

IINNTTEERRDDIISSCCIIPPLLIINNAARRYY

MMAATTHHEEMMAATTIICCSS

IINNSSTTIITTUUTTEE

2014:01

Convex optimization on Banach

Spaces

IIMMII

PPRREEPPRRIINNTT SSEERRIIEESS

R.A. DeVore and V.N. Temlyakov

CCOOLLLLEEGGEE OOFF AARRTTSS AANNDD SSCCIIEENNCCEESS

UUNNIIVVEERRSSIITTYY OOFF SSOOUUTTHH CCAARROOLLIINNAA

Convex optimization on Banach Spaces

R.A. DeVore and V.N. Temlyakov∗

January 1, 2014

Abstract

Greedy algorithms which use only function evaluations are applied to convex optimization
in a general Banach space X. Along with algorithms that use exact evaluations, algorithms
with approximate evaluations are treated. A priori upper bounds for the convergence rate of
the proposed algorithms are given. These bounds depend on the smoothness of the objective
function and the sparsity or compressibility (with respect to a given dictionary) of a point in X
where the minimum is attained.

1 Introduction

Convex optimization is an important and well studied subject of numerical analysis. The canonical
setting for such problems is to find the minimum of a convex function E over a domain in Rd.
Various numerical algorithms have been developed for minimization problems and a priori bounds
for their performance have been proven. We refer the reader to [1], [9], [10], [11] for the core results
in this area.

In this paper, we are concerned with the more general setting where E is defined on a domain D
in a general Banach space X with norm ‖ · ‖ = ‖ · ‖X . Thus, our main interest is in approximating

E∗ := inf
x∈D

E(x). (1.1)

Problems of this type occur in many important application domains, such as statistical estimation
and learning, optimal control, and shape optimization. Another important motivation for studying
such general problems, even for finite dimensional spaces X, is that when the dimension d of X
is large, we would like to obtain bounds on the convergence rate of a proposed algorithm that are
independent of this dimension.

Solving (1.1) is an example of a high dimensional problem and is known to suffer the curse
of dimensionality without additional assumptions on E which serve to reduce its dimensionality.
These additional assumptions take the form of smoothness restrictions on E and assumptions which
imply that the minimum in (1.1) is attained on a subset of D with additional structure. Typical
assumptions for the latter involve notions of sparsity or compressibility, which are by now heavily
employed concepts for high dimensional problems. We will always assume that there is a point

∗This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-
09-1-0107; the NSF Grants DMS 0915231 and DMS-1160841. This research was initiated when the second author
was a visiting researcher at TAMU

1

x∗ ∈ D where the minimum E∗ is attained, E(x∗) = E∗. We do not assume x∗ is unique. The set
D∗ = D∗(E) ⊂ D of all points where the minima is attained is convex.

The algorithms studied in this paper utilize dictionaries D of X. A set of elements D ⊂ X,
whose closed linear span coincides with X is called a symmetric dictionary if ‖g‖ := ‖g‖X = 1,
for all g ∈ D, and in addition g ∈ D implies −g ∈ D. The simplest example of a dictionary is
D = {±ϕj}j∈Γ where {ϕj}j∈Γ is a Schauder basis for X. In particular for X = Rd, one can take
the canonical basis {ej}dj=1.

Given such a dictionary D, there are several types of domains D that are employed in appli-
cations. Sometimes, these domains are the natural domain of the physical problem. Other time
these are constraints imposed on the minimization problem to ameliorate high dimensionality. We
mention the following three common settings.

Sparsity Constraints: The set Σn(D) of functions

g =
∑
g∈Λ

cgg, #(Λ) = n, (1.2)

is called the set of sparse functions of order n with respect to the dictionary D. One common
assumption is to minimize E on the domain D = Σn(D), i.e. to look for an n sparse minimizer of
(1.1).

`1 constraints: A more general setting is to minimize E over the closure A1(D) (in X) of the
convex hull of D. A slightly more general setting is to minimize E over one of the sets

LM := {g ∈ X : g/M ∈ A1(D)}. (1.3)

Sometimes M is allowed to vary as in model selection or regularization algorithms from statistics.
This is often referred to as `1 minimization.

Unconstrained optimization: Imposed constraints, such as sparsity or assuming D = A1(D),
are sometimes artificial and may not reflect the original optimization problem. We consider there-
fore the unconstrained minimization where D = X. We always make the assumption that the
minimum of E is actually assumed. Therefore, there is a point x∗ ∈ X where

E∗ = E(x∗). (1.4)

We do not require that x∗ is unique. Notice that in this case the minimum E∗ is attained on the
set

D0 := {x ∈ X : E(x) ≤ E(0)}. (1.5)

In what follows, we refer to minimization over D0 to be the unconstrained minimization problem.
A typical greedy optimization algorithm builds approximations to E∗ of the form E(Gm),

m = 1, 2 . . . where the elements Gm are built recursively using the dictionary D and typically are
in Σm(D). We will always assume that the initial point G0 is chosen as the 0 element. Given that
Gm has been defined, one first searches for a direction ϕm ∈ D for which E(Gm + αϕm) decreases
significantly as α moves away from zero. Once, ϕm is chosen, then one selects Gm+1 = Gm+αmϕm
or more generally Gm+1 = α′mGm + αmϕm, using some recipe for choosing αm or more generally
αm, α

′
m. Algorithms of this type are referred to as greedy algorithms and will be the object of study

in this paper.

2

There are different strategies for choosing ϕm and αm, α
′
m (see, for instance, [20], [13], [2], [3], [6],

[4], [8], [19], and [7]). One possibility to choose ϕm is to use the Fréchet derivative E′(Gm−1) of E to
choose a steepest descent direction. This approach has been amply studied and various convergence
results for steepest descent algorithms have been proven, even for the general Banach space setting.
We refer the reader to the papers [20, 17, 18] which are representative of the convergence results
known in this case. The selection of αm, α

′
m is commonly referred to as relaxation and is well

studied in numerical analysis, although the Banach space setting needs additional attention.
Our interest in the present paper are greedy algorithms that do not utilize E′. They are

preferred since E′ is not given to us and therefore, in numerical implementations, must typically
be approximated at any given step of the algorithm. We will analyze several different algorithms
of this type which are distinguished from one another by how Gm+1 is gotten from Gm both in
the selection of ϕm and the parameters αm, α

′
m. Our algorithms are built with ideas similar to the

analogous, well-studied, greedy algorithms for approximation of a given element f ∈ X. We refer
the reader to [16] for a comprehensive description of greedy approximation algorithms.

In this introduction, we limit ourselves to two of the main algorithms studied in this paper.
The first of these, which we call the Relaxed E-Greedy Algorithm (REGA(co)) was introduced in
[20] under the name sequential greedy approximation.

Relaxed E-Greedy Algorithm (REGA(co)): We define G0 := 0. For m ≥ 1, assuming Gm−1

has already been defined, we take ϕm ∈ D and 0 ≤ λm ≤ 1 such that

E((1− λm)Gm−1 + λmϕm) = inf
0≤λ≤1;g∈D

E((1− λ)Gm−1 + λg)

and define
Gm := (1− λm)Gm−1 + λmϕm.

We assume that there exist such minimizing ϕm and λm.

We note that the REGA(co) is a modification of the classical Frank-Wolfe algorithm [5]. For
convenience, we have assumed the existence of a minimizing ϕm and λm. However, we also analyze
algorithms with only approximate implementation which avoids this assumption.

Observe that this algorithm is in a sense built for A1(D) because each Gm is obviously in
A1(D). The next algorithm, called the E-Greedy Algorithm with Free Relaxation (EGAFR(co)),
makes some modifications in the relaxation step that will allow it to be applied to the more general
unconstrained minimization problem on D0.

E-Greedy Algorithm with Free Relaxation (EGAFR(co)). We define G0 := 0. For m ≥ 1,
assuming Gm−1 has already been defined, we take ϕm ∈ D, αm, βm ∈ R satisfying (assuming
existence)

E(αmGm−1 + βmϕm) = inf
α,β∈R;g∈D

E(αGm−1 + βg)

and define
Gm := αmGm−1 + βmϕm.

It is easy to see that each of these algorithms has the following monotonicity

E(G0) ≥ E(G1) ≥ E(G2) ≥ · · · .

3

Our main goal in this paper is to understand what can be said a priori about the convergence
rate of a specific greedy optimization algorithm of the above form. Such results are built on two
assumptions: (i) the smoothness of E, (ii) assumptions that the minimum is attained at a point
x∗ satisfying a constraint such as the sparsity or `1 constraint. In what follows to measure the
smoothness of E, we introduce the modulus of smoothness

ρ(E, u) := ρ(E,S, u) :=
1

2
sup

x∈S,‖y‖=1
|E(x+ uy) + E(x− uy)− 2E(x)|, (1.6)

of E on any given set S. We say that E is uniformly smooth on S if ρ(E,S, u)/u→ 0 as u→ 0.
The following theorem for REGA(co) is a prototype of the results proved in this paper.

Theorem 1.1 Let E∗ := inf
x∈A1(D)

E(x).

(i) If E is uniformly smooth on A1(D), then the REGA(co) converges:

lim
m→∞

E(Gm) = E∗. (1.7)

(ii) If in addition, ρ(E,A1(D), u) ≤ γuq, 1 < q ≤ 2, then

E(Gm)− E∗ ≤ C(q, γ)m1−q, (1.8)

with a positive constant C(q, γ) which depends only on q and γ.

The case q = 2 of this theorem was proved in [20]. We prove this theorem in §2.
As we have already noted, the EGAFR(co) is designed to solve the unconstrained minimization

problem where the domain D = X. The performance of this algorithm will depend not only on the
smoothness of E but also on the compressibility of a point x∗ ∈ D∗ where E takes its minimum.
To quantify this compressibility, we introduce

A(ε) := A(E, ε) := inf{M : ∃y ∈ LM such that E(y)− E∗ ≤ ε}. (1.9)

An equivalent way to quantify this compressibility is the error

e(E,M) := inf
y∈LM

E(y)− E∗. (1.10)

Notice that the functions A and e are pseudo-inverses of one another.
The following theorem states the convergence properties of the EGAFR(co).

Theorem 1.2 Let E be uniformly smooth on X and let E∗ := inf
x∈X

E(x) = inf
x∈D0

E(x).

(i) The EGAFR(co) converges:

lim
m→∞

E(Gm) = inf
x∈X

E(x) = inf
x∈D0

E(x) = E∗.

(ii) If the modulus of smoothness of E satisfies ρ(E, u) ≤ γuq, 1 < q ≤ 2, then, the EGAFR(co)
satisfies

E(Gm)− E∗ ≤ C(E, q, γ)εm, (1.11)

where
εm := inf{ε : A(ε)qm1−q ≤ ε}. (1.12)

In particular, if for some r > 0, we have e(E,M) ≤ γ̃M−r, M ≥ 1, then

E(Gm)− E∗ ≤ C(E, q, γ, γ̃, r)m
1−q

1+q/r . (1.13)

4

We note that the EGAFR(co) is a modification of the Weak Greedy Algorithm with Free Relaxation
(WGAFR(co)) studied in [17]. Also note that if x∗ ∈ LM then the estimate in Theorem 1.2 reads

E(Gm)− E∗ ≤ C(E, q, γ)M qm1−q. (1.14)

We show in the following section how Theorem 1.1 and Theorem 1.2 are easily proven using
existing results for greedy algorithms. We also introduce and analyze another greedy algorithm for
convex minimization.

The most important results of the present paper are in Section 3 and are motivated by numerical
considerations. Very often we cannot calculate the values of E exactly. Even if we can evaluate E
exactly, we may not be able to find the exact value of, say, the quantity

inf
0≤λ≤1;g∈D

E((1− λ)Gm−1 + λg)

in the REGA(co). This motivates us to study in §3 various modifications of the above algorithms.
For example, the following algorithm, which is an approximate variant of the REGA(co), was
introduced in [20].

Relaxed E-Greedy Algorithm with error δ (REGA(δ)). Let δ ∈ (0, 1]. We define G0 := 0.
Then, for each m ≥ 1 we have the following inductive definition: We take any ϕm ∈ D and
0 ≤ λm ≤ 1 satisfying

E((1− λm)Gm−1 + λmϕm) ≤ inf
0≤λ≤1;g∈D

E((1− λ)Gm−1 + λg) + δ

and define
Gm := (1− λm)Gm−1 + λmϕm.

In Section 3, we give modifications of this type to the above algorithms and then prove conver-
gence results for these modifications. For example, the following convergence result is proven for
the REGA(δ).

Theorem 1.3 Let E be a uniformly smooth on A1(D) convex function with modulus of smoothness
ρ(E, u) ≤ γuq, 1 < q ≤ 2. Then, for the REGA(δ) we have

E(Gm)− E∗ ≤ C(q, γ, E, c)m1−q, m ≤ δ−1/q,

where E∗ := inf
f∈A1(D)

E(x).

In the case q = 2 Theorem 1.3 was proved in [20].
In the REGA(co) and the REGA(δ) we solve the univariate convex optimization problem with

respect to λ
inf

0≤λ≤1
E((1− λ)Gm−1 + λg) (1.15)

respectively exactly and with an error δ. It is well known (see [10]) that there are fast algorithms
to solve problem (1.15) approximately. We discuss some of them in §4.

In the EGAFR(co) and the EGAFR(δ) (see Section 3 for this algorithm) we solve the convex
optimization problem for a function on two variables

inf
λ,w

E((1− w)Gm−1 + λg) (1.16)

respectively exactly and with an error δ. We describe in §5 how univariate optimization algorithms
can be used for approximate solution of (1.16).

5

2 Analysis of greedy algorithms

We begin this section by showing how to prove the results for REGA(co) and EGAFR(co) stated
in the introduction, namely Theorems 1.1 and 1.2. The proof of convergence results for greedy
algorithms typically is done by establishing a recursive inequality for the error E(Gn) − E∗. To
analyze the decay of this sequence of errors, will need the following lemma.

Lemma 2.1 If a sequence am, m ≥ 0, of nonnegative numbers satisfies

am ≤ am−1(1− capm−1), m ≥ 1, (2.1)

with c > 0 and p > 0. Then
an ≤ Cn−1/p, n ≥ 1, (2.2)

with the constant C depending only on p and c.

Proof: In the case p ≥ 1 which is used in this paper this follows from Lemma 2.16 of [16].
In the case p ≥ 1 Lemma 2.1 was often used in greedy approximation in Banach spaces (see [16],
Chapter 6). For the general case p > 0 see Lemma 4.2 of [12]). 2

To establish a recursive inequality for the error in REGA(co), we will use the following lemma
about REGA(co).

Lemma 2.2 Let E be a uniformly smooth convex function with modulus of smoothness ρ(E, u).
Then, for any f ∈ A1(D) and the iterations Gm of the REGA(co), we have

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λ(E(Gm−1)− E(f)) + 2ρ(E, 2λ)), m = 1, 2, (2.3)

Proof: A similar result was proved in Lemma 3.1 of [17] for a different greedy algorithm denoted
by WRGA(co) in [17]. In order to distinguish the two algorithms, we denote by Ḡm the output of
WRGA(co). The relaxation step in WRGA(co) is exactly the same as in our REGA(co). However
the choice of direction ϕ̄m in WRGA(co) was based on a maximal gradient descent. This means
that at each step the Ḡm−1 is also possibly different than our Gm−1 of REGA(co). However, an
examination of the proof of Lemma 3.1 shows that it did not matter what Ḡm−1 is as long as it
is in Σm−1(D). So Lemma 3.1 holds for our Gm−1 and if we let G̃m denote the result of applying
WRGA(co) to our Gm−1, then we have

E(Gm) ≤ E(G̃m) ≤ E(Gm−1) + inf
0≤λ≤1

(−λ(E(Gm−1)− E(f)) + 2ρ(E, 2λ)). (2.4)

Here, the first inequality is because REGA(co) minimizes error over all choices of directions ϕ from
the dictionary and all choices of the relaxation parameter and thereby is at least as good as the
choice from WRGA(co). The last inequality is from Lemma 3.1 of [17]. Thus, we have proven the
lemma. 2

Proof of Theorem 1.1: The proof of this theorem is similar to the proof of Theorem 3.1 and
Theorem 3.2 in [17]. We illustrate the proof of (1.8). If we denote by am := E(Gm) − E∗, then
subtracting E∗ from both sides of (2.3) gives the recursive inequality

am ≤ am−1 + inf
0≤λ≤1

{−λam−1 + 2γλq}. (2.5)

6

If we choose λ to satisfy
λam−1 = 4γ(2λ)q (2.6)

provided it is not greater than 1 and choose 1 otherwise and use this value in (2.5), we obtain in
case λ ≤ 1

am ≤ am−1(1− ca
1

q−1

m−1), (2.7)

with c > 0 a constant depending only on γ and q. This recursive inequality then gives the decay
announced in Theorem 1.1 because of Lemma 2.1. The case λ = 1 can be treated as in the proof
of Theorem 3.2 from [17]. 2

Proof of Theorem 1.2: This proof is derived from results in [17] in a similar way to how we
have proved Theorem 1.1 for REGA(co). An algorithm, called WGAFR(co), was introduced in
[17] which differs from EGAFR(co) only in how each ϕm is chosen. One then uses the analysis in
WGAFR(co)

The above discussed algorithms REGA(co) and EGAFR(co) provide sparse approximate solu-
tions to the corresponding optimization problems. These approximate solutions are sparse with
respect to the given dictionary D but they are not obtained as an expansion with respect to D.
This means that at each iteration of these algorithms we update all the coefficients of sparse ap-
proximants. Sometimes it is important to build an approximant in the form of expansion with
respect to D. The reader can find a discussion of greedy expansions in [16], Section 6.7. For
comparison with the algorithms we have already introduced, we recall a greedy-type algorithm for
unconstrained optimization which uses only function values and builds sparse approximants in the
form of expansion that was introduced and analyzed in [18]. Let C := {cm}∞m=1 be a fixed sequence
of positive numbers.

E-Greedy Algorithm with coefficients C (EGA(C)). We define G0 := 0. Then, for each
m ≥ 1 we have the following inductive definition:

(i) Let ϕm ∈ D be such that (assuming existence)

E(Gm−1 + cmϕm) = inf
g∈D

E(Gm−1 + cmg).

(ii) Then define
Gm := Gm−1 + cmϕm.

In the above definition, we can restrict ourselves to positive numbers because of the symmetry of
the dictionary D.

For the analysis of this algorithm, we will assume that the sets

DC := {x : E(x) ≤ E(0) + C}

are bounded for all finite C. We recall two results for the EGA(C) that were proved in [18] .

Theorem 2.3 Let µ(u) = o(u) as u→ 0 and let E be a uniformly smooth convex function satisfying

E(x+ uy)− E(x)− u〈E′(x), y〉 ≤ 2µ(u), (2.8)

7

for x ∈ D2, ‖y‖ = 1, |u| ≤ 1 . Assume that the coefficients sequence C := {cj}, cj ∈ [0, 1] satisfies
the conditions

∞∑
k=1

ck =∞, (2.9)

∞∑
k=1

µ(ck) ≤ 1. (2.10)

Then, for each dictionary D, the EGA(C) satisfies

lim
m→∞

E(Gm) = inf
x∈X

E(x) =: E∗.

Theorem 2.4 Let E be a uniformly smooth convex function with modulus of smoothness ρ(E, u) ≤
γuq, q ∈ (1, 2] on D2. We set s := 2

1+q and Cs := {ck−s}∞k=1 with c chosen in such a way that

γcq
∑∞

k=1 k
−sq ≤ 1. Then the EGA(Cs) converges with the following rate: for any r ∈ (0, 1− s)

E(Gm)− inf
x∈A1(D)

E(x) ≤ C(r, q, γ)m−r.

Let us now turn to a brief comparison of the above algorithms and their known convergence
rates. The REGA(co) is designed for solving optimization problems on domains D ⊂ A1(D) and
requires that D∗ ∩ A1(D) 6= ∅. The EGAFR(co) is not limited to the A1(D) but applies for any
optimization domain as long as E achieves its minimum on a bounded domain. As we have noted
earlier, if there is a point D∗ ∩ A1(D) 6= ∅, then EGAFR(co) provides the same convergence rate
(O(m1−q)) as REGA(co). Thus, EGAFR(co) is more robust and requires the solution of only a
slightly more involved minimization at each iteration.

The advantage of EGA(C) is that it solves a simpler minimization problem at each iteration since
the relaxation parameters are set in advance. However, it requires knowledge of the smoothness
order q of E and also gives a poorer rate of convergence than REGA(co) and the EGAFR(co).

To continue this discussion let us consider the very special case where X = `dp and the dictionary

D is finite, say D = {gj}Nj=1. In such a case, the existence of ϕm in all the above algorithms is easily
proven. The EGA(C) simply uses Nm function evaluations to make m iterations. The REGA(co)
solves a one-dimensional optimization problem at each iteration for each dictionary element, thus
N such problems. We discuss this problem in Section 4 and show that each such problem can be
solved with exponential accuracy with respect to the number of evaluations needed from E.

3 Approximate greedy algorithms for convex optimization

We turn now to the main topic of this paper which is modifications of the above greedy algorithms
to allow imprecise calculations or less strenuous choices for descent directions and relaxation pa-
rameters. We begin with a discussion of the Weak Relaxed Greedy Algorithm WRGA(co) which
was introduced and analyzed in [17] and which we already referred to in §2 . The WRGA(co)
uses the gradient to choose a steepest descent direction at each iteration. The interesting aspect of
WRGA(co), relative to imprecise calculations, is that it uses a weakness parameter tm < 1 to allow
some relative error in estimating supg∈D〈−E′(Gm−1), g −Gm−1〉. Here and below we use a conve-
nient bracket notation: for a functional F ∈ X∗ and an element f ∈ X we write F (f) = 〈F, f〉. We
concentrate on a modification of the second step of WRGA(co). Very often we cannot calculate

8

values of E exactly. Even in case we can evaluate E exactly we may not be able to find the exact
value of the inf0≤λ≤1E((1−λ)Gm−1 +λϕm). This motivates us to study the following modification
of the WRGA(co).

Weak Relaxed Greedy Algorithm with error δ (WRGA(δ)). Let δ ∈ (0, 1]. We define
G0 := 0. Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕm := ϕδ,τm ∈ D is taken any element satisfying

〈−E′(Gm−1), ϕm −Gm−1〉 ≥ tm sup
g∈D
〈−E′(Gm−1), g −Gm−1〉.

(2) Then 0 ≤ λm ≤ 1 is chosen as any number such that

E((1− λm)Gm−1 + λmϕm) ≤ inf
0≤λ≤1

E((1− λ)Gm−1 + λϕm) + δ.

With these choices, we define

Gm := (1− λm)Gm−1 + λmϕm.

Thus, this algorithm differs from the REGA(δ) given in the introduction, only in the choice of
the direction ϕm at each step. Both of these algorithms are directed at solving the minimization
of E over A1(D). The following theorem analyzes the WRGA(δ).

Theorem 3.1 Let E be uniformly smooth on A1(D) whose modulus of smoothness ρ(E, u) satisfies

ρ(E, u) ≤ γuq, 1 < q ≤ 2. (3.1)

If tk = t, k = 1, 2, . . . , then the WRGA(δ) satisfies

E(Gm)− E∗ ≤ C(q, γ, t, E)m1−q, m ≤ δ−1/q, (3.2)

where E∗ := inf
f∈A1(D)

E(x).

We develop next some results which will be used to prove this theorem. Let us first note that
when E is Fréchet differentiable, the convexity of E implies that for any x, y

E(y) ≥ E(x) + 〈E′(x), y − x〉 (3.3)

or, in other words,
E(x)− E(y) ≤ 〈E′(x), x− y〉 = 〈−E′(x), y − x〉. (3.4)

The following simple lemma holds.

Lemma 3.2 Let E be Fréchet differentiable convex function. Then the following inequality holds
for x ∈ S

0 ≤ E(x+ uy)− E(x)− u〈E′(x), y〉 ≤ 2ρ(E, u‖y‖). (3.5)

We use these remarks to prove the following.

9

Lemma 3.3 Let E be uniformly smooth on A1(D) with modulus of smoothness ρ(E, u). Then, for
any f ∈ A1(D) we have that the WRGA(δ) satisfies

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1)− E(f)) + 2ρ(E, 2λ)) + δ, m = 1, 2, . . .

and therefore

E(Gm)−E∗ ≤ E(Gm−1)−E∗+ inf
0≤λ≤1

(−λtm(E(Gm−1)−E∗)+2ρ(E, 2λ))+δ, m = 1, 2, . . . (3.6)

where E∗ := inff∈A1(D)E(x).

Proof: We have

Gm := (1− λm)Gm−1 + λmϕm = Gm−1 + λm(ϕm −Gm−1)

and from the definition of λm,

E(Gm) ≤ inf
0≤λ≤1

E(Gm−1 + λ(ϕm −Gm−1)) + δ.

By Lemma 3.2 we have for any λ

E(Gm−1 + λ(ϕm −Gm−1))

≤ E(Gm−1)− λ〈−E′(Gm−1), ϕm −Gm−1〉+ 2ρ(E, 2λ) (3.7)

and by step (1) in the definition of the WRGA(δ) and Lemma 2.2 from [17] (see also Lemma 6.10,
p. 343 of [16]) we get

〈−E′(Gm−1), ϕm −Gm−1〉 ≥ tm sup
g∈D
〈−E′(Gm−1), g −Gm−1〉 =

tm sup
φ∈A1(D)

〈−E′(Gm−1), φ−Gm−1〉 ≥ tm〈−E′(Gm−1), f −Gm−1〉.

From (3.4), we obtain
〈−E′(Gm−1), f −Gm−1〉 ≥ E(Gm−1)− E(f).

Thus,
E(Gm) ≤ inf

0≤λ≤1
E(Gm−1 + λ(ϕm −Gm−1)) + δ

≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1)− E(f)) + 2ρ(E, 2λ) + δ, (3.8)

which proves the lemma. 2

Finally, for the proof of Theorem 3.1, we will need the following result about sequences.

Lemma 3.4 If a nonnegative sequence a0, a1, . . . , aN satisfies

am ≤ am−1 + inf
0≤λ≤1

(−λvam−1 +Bλq) + δ, B > 0, δ ∈ (0, 1], (3.9)

for m ≤ N := [δ−1/q], q ∈ (1, 2], then

am ≤ C(q, v, B, a0)m1−q, m ≤ N. (3.10)

10

Proof: By taking λ = 0, (3.9) implies that

am ≤ am−1 + δ, m ≤ N. (3.11)

Therefore, for all m ≤ N we have

am ≤ a0 +Nδ ≤ a0 + 1, 0 ≤ m ≤ N.

Now fix any value of m ∈ [0, N] and define λ1 :=
(vam−1

2B

) 1
q−1 , so that

λ1vam−1 = 2Bλq1. (3.12)

If λ1 ≤ 1 then
inf

0≤λ≤1
(−λvam−1 +Bλq) ≤ −λ1vam−1 +Bλq1

= −1

2
λ1vam−1 = −C1(q, v, B)apm−1, p :=

q

q − 1
.

If λ1 > 1 then for all λ ≤ λ1 we have λvam−1 > 2Bλq and specifying λ = 1 we get

inf
0≤λ≤1

(−λvam−1 +Bλq) ≤ −1

2
vam−1

≤ −1

2
vapm−1(a0 + 1)1−p = −C1(q, v, a0)apm−1.

Thus, in any case, setting C2 := C2(q, v, B, a0) := min(C1(q, v, B), C1(q, v, a0)) we obtain from
(3.9)

am ≤ am−1 − C2a
p
m−1 + δ, (3.13)

holds for all 0 ≤ m ≤ N .
Now to establish (3.10), we let n ∈ [0, N] be the smallest integer such that

C2a
p
n−1 ≤ 2δ. (3.14)

If there is no such n, we set n = N . In view of (3.13), we have

am ≤ am−1 − (C2/2)apm−1, 1 ≤ m ≤ n. (3.15)

If we modify the sequence am by defining it to be zero if m > n, then this modified sequence
satisfies (3.15) for all m and Lemma 2.1 gives

am ≤ C3m
1−q, 1 ≤ m ≤ n, (3.16)

with C3 depending only on C2 and p.
If n = N , we have finished the proof. If n < N , then, by (3.11), we obtain for m ∈ [n,N]

am ≤ an−1 + (m− n+ 1)δ ≤ an−1 +Nδ ≤ an−1 +NN−q ≤ [
2δ

C2
]1/p + C4N

1−q,

where we have used the definition of N . Since δ1/p ≤ N−q/p = N−q+1, we have

am ≤ C5N
1−q ≤ C5m

1−q, n ≤ m ≤ N,

11

where C5 depends only on q, v, B, a0. This completes the proof of the lemma. 2

Proof of Theorem 3.1: We take

an := E(Gn)− E∗ ≥ 0.

Then, taking into account that ρ(E, u) ≤ γuq, we get from Lemma 3.3

am ≤ am−1 + inf
0≤λ≤1

(−λtam−1 + 2γ(2λ)q) + δ. (3.17)

Applying Lemma 3.4 with v = t, B = 21+qγ we complete the proof of Theorem 3.1. 2

We can establish a similar convergence result for the REGA(δ).

Theorem 3.5 Let E be a uniformly smooth on A1(D) convex function with modulus of smoothness
ρ(E, u) ≤ γuq, 1 < q ≤ 2. Then, for the REGA(δ) we have

E(Gm)− E∗ ≤ C(q, γ, E)m1−q, m ≤ δ−1/q,

where E∗ := inf
f∈A1(D)

E(x).

Proof: From the definition of the REGA(δ), we have

E(Gm) ≤ inf
0≤λ≤1;g∈D

E((1− λ)Gm−1 + λg) + δ.

In the same way that we have proved (2.3), we obtain

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λ(E(Gm−1)− E∗) + 2ρ(E, 2λ) + δ. (3.18)

Inequality (3.18) is of the same form as inequality (3.6) from Lemma 3.3. Thus, repeating the
above proof of Theorem 3.1 we complete the proof of Theorem 3.5. 2

We now introduce and analyze an approximate version of the WGAFR(co).

Weak Greedy Algorithm with Free Relaxation and error δ (WGAFR(δ)). Let τ :=
{tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define G0 := 0. Then for each m ≥ 1 we have
the following inductive definition.

(1) ϕm ∈ D is any element satisfying

〈−E′(Gm−1), ϕm〉 ≥ tm sup
g∈D
〈−E′(Gm−1), g〉. (3.19)

(2) Find wm and λm such that

E((1− wm)Gm−1 + λmϕm) ≤ inf
λ,w

E((1− w)Gm−1 + λϕm) + δ

and define
Gm := (1− wm)Gm−1 + λmϕm.

12

Theorem 3.6 Let E be a uniformly smooth convex function on X with modulus of smoothness
ρ(E,D1, u) ≤ γuq, 1 < q ≤ 2 and let E∗ := inf

x∈X
E(x) = inf

x∈D0

E(x). Then, for the WGAFR(δ), we

have
E(Gm)− E∗ ≤ C(E, q, γ)εm, m ≤ δ−1/q (3.20)

where
εm := inf{ε : A(ε)qm1−q ≤ ε}. (3.21)

and A(ε) is defined by (1.9).

Proof: In the proof of Lemma 4.1 of [17] we established the inequality

inf
λ≥0,w

E((1− w)Gm−1 + λϕm) ≤ E(Gm−1)

+ inf
λ≥0

(−λtmA(ε)−1(E(Gm−1)− E∗) + 2ρ(E,C0λ)), C0 = C(D0), (3.22)

under the assumption that ϕm satisfies (3.19) and Gm−1 ∈ D0.
In the case of exact evaluations in the WGAFR(co) we had the monotonicity property E(G0) ≥

E(G1) ≥ · · · which implied that Gn ∈ D0 for all n. In the case of the WGAFR(δ) inequality (3.22)
implies

E(Gm) ≤ E(Gm−1) + δ. (3.23)

Therefore, for all m ≤ N := [δ−1/q]

E(Gm) ≤ E(0) + 1,

which implies Gn ∈ D1 for all n ≤ N .
Denote

an := E(Gn)− E(f ε).

Inequality (3.22) implies

am ≤ am−1 + inf
λ≥0

(−λtA(ε)−1am−1 + 2γ(C0λ)q) + δ.

It is similar to (3.17) with the only point that we now cannot guarantee that am−1 ≥ 0. However,
if n is the smallest number from [1, N] such that an < 0 then for m ∈ [n,N] (3.23) implies easily
am ≤ Cm1−q. Thus it is sufficient to assume that an ≥ 0. We apply Lemma 3.4 with v = tA(ε)−1,
B = 2γCq0 and complete the proof. 2

We have discussed above two algorithms the WRGA(δ) and the REGA(δ). Results for the
REGA(δ) (see Theorem 3.5) were derived from the proof of the corresponding results for the
WRGA(δ) (see Theorem 3.1). We now discuss a companion algorithm for the WGAFR(δ) that
uses only function evaluations.

E-Greedy Algorithm with Free Relaxation and error δ (EGAFR(δ)). We define G0 := 0.
For m ≥ 1, assuming Gm−1 has already been defined, we take ϕm ∈ D αm, βm ∈ R satisfying

E(αmGm−1 + βmϕm) ≤ inf
α,β∈R;g∈D

E(αGm−1 + βg) + δ

and define
Gm := αmGm−1 + βmϕm.

13

In the same way as Theorem 3.5 was derived from the proof of Theorem 3.1 one can derive the
following theorem from the proof of Theorem 3.6.

Theorem 3.7 Let E be a uniformly smooth convex function on X with modulus of smoothness
ρ(E,D1, u) ≤ γuq, 1 < q ≤ 2 and let E∗ := inf

x∈X
E(x) = inf

x∈D0

E(x). Then, for the EGAFR(δ), we

have
E(Gm)− E∗ ≤ C(E, q, γ)εm, m ≤ δ−1/q (3.24)

where
εm := inf{ε : A(ε)qm1−q ≤ ε}. (3.25)

and A(ε) is defined by (1.9).

Theorem 2.4 provides the rate of convergence of the EGA(C) where we assume that function
evaluations are exact and we can find infg∈D exactly. However, in practice we very often cannot
evaluate functions exactly and (or) cannot find the exact value of the infg∈D. In order to address
this issue we modify the EGA(C) into the following algorithm EGA(C, δ).

E-Greedy Algorithm with coefficients C and error δ (EGA(C, δ)). Let δ ∈ (0, 1]. We
define G0 := 0. Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕδm ∈ D is such that

E(Gm−1 + cmϕ
δ
m) ≤ inf

g∈D
E(Gm−1 + cmg) + δ.

(2) Let
Gm := Gm−1 + cmϕ

δ
m.

We prove an analog of Theorem 2.4 for the EGA(C, δ).

Theorem 3.8 Let E be a uniformly smooth convex function with modulus of smoothness ρ(E, u) ≤
γuq, q ∈ (1, 2] on D3. We set s := 2

1+q and Cs := {ck−s}∞k=1 with c ≤ 1 chosen in such a way that

γcq
∑∞

k=1 k
−sq ≤ 1. Then the EGA(Cs, δ) provides the following rate: for any r ∈ (0, 1− s)

E(Gm)− E∗ ≤ C(r, q, γ)m−r, m ≤ δ−
1

1+r ,

where E∗ := inf
x∈A1(D)

E(x).

We first accumulate some results that we will use in the proof of this theorem. Let N := [δ−
1

1+r],
where [a] is the integer part of a and let Gm, m ≥ 0 be the sequence generated by the EGA(Cs, δ) .
Claim 1: Gm ∈ D3, i.e. E(Gm) ≤ E(0) + 3, for all 0 ≤ m ≤ N .

To see this, let t ∈ (0, 1) and ϕm be such that

〈−E′(Gm−1), ϕm〉 ≥ tED(Gm−1), ED(G) := sup
g∈D
〈−E′(G), g〉. (3.26)

Then
inf
g∈D

E(Gm−1 + cmg) ≤ E(Gm−1 + cmϕm).

14

Thus, it is sufficient to estimate E(Gm−1 + cmϕm) with ϕm satisfying (3.26). By (3.5) under
assumption that Gm−1 ∈ D3 we get with µ(u) := γuq

E(Gm−1 + cmϕm) ≤ E(Gm−1) + cm〈E′(Gm−1), ϕm〉+ 2µ(cm).

Using the definition of ϕm, we obtain

E(Gm−1 + cmϕm) ≤ E(Gm−1)− cmtED(Gm−1) + 2µ(cm). (3.27)

We now prove by induction that Gm ∈ D3 for all m ≤ N . Indeed, clearly G0 ∈ D3. Suppose that
Gk ∈ D3, k = 0, 1, . . . ,m− 1, then (3.27) holds for all k = 1, . . . ,m instead of m and, therefore,

E(Gm) ≤ E(0) + 2
m∑
k=1

µ(ck) +mδ ≤ E(0) + 3,

proving the claim.
We also need the following lemma from [18].

Lemma 3.9 If f ∈ LA, then for

Gk :=

k∑
j=1

cjϕj , ϕj ∈ D, j = 1, . . . , k,

we have

ED(Gk) ≥ (E(Gk)− E(f))/(A+Ak), Ak :=
k∑
j=1

|cj |.

Proof of Theorem 3.8: E attains E∗ at a point x∗ ∈ A1(D). If we start with (3.27) and then
use the above lemma with f = x∗, fact that we obtain

E(Gm) ≤ E(Gm−1)− tcm(E(Gm−1)− E∗)
1 +Am−1

+ 2γcqm + δ. (3.28)

The left hand side of (3.28) does not depend on t, therefore the inequality holds with t = 1:

E(Gm) ≤ E(Gm−1)− cm(E(Gm−1)− E∗)
1 +Am−1

+ 2γcqm + δ. (3.29)

We have

Am−1 = c

m−1∑
k=1

k−s ≤ c(1 +

m∫
1

x−sdx) = c(1 + (1− s)−1(m1−s − 1)))

and
1 +Am−1 ≤ 1 + c(1− s)−1m1−s.

Therefore, for m ≥ C1 we have with v := (r + 1− s)/2

cm
1 +Am−1

≥ v + 1− s
2(m− 1)

. (3.30)

To conclude the proof, we need the following technical lemma. This lemma is a more general version
of Lemma 2.1 from [14] (see also Remark 5.1 in [15] and Lemma 2.37 on p. 106 of [16]).

15

Lemma 3.10 Let four positive numbers α < β ≤ 1, A, U ∈ N be given and let a sequence {an}∞n=1

have the following properties: a1 < A and we have for all n ≥ 2

an ≤ an−1 +A(n− 1)−α; (3.31)

if for some ν ≥ U we have
aν ≥ Aν−α

then
aν+1 ≤ aν(1− β/ν). (3.32)

Then there exists a constant C = C(α, β,A,U) such that for all n = 1, 2, . . . we have

an ≤ Cn−α.

We apply this lemma with an := E(Gn) − E∗, n ≤ N , an := 0, n > N , α := r, β := v :=
(r+1−s)/2, U = C1 and A specified later. Let us check the conditions (3.31) and (3.32) of Lemma
3.10. It is sufficient to check these conditions for m < N . By the inequality

E(Gm) ≤ E(Gm−1) + 2ρ(E, cm) + δ ≤ E(Gm−1) + 2γcqm−sq + δ

the condition (3.31) holds for A ≥ 2γcq + 1. Using sq ≥ 1 + r we get

cqm = cqm−sq ≤ cqm−1−r, δ ≤ m−1−r. (3.33)

Assume that am ≥ Am−r. Setting A to be big enough to satisfy

δ + 2γcqm ≤
A(1− s− β)

2m1+r

we obtain from (3.29), (3.30), and (3.33)

am+1 ≤ am(1− β/m)

provided am ≥ Am−r. Thus (3.32) holds. Applying Lemma 3.10 we get

am ≤ C(r, q, γ)m−r.

This completes the proof of Theorem 3.8. 2

4 Univariate convex optimization

The relaxation step in each of the above algorithms involves either a univariate or bivariate op-
timization of a convex function. The univariate optimization problem called line search is well
studied in optimization theory (see [10]). The purpose of the remaining two sections of this paper
is to show that such problems can be solved efficiently. Results of these two sections are known.
We present them here for completeness.

In this section we consider the class F of convex on [0, 1] functions which belong to Lip 1 class
with constant 1. We are interested in how many function evaluations are needed in order to find
for a given ε > 0 and a given f ∈ F a point xε ∈ [0, 1] such that

f(xε) ≤ min
x∈[0,1]

f(x) + ε ?

We begin with a known upper bound.

16

Proposition 4.1 If the algorithm described below is applied to any f ∈ F and m ∈ N, then after
3 + 2m function evaluations, it produces a point xm ∈ [0, 1] such that

f(xm) ≤ min
x∈[0,1]

f(x) + 2−m. (4.1)

Proof: We begin with three function evaluations f(0), f(1/2), and f(1). Without loss of generality
assume that f(0) ≤ f(1).
Case 1: f(0) ≤ f(1/2) ≤ f(1). It follows from convexity that f(x) ≥ f(1/2) for all x ∈ [1/2, 1]
and hence we can restrict our search for a point of minimum to the interval [0, 1/2], in other words
we delete interval (1/2, 1] from consideration.
Case 2: f(1/2) < f(0). We make two more evaluations at the points 1/4 and 3/4. It is impossible
that both

f(1/4) < f(1/2) and f(3/4) < f(1/2).

Therefore, at least one of f(1/4), f(3/4) must be ≥ f(1/2). If f(1/4) ≥ f(1/2) and f(3/4) ≥ f(1/2)
in the same way as above we delete intervals [0, 1/4) and (3/4, 1] and continue our search on
[1/4, 3/4]. If f(1/4) < f(1/2) then we delete (1/2, 1] and if f(3/4) < f(1/2) we delete [0, 1/2).

After one iteration we have added 2 function evaluations and reduced our search for a point
of minimum to an interval of length 1/2 with function values at end points and the middle point
known to us. We continue this process to complete the proof of the proposition. 2

We next analyze what happens if we do not receive the exact values of f when we query in the
above algorithm. We assume that when we query f at a point x, we receive the corrupted value
y(x) where |f(x)− y(x)| ≤ δ for each x ∈ [0, 1]. We assume that we know δ.

Proposition 4.2 Suppose we make function evaluations with an error δ. The algorithm described
below applied to f ∈ F and m ∈ N takes 3+2m function evaluations and produces a point xm ∈ [0, 1]
such that

f(xm) ≤ min
x∈[0,1]

f(x) + 2−m + (4m+ 1)δ. (4.2)

Proof: In the argument that follows, we use the following property of convex functions. For any
0 ≤ a < b ≤ c < d ≤ 1 we have

f(b)− f(a)

b− a
≤ f(d)− f(c)

d− c
. (4.3)

As in the proof of Proposition 4.1 we go by cases. At the first iteration we evaluate our function
at 0, 1/2, 1. Without loss of generality we assume that y(0) ≤ y(1).

A. Suppose y(0) ≤ y(1/2). Then f(0) ≤ f(1/2) + 2δ and by (4.3) with a = 0, b = 1/2, c = 1/2,
d = x, x ∈ (1/2, 1] we obtain

f(x) ≥ f(1/2)− 2δ, x ∈ [1/2, 1].

Therefore, restricting our search for a minimum to [0, 1/2] we make an error of at most 2δ.
B. Suppose y(1/2) < y(0). In this case, we make an additional evaluation of the function at

1/4.
Ba. Suppose y(1/4) < y(1/2)− 2δ. Then f(1/4) < f(1/2) and by (4.3) we obtain that

min
x∈[1/2,1]

f(x) ≥ min
x∈[0,1/2]

f(x).

17

Therefore, we can again restrict our search to the interval [0, 1/2].
Bb. Suppose y(1/4) ≥ y(1/2) − 2δ. In this case we make an additional evaluation of the

function at 3/4. If y(3/4) < y(1/2) − 2δ then as in Ba we can restrict our search to the interval
[1/2, 1]. If y(3/4) ≥ y(1/2)− 2δ we argue as in the case A and obtain

min
x∈[0,1/4]

f(x) ≥ min
x∈[1/4,1/2]

f(x)− 4δ, min
x∈[3/4,1]

f(x) ≥ min
x∈[1/2,3/4]

f(x)− 4δ.

Therefore, we restrict our search to the interval [1/4, 3/4] with an error at most 4δ.
At each iteration we add two evaluations and then find that we can restrict our search to an

interval of half the size of the original while incurring an additional error at most 4δ. Finally, the
evaluation of y gives us an error at most δ with that of f . 2

We note that convexity of functions from F plays a dominating role in obtaining exponential
decay of error in Proposition 4.1. For instance, the following simple known statement holds for the
Lip11 class.

Proposition 4.3 Let A(m) denote the class of algorithms (adaptive) which use at most m function
evaluations and provide an approximate for the minimum value of a function. Then

inf
A∈A(m)

sup
f∈Lip11

| min
x∈[0,1]

f(x)−A(f)| = 1

4m
.

Proof: The upper bound follows from evaluating f at the midpoints xj of the intervals [(j −
1)/m, j/m], j = 1, . . . ,m and giving the approximate value minj f(xj) − 1

4m . The lower bound
follows from the following observation. For any m points 0 ≤ ξ1 < ξ2 < . . . < ξm ≤ 1 there are two
functions f1, f2 ∈ Lip11 such that f1(ξj) = f2(ξj) = 0 for all j and minx f1(x)−minx f2(x) ≥ 1

2m .
2

5 Multivariate convex optimization

In this section, we discuss an analog of Proposition 4.1 for d-variate convex functions on [0, 1]d.
The d-variate algorithm is a coordinate wise application of the algorithm from Proposition 4.1 with
an appropriate δ. We begin with a simple lemma.

Lemma 5.1 Let f(x), x = (x1, . . . , xd) ∈ [0, 1]d be a convex on [0, 1]d function. Define xd :=
(x1, . . . , xd−1) ∈ [0, 1]d−1 and

fd(x
d) := min

xd
f(x).

Then fd(x
d) is a convex function on [0, 1]d−1.

Proof: Let u, v ∈ [0, 1]d−1. Then, there are two points w, z ∈ [0, 1]d such that

fd(u) = f(w), fd(v) = f(z)

and u = wd, v = zd. From the convexity of f(x), we have

f(tw + (1− t)z) ≤ tf(w) + (1− t)f(z) = tfd(u) + (1− t)fd(v), t ∈ [0, 1]. (5.1)

Clearly,
fd((tw + (1− t)z)d) ≤ f(tw + (1− t)z), t ∈ [0, 1]. (5.2)

Inequalities (5.1) and (5.2) imply that fd(u) is convex. 2

18

Proposition 5.2 The d-variate minimization algorithm given below takes as input any f ∈ F and
m ∈ N and produces after (3 + 2m)d function evaluations a point xm ∈ [0, 1]d such that

f(xm) ≤ min
x∈[0,1]

f(x) + 2−m(4m+ 2)d. (5.3)

Proof: We construct the algorithm by induction. In the case d = 1, we use the univariate algorithm
from Proposition 4.2. Suppose, we have given the algorithm such that the proposition holds for
d− 1. Then, we write

min
x
f(x) = min

xd
min
xd

f(x)

and observe that by Lemma 5.1 the function g(xd) := min
xd

f(x) is a convex function. Next, we apply

the algorithm from Proposition 4.2 with δ = 2−m(4m+ 2)d−1 to the function g. By our induction
assumption we evaluate g with an error at most δ. Thus by Proposition 4.2 we get an error at most

2−m + (4m+ 1)δ ≤ 2−m(4m+ 2)d.

The total number of evaluations is (3 + 2m)d. This completes the proof. 2

References

[1] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization. Theory and
Examples, Canadian Mathematical Society, Springer, 2006.

[2] V. Chandrasekaran, B. Recht, P.A. Parrilo, and A.S. Willsky, The convex geometry of linear
inverse problems, Proceedings of the 48th Annual Allerton Conference on Communication,
Control and Computing, 2010, 699–703.

[3] K.L. Clarkson, Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm,
ACM Transactions on Algorithms, 6 (2010), Article No. 63.

[4] M. Dudik, Z. Harchaoui, and J. Malick, Lifted coordinate descent for learning with trace-
norm regularization, In AISTATS, 2012.

[5] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics
Quarterly, 3 (1956), 95–110.

[6] M. Jaggi, Sparse Convex Optimization Methods for Ma- chine Learning, PhD thesis, ETH
Zürich, 2011.

[7] M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Proceedings
of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013.

[8] M. Jaggi and M. Sulovský, A Simple Algorithm for Nuclear Norm Regularized Problems.
ICML, 2010.

[9] V.G. Karmanov, Mathematical Programming, Mir Publishers, Moscow, 1989.

19

[10] A. Nemirovski, Optimization II: Numerical methods for nonlinear continuous optimization,
Lecture Notes, Israel Institute of Technology, 1999.

[11] Yu. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer
Academic Publishers, Boston, 2004.

[12] H. Nguyen and G. Petrova, Greedy strategies for convex optimization, preprint.

[13] S. Shalev-Shwartz, N. Srebro, and T. Zhang, Trading accuracy for sparsity in optimization
problems with sparsity constrains, SIAM Journal on Optimization, 20(6) (2010), 2807–2832.

[14] V.N. Temlyakov, Greedy Algorithms andm-term Approximation With Regard to Redundant
Dictionaries, J. Approx. Theory 98 (1999), 117–145.

[15] V.N. Temlyakov, Greedy-Type Approximation in Banach Spaces and Applications, Constr.
Approx., 21 (2005), 257–292.

[16] V.N. Temlyakov, Greedy approximation, Cambridge University Press, 2011.

[17] V.N. Temlyakov, Greedy approximation in convex optimization, IMI Preprint, 2012:03, 1–
25; arXiv:1206.0392v1, 2 Jun 2012.

[18] V.N. Temlyakov, Greedy expansions in convex optimization, IMI Preprint, 2012:04, 1–27;
arXiv:1206.0393v1, 2 Jun 2012.

[19] A. Tewari, P. Ravikumar, and I.S. Dhillon, Greedy Algorithms for Structurally Constrained
High Dimensional Problems, prerint, (2012), 1–10.

[20] T. Zhang, Sequential greedy approximation for certain convex optimization problems, IEEE
Transactions on Information Theory, 49(3) (2003), 682–691.

Ronald A. DeVore, Department of Mathematics, Texas A& M University, College Station, TX
77843, email: rdevore@math.tamu.edu

Vladimir Temlyakov, Department of Mathematics, University of South Carolina, Columbia, SC
29208, email: temlyak@math.sc.edu

20

	2014_01_PreprintCover
	DT_opt3

