalignment as shown in Figure 6-(b). In
this case, quadratic nonlinear interaction between the 37 and
the 1t harmonics is dominating. As a result of this interaction,
274 and 4'" harmonics are generated with power fraction of
0.72 and 0.64, respectively. The results in Figure 6 give us
more details about the content of the power spectrum of the
signal. Some frequencies in common between the baseline and
misaligned cases have different origins. For example, the 15
and the 4*" harmonics exchange there places as source/result

of the interaction process with the 3" due to different physical
setting of the rotating shaft.

Comparing the QNLPI(f) of the unbalance case shown
in Figure 7-(a) with the baseline case in Figure 6-(a), we
can see a slightly more interaction introduced in the case of
the unbalance. The 4*" harmonic interacts with both 37¢ and
9" producing a series of odd harmonics at 1%¢, 5t 7t and
13", The increasing production of odd harmonics through the
nonlinear interaction is likely a sign of unbalance. On the other
hand, as discussed above, the production of even harmonics is
likely a sign of misalignment. Thus, when a combination of
unbalance and misalignment is introduced to the drive-shafts,
one can expect that nonlinearity of the system will increase so
that a variety of odd/even harmonics of the drive shaft rotating
frequency is produced as shown in Figure 7-(b).

From the discussion above, we can see that beside con-
ventional power spectral density analysis, using QN LPI(f)
spectrum helps to gain more details about nonlinear harmonic
interaction/generation patterns, which can be used to distin-
guish between different fault settings of the tail rotor drive-
shafts.

C. Studying Progress of Gearbox fault using QN LPI(f)

In this subsection, we use vibration data collected in the
experimental TRDT test stand to study tail-rotor gearbox fail-
ure (denoted TRGB in Figure 3) due to lubrication starvation
[31]. This experiment was originally designed to demonstrate
whether or not a gearbox with a leaking output seal could be
used in the filed until the aircraft reached a phase inspection,
which currently occurs every 250 hours. The output seals were
seeded to represent a worst-case scenario leak for gearboxes.
For all the tested articles, it was observed that a persistent
grease leak through the output seal resulted in a loss of
lubricant in the main gear compartment. Consequently, this
condition ultimately resulted in lubricant starvation on the gear
meshing region and catastrophic gear teeth failures, as shown
in Figure 8. One interesting finding of this experiment was that
gearbox can survive more than 480 hours after fault seeding for
all tested articles. The secondary objective of the experiment
was to identify vibration signatures which might indicate the
impending failure. Here, we use vibration data collected from
this experiment to illustrate the usefulness of the proposed
index in keeping track of the progress of fault in the gearbox.

(b)

EverestVIT

Fig. 8. Borescope picture showing input gear teeth: (a) earlier stage of
testing, and (b) after failure [31]
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Fig. 9. Progress of power spectral density (PSD) change during gear teeth
failure: (a) 3 days before failure, (b) 2 days before failure, (c) 1 days before
failure, and (d) same day of failure

Figure 9 shows how the average power spectral density
(PSD) of the gearbox vibration changes during the last four
days before failure. Inspection of the PSD plots indicates
that it was not until the day of failure that vibration power
at the third and fourth harmonics of the gear mesh frequency
(1334Hz) increased suddenly to warning values, as shown in
Figure 9-(d). During the last three days preceding the failure,
shown in Figure 9-(a) ~ (c), PSD stayed almost the same with
slightly monotonic increase of vibration power at the both first
and second harmonics of the gear mesh frequency.

Progress of failure developed in the gearbox is studied using
the proposed QNLPI(f), as shown in Figure 10-(a) ~ (d),
for the same vibration data set which studied previously in
Figure 9. Figure 10-(a) shows the QNLPI(f) of gearbox
vibration three days before gearbox failure which has the least
quadratic-nonlinearly produced frequencies with only first,
third, and fifth mesh harmonics having QN LPI equal to 1,
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Fig. 10. Progress of nonlinear harmonic generation due to gear teeth failure:
(a) 3 days before failure, (b) 2 days before failure, (c) 1 days before failure,
and (d) same day of failure

1, and 0.33, respectively. Two days before failure, vibration
nonlinearity increased causing the values of QNLPI at the
pre-exist harmonics to increase, and more nonlinearity to show
up at the second and sixth harmonics, as seen in Figure 10-(b).
The highest nonlinearity in the vibration signal is exist one day
before failure as shown in Figure 10-(c). On that day, beside
the high nonlinearity at all the first six harmonics of the TRGB,
gear mesh frequency of the intermediate gearbox (IGB), 3000
Hz, shows up interacting with several TRGB harmonics. This
IGB frequency disappeared in the day of failure from the
QNLPI(f) spectrum, but all gear mesh harmonics of the
faulted TRGB stayed at high nonlinear power values, as shown
in Figure 10-(d). This consistent increase in the nonlinear
production/coupling of gear meshing harmonics, regardless
of there power spectral values, can be used as precocious
indication of gear-teeth failure.

In order to describe the progress of fault in the gearbox
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using single-valued metric, percentage of quadratic nonlinear
power (PQNLP) in equation (8) is employed. Figure 11
compares the progress of the PQNLP to other condition
indicators during the last four days of experiment. The 1GM F
and 2G M F are the vibration spectral peaks at the first and the
second harmonics of the gear mesh frequency. The root-mean-
square (RM S) and the energy-ratio (£ R) condition indicators
are calculated as reported in [9] to describe heavy gear wear.
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Fig. 11.  Trend of vibration PQNLP compared to different condition

indicators for the faulted TRGB during the last four days before failure

As shown in Figure 11, the value of PQNLP starts
showing considerable increase one day before other condition
indicators. It is consistently climbing up until the gearbox
failure due to wear in the input gear teeth which physically
can be interpreted as increased vibration power due to highly-
nonlinear rotating medium. Thus, this trend can be used
as precocious indication of failure. The advantage of using
PQNLP as condition indicator over conventional power
spectrum indicators is the inherent characteristics of HOS-
based metrics as amplification invariance and high immunity
to additive Gaussian noise, which reduce the dependency on
the characteristics of the sensor used to collect the vibration
data.

IV. CONCLUSION

The quadratic-nonlinearity power-index (QNLPI(f)) has
been proposed which provides a summary of the nonlinearity
information contained in the the 3D bicoherence into 2D spec-
trum presenting an easier way to studying third-order statistic
of signals. The proposed index inherits useful characteristics
of the bicoherence such as high immunity to additive gaussian
noise, and amplification invariance; two properties of interest
in practical applications to relax the pardon on sensors used
in collecting time-varying waveforms.

The proposed index has been used to study real-world
vibration data collected from tail-rotor drive train of an AH-64
helicopter. Two case studies have been conducted. In the first
case, QN LPI(f) has shown better diagnostic capabilities in
differentiating between different drive-shaft faults by showing
how different physical settings affect the nonlinear generation
of harmonics. In the second case, QNLPI(f) has shown
better capability in detecting gearbox failure. For easier moni-
toring of the fault-progress in the gearbox, percentage of total

quadratic nonlinear power (PQNLP) has been calculated
based on the proposed QN LPI(f) and has shown consistent
increase during the gear fault aging. This single-valued metric
can be used in prognostic models to estimate the remanding
useful life of mechanical components.

It is worthwhile to mention here that although the proposed
metrics provide more accurate tools to diagnose mechanical
faults compared to the conventional power spectral analysis,
this comes at the cost of computational resources and time.
The computational complexity is O(N?) where N is the
number of points in one signal realization. For example, for
N= 4096, it takes 34.517 sec to compute the QNLPI(f),
while it takes 0.251 sec to compute the power spectral density
using the same platform.

Future research in this area includes studying the effect of
loading by the trail-rotor blades on the proposed metrics, and
extending the application of the proposed metrics to study
more faults and failure modes in aircrafts and similar rotat-
ing systems such as wind turbines. The unique nonlinearity
signature of each fault can be used to design more accurate
and reliable diagnostic algorithms for the condition based
maintenance (CBM) practice.

APPENDIX
BOUNDARY LIMITS OF QN LPI(f)
Assume that the signal at frequency m, X(m), is con-
structed from finite number of quadratic coupling pairs plus
non-quadratic coupling part as shown in equation (10).

Xm)= > AxXOX(k)+X (m)
Vi+k=m

(10)

where A; j, is the coupling coefficient between two frequencies
[ and k to produce sum frequency m. X ' (m) represents any
non-quadratic coupling power in the signal, either independent
excitation or from other higher order interactions. Assuming
that z(¢) is a zero-mean wide-sense stationary random signal,
the mean square power at frequency m, P, (m), can be proven
to be as follows [27];

>

(V I4+k=m)

P, (m) = ALk EQX DX (B)P} + E{1X (m)[?}
1D

First part of equation (11) represents the total power at
frequency m due to all quadratic coupling pairs, while the
second part is due to any non-quadratic-coupling power at
this frequency. Substituting from equation (2) in equation (4),

fS‘/4

QNLPI(m) = [E{X (5 + )X (5 — )X (m)}

Pe(m) - E{|X (% + f1)X(F — [1)]?}

df1

(12)
Then, from equation (10) in equation (12) recalling proper-
ties of expected value operator, we get the following equation:

fs/4

QNLPI(m) = szm) / ('A EBP) dfs
0

13)



SUBMITTED TO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 9

where,

A= Z 14l,1cE{X(ﬁ +f1)X(% - fl)X*(l)X*(k)}

Vi+k=m 2
B=E {X(% + fl)X(% - fl)X'*(m)}
C=E{IX(5 + x5 - I}

The value of the expected value operators in the numerator
of equation (13) will be zero except when variable f; equals
to fi = F — 1 = 3 + k. Therefore, integration in equation
(13) is reduced to summation as follows:

> JAPE{X ()X (k)[*}
QNLPI(m) = 2tk=m

Bl (14)

Note that numerator of equation (14) represents the total
power at frequency m due to all quadratic coupling pairs and it
is fraction of P,(m) as shown before in equation (11). Hence,
the proposed index, QN LPI(m), measures the fraction of the
mean square power at frequency m due to quadratic coupling
between all combination of frequencies that possibly result in
m. Also, from (14), 0 < QNLPI(m) < 1, and will equal
one if, and only if, X (m) = 0.
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