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Abstract

We prove an inequality for the entropy numbers in terms of non-
linear Kolmogorov’s widths. This inequality is in a spirit of known
inequalities of this type and it is adjusted to the form convenient in
applications for m-term approximations with respect to a given sys-
tem. Also, we obtain upper bounds for the m-term approximation by
the Weak Relaxed Greedy Algorithm with respect to a system which
is not a dictionary.

1 Introduction

This paper was motivated by the very recent paper [3]. The authors of [3]
study the entropy and best m-term approximation of the ¢,-hulls of finite
systems of elements in the L, spaces. They conduct this study by probabilis-
tic methods. In this context probabilistic methods were used in some earlier
papers, for instance, in [2]. Here we demonstrate how known results from
greedy approximation in Banach spaces combined with known technique of
general inequalities for the entropy numbers allow us to obtain similar re-
sults. Moreover, we show that the use of a greedy algorithm allows us to
provide a deterministic construction of good m-term approximants.

*University of South Carolina and Steklov Institute of Mathematics. Research was
supported by NSF grant DMS-1160841



A number of different widths are being studied in approximation theory:
Kolmogorov widths, linear widths, Fourier widths, Gel’fand widths, Alexan-
drov widths and others. All these widths were introduced in approximation
theory as characteristics of function classes (more generally compact sets)
which give the best possible accuracy of algorithms with certain restrictions.
For instance, Kolmogorov’s n-width for centrally symmetric compact set F
in a Banach space X is defined as follows

d,.(F, X) := inf sup inf || f —
(F,.X) = infsup inf [/ = g]lx

where inf; is taken over all n-dimensional subspaces of X. In other words
the Kolmogorov n-width gives the best possible error in approximating a
compact set F' by n-dimensional linear subspaces.

There has been an increasing interest last decades in nonlinear m-term
approximation with regard to different systems. In [4] we generalized the
concept of classical Kolmogorov’s width in order to use it in estimating best
m-term approximation. For this purpose we introduced a nonlinear Kol-
mogorov’s (N, m)-width:

F X N):= inf inf inf ||f —
dm(E X N) = il sup i i =gl

where Ly is a set of at most N m-dimensional subspaces L. It is clear that
dp(F, X, 1) = d,,(F, X).

The new feature of d,,(F, X, N) is that we allow to choose a subspace L € Ly
depending on f € F'. It is clear that the bigger N the more flexibility we have
to approximate f. It turns out that from the point of view of our applications
the two cases

N =< K™, (1.1)

where K > 1 is a constant, and
N =m"™, (1.2)

where a > 0 is a fixed number, play an important role.

It is known (see [6]) that the (N, m)-widths can be used for estimating
from below the best m-term approximations. Let X be a Banach space and
let Bx denote the unit ball of X with the center at 0. Denote by Bx(y,r) a
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ball with center y and radius r: {zr € X : ||z —y|| < r}. For a compact set A
and a positive number ¢ we define the covering number N (A, X) as follows

N(A, X) :=min{n: ', ... ,y": AC U?ZlBX(yj,e)}.

It is convenient to consider along with the entropy H.(A, X) := log N.(A, X)
(here and later log := log,) the entropy numbers e, (A, X):

(A, X) :=inf{e: Iy, .. ¥ e X AC U?;Bx(yj,e)}.

There are several general results (see [1]) which give lower estimates of
the Kolmogorov widths d,,(F, X) in terms of the entropy numbers ¢ (F, X).
The Carl’s (see [1]) inequality states: for any r > 0 we have

1I£J?<Xnk ex(F, X) < C(r) ax m A1 (F, X). (1.3)

We proved in [4] (see also [7], Section 3.5) the inequality
max k"ex(F, X) < C(r,K) max m"dp—1 (F, X, K™), (1.4)

1<k<n

where we denote
do(F, X, ) = sup | .
feF
This inequality is a generalization of inequality (1.3). We also discussed in
[4] and in Section 3.5 of [7] the possibility of replacing K™ by (Kn/m)™ in
(1.4). The corresponding remarks (Remark 2.1 in [4] and Remark 3.5 in [7])
should read as follows.

Remark 1.1. Ezamining the proof of (1.4) one can check that the following
inequality holds
n'e,(F, X) < C(r,K) 1r<nn?§nmrdm_1(F, X, (Kn/m)™).

In Section 2 we prove an upper bound for ¢, (F, X) for all k£ <n.

In Section 3 we demonstrate how the general inequality from Theorem
2.1 can be used in estimating the entropy numbers of different compacts.
In particular, Corollary 3.3 gives a new proof of the corresponding upper
bounds from Theorem 1 in [3].

In Section 4 we study the Weak Relaxed Greedy Algorithm with respect
to a system which is not a dictionary. In particular, results of Section 4
provide an algorithm which gives the same upper bounds for the best m-
term approximation as those obtained in [3].
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2 A general inequality

Theorem 2.1. Let a compact F' C X and a number r > 0 be such that for

somen € N
A1 (F, X, (Kn/m)™) <m™, m <n.

Then for k <n

er(F,X) < O(r, K) (W)

Proof. Let X (N, m) denote the union of not more than N subspaces L with
dim L < m. Consider a collection K(I) := {X((Kn2-5"1)>"" 25t} _ |
241 < n and denote

H(K) :=={f € X :ALi(f),..., Li(f) : Ly(f) € X((Kn2~5" 12" 25t1),

and 3t,(f) € Ls(f) such that

l
lts()llx <2760, s =15 [If = t(Hllx <27,
s=1

Lemma 2.1. We have for r >0
ex(H"(K(1), X) < C(r, K)2 " (log(Kn27h)", 2 <n.

Proof. We use a well known result (see, for instance, [7], p. 145) to estimate
€n(Bx, X) of the unit ball Bx in the d-dimensional space X :

en(Bx, X) < 3(279). (2.1)

Take any sequence {ns}i(;)1 of I(r) < [ — 2 nonnegative integers. We will
specify I(r) later. Construct €, -nets consisting of 2" points each for all unit
balls of the spaces in X ((Kn275"1)2""" 25t1) Then the total number of the
elements y; in these €, -nets does not exceed

25+1

M, = (Kn2757 12" 2m,
We now consider the set A of elements of the form

—-r —r(l(r)— I(r .
yj + 27y A 27O e LM, s =1, (),
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The total number of these elements does not exceed

I(r) I(r) I(r)
M = H M,, logM < Z 25T log(Kn27571) + Zns.

s=1 s=1 s=1
It is easy to see that

I(r)
> 2 log(Kn2—") < €12/ log(Kn27'™).

s=1
We now set
ng = [(r+ 1) —s)2°"), s=1,...,0r),

where [z] denotes the integer part of a number z. We choose I(r) <[ —2 as
a maximal natural number satisfying

I(r)

Z”S < ol

and

12" Jog(Kn271M) < 2!71,
It is clear that

21 > 42! (log(Kn27h)) L. (2.2)
Then we have

M < 2%,

For the error €(f) of approximation of f € H"(K(l)) by elements of A we
have

l

x+ ) ItDlx

s=l(r)+1

I(r)
e(f) <27+ Y k() =27y,
s=1

L(r)
< O(T)Q—rl(r) + Z 2_T(S_1)6nS(BLS(f), X)
s=1
1(r) 1
< C(r)2frl(r) +3 Z 27T(571)27n5/25+ < C(T)2frl(r).

s=1

Taking into account (2.2) we complete the proof of Lemma 2.1. O
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We continue the proof of Theorem 2.1. Without loss of generality assume

max m'dy,—1(F, X, (Kn/m)™) <1/2.

1<m<n
Then for s =1,2,...,0; | < [log(n — 1)] we have
dos (F, X, (Kn27%)%) < 27771,

This means that for each s = 1,2, ..., there is a collection L of (Kn27°)*
2°-dimensional spaces L3, j = 1,..., (Kn27°)%, such that for each f € F
there exists a subspace L? (f) and an approximant a,(f) € L3 (f) such that

If —as(H)l <277

Consider
ts(f) = as(f) —asa(f), s=2,...,L (2.3)
Then we have
L) € L) @ LNS), dim(IE(f) @ LT () < 2° 4271 < 2%,
Note that for K large enough
23+1

(Kn2~*)% (Kn2~>t1)?"" < (Kn2~°")

Let X((Kn2*871)2s+1’ 28+1> denote the collection of all ijs @Lj-s__ll over various
1<, < (Kn27%)?"; 1< j,1 < (Kn275t)2" For t,(f) defined by (2.3)
we have

()] < 277 4 21 < 9orte),

Next, for a;(f) € L'(f) we have
If = a (Sl <1/2
and from dy(F, X) < 1/2 we get
lar (A < 1.

Take t1(f) = ai(f). Then we have F' C H"(K(l)) and Lemma 2.1 gives the
required bound

e (F) < O(r, K)27 (log(Kn27))", 1 <1< [log(n —1)].

It is clear that these inequalities imply the conclusion of Theorem 2.1. O



3 Applications

We begin with an application which motivated a study of d,,(F, X, N) with
N = (Kn/m)™. Let D = {g;}}_, be a system of normalized elements of car-
dinality |D| = n in a Banach space X . Consider best m-term approximations
of f with respect to D

on(fD)x = inf [If = gl

ci b A Al=m
{ej}sA:A] jel
For a function class F' set

Um(F7 D)X ‘= sup Um(f7 D)X
fEF

Then it is clear that for any system D, |D| = n,

dn(F, X, (:;)) < om(F,D)x.

(j;) < (en/m)™.

Thus Theorem 2.1 implies the following theorem.

Next,

Theorem 3.1. Let a compact F' C X be such that there exists a normalized
system D, |D| = n, and a number r > 0 such that

om(F,D)x <m™", m<n.

Then for k <n

er(F, X) < O(r) (W) . (3.1)

Remark 3.1. Suppose that a compact F' from Theorem 3.1 belongs to an
n-dimensional subspace X,, := span(D). Then in addition to (3.1) we have
fork>n

ex(F, X) < C(r)n=r2 kM, (3.2)

Proof. Inequality (3.2) follows from Theorem 3.1 with X = X,, k& = n,
inequality (2.1) and a simple well known inequality

€hytks (A, Xn) < en, (A, Xy en, (Bx,,, Xn), (3.3)

where A is a compact and By, is a unit ball of X,,. [
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As a corollary of Theorem 3.1 and Remark 3.1 we obtain the following
classical bound.

Corollary 3.1. For any 0 < ¢ < oo and max(1,q) < p < oo we have

o log(2n/k)\1/¢=1/p | <
ek(Bq ) fp) < C(q,p) { 2k/$zn1/z)71/q k > n.

Proof. Indeed, it is well known and easy to check that for a sequence of
nonnegative numbers xy > x5 > -+ > x, we have for 0 < ¢ <p

n 1/p n 1/q
1 1
( Z x?) <mpr a (Z x?) . (3.4)
j=m-+1 Jj=1
Therefore, for 0 < ¢ < p
11
om(By {€ej}j1)er <mrTa, m <,

where {e;}7_, is a canonical basis for R". Applying Theorem 3.1 and Remark
3.1 we obtain Corollary 3.1. [

For a normalized system D define A,(D), ¢ > 0, as a closure in X of the
set
{z:2= chgj, g; €D, Z lc;|7 < 1}
J J

Corollary 3.2. Let 1 < p < oco. For a normalized system D of cardinality
|D| = n we have

max(z,7)—1
a(4(D). 1) < Cp) (<25 Ck<n (35)
Proof. 1t is known (see [2] and [7]) that

max(L,1)—
O (A1(D), D)y, < Cp)ym™ )7, (3.6)
It remains to apply Theorem 3.1. O

Corollary 3.3. Let D be a normalized system of cardinality |D| = n. Then
for0<qg<1and1l < p< oo we have

(10g(2n/k)>1/q—max(%,%)’ k

<n
Gk(Aq(D), Lp) < C(Qup) { 2_k/inmax(%,%)*1/q k ;



Proof. We estimate 0,,,(Aq(D),D)r,. If ¢ = 1 then the bound is given by
(3.6). If ¢ < 1 then we use (3.4) with p =1 and by (3.6) we get

1

max(%,1)—1
O-Qm(Aq(D)7D)Lp S O(q’p)m (2’p) q.
Applying Theorem 3.1 and Remark 3.1 we obtain Corollary 3.3. O

We note that Corollary 3.3 gives the same upper bounds as in Theorem 1
of [3]. It is proved in [3] that these bounds are best possible up to a constant.

4 A greedy algorithm

In Section 3 we showed how best m-term approximations can be used for
estimating the entropy numbers. Here we note that m-term approximations
are very important by themselves in the context of sparse approximation. In
this context an important problem is to provide an algorithm that builds a
good m-term approximation. We discuss a greedy algorithm in this section.
The theory of greedy approximation is well developed (see [7]). A typical
problem of greedy approximation is a problem of m-term approximation with
respect to a dictionary. We say that a set of elements (functions) D from a
Banach space X is a dictionary, respectively, symmetric dictionary, if each
g € D has norm bounded by one (]|g|| < 1),

g€ D implies —geD,

and the closure of spanD is X. We denote the closure (in X) of the convex
hull of D by A;(D). In this section we discuss greedy algorithms with regard
to a system D that is not a dictionary. Here, we will discuss a variant of the
Weak Relaxed Greedy Algorithm (WRGA). Let X be a real Banach space
and let D := {g} be a system of elements g € X such that ||g|| < 1 and
g € D implies —g € D. Usually, in the theory of greedy algorithms we
consider approximation with regard to a dictionary D. One of the properties
of a dictionary D is that the closure of span D is equal to X. In this section
we do not assume that the system D is a dictionary. In particular, we do
not assume that the closure of spanD is X. This setting is motivated by
applications in Learning Theory (see Chapter 4 of [7]).

For a nonzero element f € X we let Fy denote a norming (peak) func-
tional for f:

1Ell =1, () = lIfIl-



The existence of such a functional is guaranteed by Hahn-Banach theorem.

Let 7 := {tx}32, be a given weakness sequence of numbers ¢, € [0, 1],
k=1,....

Weak Relaxed Greedy Algorithm (WRGA). We define f := f5" :=
fand Gj, := Gy := 0. Then, for each m > 1 we have the following inductive
definition.

(1) ¢r, == ¢l™ € D is any element satisfying

Fgr (¢, — Griq) > tsup Fyr (9 — Gy, y).

g€D
(2) Find 0 < \,, < 1 such that
15 = (0= M)y + Ang)ll = i 117 = (1= NGy + A5
and define
G =G =(1—=X\n))G _+ Ay
(3) Let

fo =107 = =G

For a Banach space X we define the modulus of smoothness

1
plu):= sup (S(llo+uyl +[lz - uyl]) - 1).
Jall=llyll=1

The uniformly smooth Banach space is the one with the property

lim p(u)/u = 0.

u—0

The following theorem was proved in [5] (see also Theorem 6.17 on p. 348 in
[7]) for D being a dictionary.

Theorem 4.1. Let X be a uniformly smooth Banach space with modulus of
smoothness p(u) < vyul, 1 < q < 2. Then, for a sequence T = {t;}32,,
ty <1, k=1,2,..., we have for any f € A1(D) that

—1/p
q
T < O 1 t =
17|l < Cu( <+§ ) N E i

with a constant C1(q,~) which may depend only on q and 7.
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We prove here an analog of the above theorem when we do not assume
that D is a dictionary and only assume that D = {g} is a symmetric system
with a property ||g|| < 1.

Theorem 4.2. Let X be a uniformly smooth Banach space with modulus of
smoothness p(u) < vyul, 1 < q < 2. Then, for a sequence T = {t;}32,,
te <1, k=1,2,..., we have for any f € X that

-1/p
570 < it = 6l + Calg (1+th> Cp= L

with a constant Cy(q,~) which may depend only on q and .

Remark 4.1. In case of a Hilbert space H there are stronger results for
similar greedy algorithms with T = {1} (see [7], p. 99, Theorem 2.28):

2
||fm||?{§( inf ||f_¢||H) Y Om!

¢€A1(D)

Proof. Proof of Theorem 4.2 is similar to the proof of Theorem 4.1. Denote

b:= inf ||f ¢l

peA1(D

We use the following lemma.

Lemma 4.1. Let X be a uniformly smooth Banach space with modulus of
smoothness p(u). Then, for a given f € Ay(D) we have

[ s S (AN A ([ R ()

0<A<1

T ZA
1

Proof. We have

T == (1= An)Gh i+ Amen,) = fret — Mm@, — Gh1)

and

[l = b [ fry = Al = G-

0<X<1

11



We have from the definition of the modulus of smoothness for any A
[ fre1 = Am = Gl + 1 o + Ao, — Grn) I <

At — G
. 4.1
TR 1)

2[| 11+ oo
Next we get for A >0
It + Aoy, =Gl > Ff;ﬂ(fwzq + Aen, —Gr1)) =
et + )‘Ff;_l(ﬁpfn —Grq) 2 fmall + At Elelg Ffjn_l(g -G )

Using Lemma 6.10, p. 343, from [7] we continue

= | frcall + M sup Fpr (¢ = G _y) 2> || fall + Mol il = 0).
¢€ A1 (D)

Using the trivial estimate ||¢l — G7 ;|| < 2 we obtain from (4.1)

||f77;z—1 - )‘(90:71 - GTm—l)H

T T I 2)\
< [ feall = M ([l = 0) + 211 f7 1Hp(Hfr II)) (4.2)

m—1
which proves Lemma 4.1. ]

Set
am = || full = .
Note that
0<a,, <2

Using monotonicity of p(u)/u we derive from Lemma 4.1

A < Ay Inf (1= My, + 2020 a—1)). (4.3)
A€0,1]

For p(u) < yu? it gives

A < o1 Inf (1= My, + 2920 ay—1)?). (4.4)
XE[0,1]

Denote \; the solution of the equation

1

1 2 \? t. al g1
M, =2 A\ = [ imol .
Po= (o) n= ()

12




If Ay <1 then

/\ir[hfl](l — My + 272N am—1)?) <1 — Mty + 29201 /am—1)?)
€10,

1
=1~ 5)\1tm =1- C3(Q7’Y)tfnap b=

If Ay > 1 then for all A < A\; we have

1 22 \?
A, > 2y < ) :
2 Am—1

1
inf (1= My +27(2)/am-1)") < 1= St < 1= Cilg,7)tha}

Specifying A = 1 we get

A€0,1] m@m—1-
Setting Cs := C5(q, ) := min(Cs(q, ), Cs(g,7y)) we obtain
U < Q-1 (1 = Cstb al ). (4.5)

It is known (see [7], p. 345) that inequalities (4.5) imply

1/p
m < Co(q, (1+th> :

This completes the proof of Theorem 4.2. O]

It is known (see, for instance, [2], Lemma B.1) that in the case X = L,
we have

p(u) <uP/p if 1<p<2 and p(u) < (p—1)u*/2 if 2<p< oo

Therefore, in this case Theorem 4.2 gives: for any f € L,

—1/s
17 lle, < dnf LS = 6lls, + C(p) G+Z}ﬁ . (4.6)

where s := max(;57,2). It was proved in [3] that for 0 <v <1,

O£ P)s, € 0t |1 = 6], + Cmm=0D )

The proof in [3] is probabilistic and does not provide a deterministic algo-
rithm for constructing a good m-term approximation. We note that inequal-
ity (4.6) shows that in case v = 1 the greedy algorithm WRGA with 7 = {¢}
provides the rate of approximation as in (4.7).
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