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Abstract

We study sparse representations and sparse approximations with
respect to incoherent dictionaries. We address the problem of design-
ing and analyzing greedy methods of approximation. A key question
in this regard is: How to measure efficiency of a specific algorithm?
Answering this question we prove the Lebesgue-type inequalities for
algorithms under consideration. A very important new ingredient of
the paper is that we perform our analysis in a Banach space instead
of a Hilbert space. It is known that in many numerical problems users
are satisfied with a Hilbert space setting and do not consider a more
general setting in a Banach space. There are known arguments that
justify interest in Banach spaces. In this paper we give one more ar-
gument in favor of consideration of greedy approximation in Banach
spaces. We introduce a concept of M -coherent dictionary in a Ba-
nach space which is a generalization of the corresponding concept in
a Hilbert space. We analyze the Quasi-Orthogonal Greedy Algorithm
(QOGA), which is a generalization of the Orthogonal Greedy Algo-
rithm (Orthogonal Matching Pursuit) for Banach spaces. It is known
that the QOGA recovers exactly S-sparse signals after S iterations
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provided S < (1 + 1/M)/2. This result is well known for the Or-
thogonal Greedy Algorithm in Hilbert spaces. The following question
is of great importance: Are there dictionaries in Rn such that their
coherence in `np is less than their coherence in `n2 for some p ∈ (1,∞)?
We show that the answer to the above question is ”yes”. Thus, for
such dictionaries, replacing the Hilbert space `n2 by a Banach space
`np we improve an upper bound for sparsity that guarantees an exact
recovery of a signal.

1 Introduction

We study sparse representations and sparse approximations with respect to
incoherent dictionaries. Sparse representations of a function are not only a
powerful analytic tool but they are utilized in many application areas such
as image/signal processing and numerical computation. The backbone of
finding sparse representations is the concept of m-term approximation of the
target function by the elements of a given system of functions (dictionary).
Since the elements of the dictionary used in the m-term approximation may
be adapted to the function being approximated, this type of approximation
is very efficient when approximants can be found. We address the problem of
designing and analyzing greedy methods of approximation. A key question in
this regard is: How to measure efficiency of a specific algorithm? Answering
this question we follow the pattern introduced in [1] and prove the Lebesgue-
type inequalities for algorithms under consideration. A very important new
ingredient of the paper is that we perform our analysis in a Banach space
instead of a Hilbert space. It is known that in many numerical problems
users are satisfied with a Hilbert space setting and do not consider a more
general setting in a Banach space. There are known arguments (see [11],
p. xiii) that justify interest in Banach spaces. The first argument is an a
priori argument that the spaces Lp are very natural and should be studied
along with the L2 space. The second argument is an a posteriori argument.
The study of greedy approximation in Banach spaces has discovered that
the characteristic of a Banach space X that governs the behavior of greedy
approximation is the modulus of smoothness ρ(u) of X. It is known that
the spaces Lp, 2 ≤ p < ∞ have modulo of smoothness of the same order:
u2. Thus, many results that are known for the Hilbert space L2 and proved
using some special structure of a Hilbert space can be generalized to Banach
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spaces Lp, 2 ≤ p < ∞. The new proofs use only the geometry of the unit
sphere of the space expressed in the form ρ(u) ≤ γu2 (see [11]).

In this paper we give one more argument in favor of consideration of
greedy approximation in Banach spaces. We introduce a concept of M -
coherent dictionary in a Banach space which is a generalization of the cor-
responding concept in a Hilbert space. We analyze the Quasi-Orthogonal
Greedy Algorithm (QOGA), which is a generalization of the Orthogonal
Greedy Algorithm (Orthogonal Matching Pursuit) for Banach spaces. It
is known (see [10]) that the QOGA recovers exactly S-sparse signals after
S iterations provided S < (1 + 1/M)/2. This result is well known for the
Orthogonal Greedy Algorithm in Hilbert spaces. The following question is
of great importance: Are there dictionaries in Rn such that their coherence
in `np is less than their coherence in `n2 for some p ∈ (1,∞)? In Section 3
we show that the answer to the above question is ”yes”. Thus, for such dic-
tionaries, replacing the Hilbert space `n2 by a Banach space `np we improve
an upper bound for sparsity that guarantees an exact recovery of a signal.
We note that the computational complexity of the QOGA in the case of
`np , 1 < p <∞, is close to that of the OGA in the case of `n2 because we can
write the formula for the norming functional explicitly.

We now proceed to a detailed introduction and begin with an explanation
of the concept of Lebesgue-type inequality.

Lebesgue [4] proved the following inequality: for any 2π-periodic contin-
uous function f we have

‖f − Sn(f)‖∞ ≤ (4 +
4

π2
lnn)En(f)∞, (1.1)

where Sn(f) is the nth partial sum of the Fourier series of f and En(f)∞ is
the error of the best approximation of f by the trigonometric polynomials
of order n in the uniform norm ‖ · ‖∞. The inequality (1.1) relates the
error of a particular method (Sn) of approximation by the trigonometric
polynomials of order n to the best-possible error En(f)∞ of approximation by
the trigonometric polynomials of order n. By the Lebesgue-type inequality
we mean an inequality that provides an upper estimate for the error of a
particular method of approximation of f by elements of a special form, say,
form A, by the best-possible approximation of f by elements of the form A.
In the case of approximation with regard to bases (or minimal systems), the
Lebesgue-type inequalities are known both in linear and in nonlinear settings
(see surveys [3], [8] and [9]).
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We begin our discussion with the Orthogonal Greedy Algorithm (OGA)
in a Hilbert space. It is natural to compare performance of the OGA with
the best m-term approximation with regard to a dictionary D. We let Σm(D)
denote the collection of all functions (elements) in H which can be expressed
as a linear combination of at most m elements of D. Thus, each function
s ∈ Σm(D) can be written in the form

s =
∑
g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,

where the cg are real or complex numbers. In some cases, it may be possible
to write an element from Σm(D) in this form in more than one way. The
space Σm(D) is not linear: the sum of two functions from Σm(D) is generally
not in Σm(D).

For a function f ∈ H we define its best m-term approximation error

σm(f) := σm(f,D) := inf
s∈Σm(D)

‖f − s‖.

We recall some notations and definitions from the theory of greedy algo-
rithms. Let H be a real Hilbert space with an inner product 〈·, ·〉 and the
norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions (elements) from H is a
dictionary if each g ∈ D has a unit norm (‖g‖ = 1) and the closure of spanD
is H. Sometimes it will be convenient for us to consider along with D the
symmetrized dictionary D± := {±g, g ∈ D}. Let

M(D) := sup
ϕ6=ψ
ϕ,ψ∈D

|〈ϕ, ψ〉|

be the coherence parameter of dictionary D. Let a sequence τ = {tk}∞k=1,
0 ≤ tk ≤ 1, be given. The following greedy algorithm was defined in [7].

Weak Orthogonal Greedy Algorithm (WOGA). We define
f o,τ0 := f . Then for each m ≥ 1 we inductively define:

(1) ϕo,τm ∈ D is any element satisfying

|〈f o,τm−1, ϕ
o,τ
m 〉| ≥ tm sup

g∈D
|〈f o,τm−1, g〉|.

(2) Let Hτ
m := span(ϕo,τ1 , . . . , ϕo,τm ) and let PHτ

m
(f) denote an operator of

orthogonal projection onto Hτ
m. Define

Go,τ
m (f,D) := PHτ

m
(f).
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(3) Define the residual after mth iteration of the algorithm

f o,τm := f −Go,τ
m (f,D).

In the case tk = 1, k = 1, 2, . . . , WOGA is called the Orthogonal Greedy
Algorithm (OGA). Denote by A1(D) the closure of the convex hull of D±.

The first general Lebesgue-type inequality for the OGA for theM -coherent
dictionary was obtained in [2]. They proved that

‖f om‖ ≤ 8m1/2σm(f) for m < 1/(32M).

The constants in this inequality were improved in [12]:

‖f om‖ ≤ (1 + 6m)1/2σm(f) for m < 1/(3M). (1.2)

The following inequalities were proved in [1].

Theorem 1.1. Let a dictionary D have the mutual coherence M = M(D).
Assume m ≤ 0.05M−2/3. Then, for l ≥ 1 satisfying 2l ≤ logm, we have

‖f om(2l−1)‖ ≤ 6m2−lσm(f).

Corollary 1.1. Let a dictionary D have the mutual coherence M = M(D).
Assume m ≤ 0.05M−2/3. Then we have

‖f o[m logm]‖ ≤ 24σm(f).

It was pointed out in [1] that the inequality ‖f o[m logm]‖ ≤ 24σm(f) from

the above Corollary is almost (up to a logm factor) perfect Lebesgue-type
inequality. However, we are paying a big price for it in the sense of a strong
assumption on m. It was mentioned in [1] that it was not known if the
assumption m ≤ 0.05M−2/3 can be substantially weakened. It was shown in
[13] that the assumption m ≤ 0.05M−2/3 can be substantially weakened.

Theorem 1.2. Let a dictionary D have the mutual coherence M = M(D).
For any δ ∈ (0, 1/4] set L(δ) := [1/δ] + 1. Assume m is such that
20Mm1+δ2L(δ) ≤ 1. Then we have

‖f om(2L(δ)+1−1)‖ ≤
√

3σm(f).
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Very recently E. Livshitz [5] improved the above Lebesgue-type inequality.
He proved that

‖f o2m‖ ≤ 3σm(f)

for m ≤ (20M)−1. The proof in [5] is different from the proof of Theorem
1.2 from [13]. It is more technically involved.

In this paper we prove Lebesgue-type inequalities for greedy approxima-
tion in Banach spaces. Let X be a Banach space with norm ‖ · ‖ := ‖ · ‖X .
As in the case of Hilbert spaces we say that a set of elements (functions) D
from X is a dictionary if each g ∈ D has norm one (‖g‖ = 1), and the closure
of spanD is X. In this paper we study greedy algorithms with regard to D.
For a nonzero element g ∈ X we let Fg denote a norming (peak) functional
for g:

‖Fg‖X∗ = 1, Fg(g) = ‖g‖X .
The existence of such a functional is guaranteed by Hahn-Banach theorem.
We introduce a new norm, associated with a dictionary D, by the formula

‖f‖D := sup
g∈D
|Fg(f)|, f ∈ X.

We present here a generalization of the concept of M -coherent dictionary to
the case of Banach spaces.

Let D be a dictionary in a Banach space X. We define the coherence
parameter of this dictionary in the following way

M(D) := sup
g 6=h;g,h∈D

sup
Fg

|Fg(h)|.

We note that, in general, a norming functional Fg is not unique. This is why
we take supFg over all norming functionals of g in the definition of M(D).
We do not need supFg in the definition of M(D) if for each g ∈ D there is a
unique norming functional Fg ∈ X∗. Then we define D∗ := {Fg, g ∈ D} and
call D∗ a dual dictionary to a dictionary D. It is known that the uniqueness
of the norming functional Fg is equivalent to the property that g is a point
of Gateaux smoothness:

lim
u→0

(‖g + uy‖+ ‖g − uy‖ − 2‖g‖)/u = 0

for any y ∈ X. In particular, if X is uniformly smooth then Ff is unique for
any f 6= 0. We considered in [10] the following greedy algorithm which gen-
eralizes the Weak Orthogonal Greedy Algorithm to a Banach space setting.
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Weak Quasi-Orthogonal Greedy Algorithm (WQOGA). Let t ∈
(0, 1]. Denote f0 := f q,t0 := f (here and below index q stands for quasi-
orthogonal) and find ϕ1 := ϕq,t1 ∈ D such that

|Fϕ1(f0)| ≥ t sup
g∈D
|Fg(f0)|.

Next, we find c1 satisfying

Fϕ1(f − c1ϕ1) = 0.

Denote f1 := f q,t1 := f − c1ϕ1.
We continue this construction in an inductive way. Assume that we

have already constructed residuals f0, f1, . . . , fm−1 and dictionary elements
ϕ1, . . . , ϕm−1. Now, we pick an element ϕm := ϕq,tm ∈ D such that

|Fϕm(fm−1)| ≥ t sup
g∈D
|Fg(fm−1)|.

Next, we look for cm1 , . . . , c
m
m satisfying

Fϕj(f −
m∑
i=1

cmi ϕi) = 0, j = 1, . . . ,m. (1.3)

If there is no solution to (1.3) then we stop, otherwise we denote Gm :=
Gq,t
m :=

∑m
i=1 c

m
i ϕi and fm := f q,tm := f −Gm with cm1 , . . . , c

m
m satisfying (1.3).

Remark 1.1. We note that (1.3) has a unique solution if
det(Fϕj(ϕi))

m
i,j=1 6= 0. We apply the WQOGA in the case of a dictionary

with the coherence parameter M := M(D). Then, by a simple well known
argument on the linear independence of the rows of the matrix (Fϕj(ϕi))

m
i,j=1,

we conclude that (1.3) has a unique solution for any m < 1 + 1/M . In par-
ticular, this follows from a simple Lemma 2.1 that we will also need later on.
Thus, in the case of an M-coherent dictionary D, we can run the WQOGA
for at least [1/M ] iterations.

In the case t = 1 we call the WQOGA the Quasi-Orthogonal Greedy
Algorithm (QOGA). In the case of QOGA we need to make an extra as-
sumption that the corresponding maximizer ϕm ∈ D exists. Clearly, it is the
case when D is finite.

It was proved in [10] (see also [11], p. 382) that the WQOGA is as good
as the WOGA in the sense of exact recovery of sparse signals with respect
to incoherent dictionaries. The following result was obtained in [10].
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Theorem 1.3. Let t ∈ (0, 1]. Assume that D has coherence parameter M .
Let S < t

1+t
(1 + 1/M). Then for any f of the form

f =
S∑
i=1

aiψi, (1.4)

where ψi are distinct elements of D, the WQOGA recovers it exactly after S
iterations. In other words we have that f q,tS = 0.

It is known (see [13] and [11], pp. 303–305) that the bound S < 1
2
(1 +

1/M) is sharp for exact recovery by the OGA.
We define best m-term approximation in the norm Y as follows

σm(f)Y := inf
g∈Σm(D)

‖f − g‖Y .

In this paper the norm Y will be either the norm X of our Banach space
or the norm ‖ · ‖D defined above. In Section 2 we prove the following two
Lebesgue-type inequalities.

Theorem 1.4. Assume that D is an M-coherent dictionary. Then for m ≤
1/(3M) we have for the QOGA

‖fm‖D ≤ 13.5σm(f)D. (1.5)

Theorem 1.5. Assume that D is an M-coherent dictionary in a Banach
space X. There exists an absolute constant C such that for m ≤ 1/(3M) we
have for the QOGA

‖fm‖X ≤ C inf
g∈Σm(D)

(‖f − g‖X +m‖f − g‖D).

Corollary 1.2. Using the inequality ‖g‖D ≤ ‖g‖X we obtain from Theorem
1.5

‖fm‖X ≤ C(1 +m)σm(f)X .

Inequality (1.5) is a perfect (up to a constant 13.5) Lebesgue-type in-
equality. It indicates that the norm ‖ · ‖D used in this paper is a suitable
norm for analyzing performance of the QOGA. Corollary 1.2 shows that the
Lebesgue-type inequality (1.5) in the norm ‖ · ‖D implies the Lebesgue-type
inequality in the norm ‖ · ‖X .

The paper is a follow up to results of the dissertation of the first author
[6].
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2 Lebesgue-type inequalities for theWQOGA

In this section we analyze the Weak Quasi-Orthogonal Greedy Algorithm.
It is clear from the definition of this algorithm (see (1.3)) that we need to
solve linear systems in running this algorithm. We begin this section with a
simple lemma about linear systems that we will use later on.

Lemma 2.1. Let P = (pi,j)
k+1
i,j=1 be a (k + 1) × (k + 1) matrix such that

pi,i = 1, i = 1, . . . , k + 1, and |pi,j| ≤ M < 1/k, i 6= j. Then the inverse
matrix P−1 exists and for the solution of the equation Pa = b we have

‖a‖1 ≤ (1− kM)−1‖b‖1.

Proof. Let a = (a1, . . . , ak+1) and b = (b1, . . . , bk+1). Then we have

k+1∑
j=1

pi,jaj = bi, i = 1, . . . , k + 1.

Multiplying these equations by sign(ai) and summing up, we obtain

k+1∑
i=1

(1− kM)|ai| ≤
k+1∑
i=1

k+1∑
j=1

pi,jaj sign(ai) ≤ ‖b‖1

which gives the required inequality.

We now proceed to analysis of the Quasi-Orthogonal Greedy Algorithm.
First, we address the issue of existence of an element ϕ1 at the first step of
the QOGA. We note that the argument from [10] proves Proposition 2.1.

Proposition 2.1. Let D be an M-coherent dictionary. Then for any f of
the form (1.4) with S < 1

2
(1 +M−1) there exists ϕ ∈ D such that

|Fϕ(f)| = sup
g∈D
|Fg(f)| = sup

1≤j≤S
|Fψj(f)|.

Second, we address the following issue. In the case of a finite dictionary D
it is clear that the conditions σm(f)D = 0 and f ∈ Σm(D) are equivalent. We
extend this property of finite dictionaries to infinite incoherent dictionaries.

Theorem 2.1. Let D be an M-coherent dictionary. If, for
m < 1

2
(1 +M−1), σm(f)D = 0 then f ∈ Σm(D).
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Proof. The proof is by induction. First, consider the case m = 1. Let
σ1(f)D = 0. If f = 0 then f ∈ Σ1(D). Suppose that f 6= 0. Take ε > 0 and
find ϕ1 ∈ D and a coefficient b1 such that

‖f − b1ϕ1‖D ≤ ε.

We prove that for sufficiently small ε the inequality

‖f − b2ϕ2‖D ≤ ε, ϕ2 ∈ D,

implies that ϕ2 = ϕ1. Indeed, assuming the contrary ϕ2 6= ϕ1 we obtain that

‖b1ϕ1 − b2ϕ2‖D ≤ 2ε. (2.1)

Therefore
|b1 − b2Fϕ1(ϕ2)| ≤ 2ε, |b1Fϕ2(ϕ1)− b2| ≤ 2ε,

which implies by Lemma 2.1 that b1 → 0 and b2 → 0 with ε → 0. On the
other hand

|b1| ≥ ‖f‖D − ε, |b2| ≥ ‖f‖D − ε. (2.2)

It is clear that (2.1) and (2.2) contradict each other if ε is small enough
compared to ‖f‖D. Thus, for sufficiently small ε only one dictionary element
ϕ1 provides good approximation. This and the assumption σ1(f)D = 0 imply
f = bϕ1.

Consider the case m > 1. Following the induction argument assume
that if σm−1(f)D = 0 then f ∈ Σm−1(D). We now have σm(f)D = 0. If
σm−1(f)D = 0 then by the induction assumption f ∈ Σm−1. So, assume that
σm−1(f)D > 0. Let

‖f −
m∑
i=1

biϕi‖D ≤ ε, ϕi ∈ D, i = 1, . . . ,m. (2.3)

As in the case m = 1 suppose that there are ψ1, . . . , ψm from the dictionary
such that at least one of ϕi, say, ϕm is distinct from them and

‖f −
m∑
i=1

cjψj‖D ≤ ε, ψi ∈ D, i = 1, . . . ,m. (2.4)

Inequalities (2.3) and (2.4) imply

‖
m∑
i=1

biϕi −
m∑
i=1

cjψj‖D ≤ 2ε.

10



As above by Lemma 2.1 we obtain from here

bm → 0 as ε→ 0. (2.5)

Therefore, for small enough ε we get

‖f −
m−1∑
i=1

biϕi‖D ≤ ε+ |bm| < σm−1(f)D.

The obtained contradiction implies that for small enough ε inequalities (2.3)
and (2.4) imply that {ψ1, . . . , ψm} = {ϕ1, . . . , ϕm}. This reduces the problem
to a finite dimensional case, where existence of best approximation is well
known.

We first present analysis of the QOGA. Analysis of the WQOGA goes
exactly the same lines as analysis of the QOGA with constants depending on
t. We will not repeat this analysis and will only formulate the corresponding
results for the WQOGA. Let Ψm := {ψj}mj=1 be a set of m distinct elements of
the dictionary D. For an f ∈ X define a quasi-orthogonal projection P q

Ψm
(f)

of f onto span(ψ1, . . . , ψm) as an element

P q
Ψm

(f) =
m∑
i=1

cmi ψi

satisfying

Fψj(f −
m∑
i=1

cmi ψi) = 0, j = 1, . . . ,m. (2.6)

Lemma 2.1 guarantees that for anM -coherent dictionary the quasi-orthogonal
projection P q

Ψm
(f) exists for all f and Ψm provided m ≤ 1/M . We define

projective best m-term approximation in the norm Y as follows

σqm(f)Y := inf
Ψm
‖f − P q

Ψm
(f)‖Y .

In this paper the norm Y will be either the norm X of our Banach space or
the norm ‖ · ‖D defined above.

We begin with the key lemma that guarantees that under certain assump-
tions the QOGA picks good elements from the dictionary.
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Lemma 2.2. Assume that σqm(f)D > 0. Suppose m ≤ 1/(3M) and

‖f − P q
Φm

(f)‖D ≤ (1 + ε)σqm(f)D,

Φm = {ϕi}mi=1, ϕi ∈ D, i = 1, . . . ,m, (2.7)

with some fixed ε > 0. If

‖f‖D > 3(1 + ε)σqm(f)D

then the QOGA picks one of the ϕi, i = 1, . . . ,m, at the first iteration. If the
QOGA has picked elements from {ϕ1, . . . , ϕm} at the first k < m iterations
and

‖fk‖D > 3(1 + ε)σqm(f)D (2.8)

then the QOGA picks one of the ϕi, i = 1, . . . ,m, at the (k + 1)th iteration.

Proof. Define

am := P q
Φm

(f) =
m∑
i=1

ciϕi, Gk := Gk(f,D) =
∑
i∈Λk

biϕi,

Λk ⊂ {1, . . . ,m}, |Λk| = k.

We write

am −Gk =
m∑
i=1

diϕi

and define A := max1≤i≤m |di|. Then

Fϕi(fk) = Fϕi(f −Gk) = Fϕi(f − am) + Fϕi(am −Gk) = Fϕi(am −Gk)

and
y := max

1≤i≤m
|Fϕi(fk)| = max

1≤i≤m
|Fϕi(am −Gk)|

≥ A(1−M(m− 1)) > A(1−Mm). (2.9)

For any g ∈ D distinct from {ϕ1, . . . , ϕm} we obtain

|Fg(fk)| = |Fg(f − am + am −Gk)| ≤ (1 + ε)σqm(f)D + AMm.

In order to prove our claim it is sufficient to have

((1 + ε)σqm(f)D + AMm)/y < 1 (2.10)
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By inequality (2.9) inequality (2.10) follows from

y > (1 + ε)σqm(f)D(1−Mm)(1− 2Mm)−1. (2.11)

Proposition 2.1 gives

y = ‖am −Gk‖D = ‖am − f + f −Gk‖D

≥ ‖fk‖D − ‖f − am‖D > 2(1 + ε)σqm(f)D. (2.12)

Observing that under our assumption Mm ≤ 1/3 we have

(1−Mm)(1− 2Mm)−1 ≤ 2,

we deduce (2.10) from (2.12).

Theorem 2.2. Assume that D is an M-coherent dictionary. Then for m ≤
1/(3M) we have for the QOGA

‖fm‖D ≤ 4.5σqm(f)D. (2.13)

Proof. If σqm(f)D = 0 then σm(f)D = 0 and by Lemma 2.2 we obtain that f ∈
Σm(D). Then Theorem 1.3 guarantees that f qm = 0. This proves Theorem
2.2 in the case σqm(f)D = 0.

Assume now that σqm(f)D > 0. Then for any ε > 0 there exists a collection

Φm = {ϕi}mi=1, ϕi ∈ D, i = 1, . . . ,m,

such that
‖f − P q

Φm
(f)‖D ≤ (1 + ε)σqm(f)D. (2.14)

If
‖fk‖D > 3(1 + ε)σqm(f)D (2.15)

for all k < m then by Lemma 2.2 the QOGA picks all the elements
{ϕ1, . . . , ϕm} after m iterations. Then fm = f − P q

Φm
(f) and (2.14) implies

(2.13). Assume now that (2.15) does not hold for some k < m:

‖fk‖D ≤ 3(1 + ε)σqm(f)D. (2.16)

We now need the following lemma.
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Lemma 2.3. Assume that D is an M-coherent dictionary. Then for
k + 1 < 1/M we have for the WQOGA

‖fk+1‖D ≤
1− (k − 1)M

1− kM
‖fk‖D. (2.17)

First, we use this lemma to complete the proof of Theorem 2.2. Inequal-
ities (2.16) and (2.17) imply

‖fm‖D ≤
1− (k − 1)M

1−mM
‖fk‖D ≤ 4.5(1 + ε)σqm(f)D.

Second, we prove Lemma 2.3.

Proof. Consider

gk := fk+1 − fk =
k+1∑
i=1

aiψi, ψi ∈ D.

It follows from the definition of the WQOGA that

Fψi(gk) = 0, i = 1, . . . , k;

|Fψk+1
(gk)| = |Fψk+1

(fk)| ≤ ‖fk‖D.
Therefore, by Lemma 2.1

‖a‖1 ≤ (1− kM)−1‖f qk‖D. (2.18)

For any ψi, i = 1, . . . , k + 1, we have

Fψi(fk+1) = 0

and for any ψ ∈ D distinct from ψi, i = 1, . . . , k + 1, we get from (2.18)

|Fψ(fk+1)| ≤ |Fψ(fk)|+ |Fψ(gk)| ≤ ‖fk‖D +M‖a‖1 ≤
1− (k − 1)M

1− kM
‖fk‖D.

We now formulate the corresponding results for the WQOGA. Lemma
2.2 take the following form.
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Lemma 2.4. Assume that σqm(f)D > 0. Suppose m ≤ 2
3

t
1+t

1
M

and

‖f − P q
Φm

(f)‖D ≤ (1 + ε)σqm(f)D,

Φm = {ϕi}mi=1, ϕi ∈ D, i = 1, . . . ,m, (2.19)

with some fixed ε > 0. If

‖f‖D > Ct(1 + ε)σqm(f)D, Ct := 1 +
3 + t

t(1 + t)
,

then the WQOGA picks one of the ϕi, i = 1, . . . ,m, at the first iteration.
If the WQOGA has picked elements from {ϕ1, . . . , ϕm} at the first k < m
iterations and

‖fk‖D > Ct(1 + ε)σqm(f)D (2.20)

then the WQOGA picks one of the ϕi, i = 1, . . . ,m, at the (k+1)th iteration.

Theorem 2.2 is transformed into the following theorem.

Theorem 2.3. Assume that D is an M-coherent dictionary. Then for m ≤
2
3

t
1+t

1
M

we have for the WQOGA

‖fm‖D ≤ C1(t)σqm(f)D, C1(t) :=
3

t
+

1 + t

1 + t/3
. (2.21)

We show that the quantity σqm(f)D appearing in Theorems 2.2 and 2.3
can be replaced by σm(f)D. This follows from Lemma 2.5.

Lemma 2.5. Assume that D is an M-coherent dictionary and m ≤ 1/(3M).
Then for any f ∈ X, any collection Φm = {ϕ1, . . . , ϕm} of distinct elements
of D and any g ∈ span Φm we have

‖f − P q
Φm

(f)‖D ≤ 3‖f − g‖D (2.22)

and, therefore,
σqm(f)D ≤ 3σm(f)D. (2.23)

Proof. We prove this lemma by contradiction. Assume that g ∈ span Φm is
such that

3‖f − g‖D < ‖f − P q
Φm

(f)‖D =: p.

Then
‖g − P q

Φm
(f)‖D < p(1 + 1/3). (2.24)
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Let

g − P q
Φm

(f) =
m∑
i=1

aiϕi.

Lemma 2.1 and (2.24) give
‖a‖1 < 2pm. (2.25)

For ϕ ∈ Φm we have
Fϕ(f − P q

Φm
(f)) = 0.

Thus it is sufficient to check ϕ /∈ Φm. We have for ϕ /∈ Φm

|Fϕ(f − P q
Φm

(f))| ≤ |Fϕ(f − g)|+ |Fϕ(g − P q
Φm

(f))| ≤ ‖f − g‖D + ‖a‖1M.

This implies by (2.25)

p ≤ ‖f − g‖D + ‖a‖1M < ‖f − g‖D + 2pmM ≤ ‖f − g‖D + 2p/3

and
p < 3‖f − g‖D.

The obtained contradiction proves Lemma 2.5.

Theorem 1.4 from the Introduction follows from Theorem 2.2 and Lemma
2.5. Theorem 2.3 and Lemma 2.5 imply the following theorem for the
WQOGA.

Theorem 2.4. Assume that D is an M-coherent dictionary. Then for m ≤
2
3

t
1+t

1
M

we have for the WQOGA

‖fm‖D ≤ C2(t)σm(f)D, C2(t) := 3

(
3

t
+

1 + t

1 + t/3

)
. (2.26)

We now proceed to a corollary of Theorem 2.2 for Lebesgue-type inequal-
ities in the norm X. We begin with a simple lemma that relates different
norms of n-term polynomials.

Lemma 2.6. Assume that D is an M-coherent dictionary in a Banach space
X. Then for f of the form

f =
n∑
i=1

aiϕi, n ≤ 1/M, ϕi ∈ D, i = 1, . . . , n,

we have
‖f‖X ≤ n(1− (n− 1)M)−1‖f‖D.
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Proof. Clearly, ‖f‖X ≤ ‖a‖1, where a = (a1, . . . , an). We use a trivial in-
equality ‖a‖1 ≤ n‖a‖∞ and bound ‖a‖∞. Suppose ‖a‖∞ = |ap| with some
p ∈ {1, 2, . . . , n}. Then

|ap|(1− (n− 1)M) ≤ |Fϕp(f)| ≤ ‖f‖D.

Thus
‖a‖∞ ≤ (1− (n− 1)M)−1‖f‖D

which completes the proof of Lemma 2.6.

Remark 2.1. It is known (see [1]) that in a Hilbert space under assumptions
of Lemma 2.6 we have

‖f‖H ≤ (1 + nM)1/2‖a‖2

and, therefore, as in Lemma 2.6 we get

‖f‖H ≤ (1 + nM)1/2(1− (n− 1)M)−1‖f‖D.

Theorem 2.5. Assume that D is an M-coherent dictionary in a Banach
space X. For any t ∈ (0, 1] there exists a constant C3(t) that may depend
only on t such that for m ≤ 2

3
t

1+t
1
M

we have for the WQOGA

‖fm‖X ≤ C3(t) inf
g∈Σm(D)

(‖f − g‖X +m‖f − g‖D).

Proof. Take an arbitrary gm ∈ Σm(D). Then

‖fm‖X = ‖f −Gm‖X ≤ ‖f − gm‖X + ‖gm −Gm‖X . (2.27)

Further gm −Gm ∈ Σ2m(D) and by Lemma 2.6

‖gm −Gm‖X ≤ C4(t)m‖gm −Gm‖D. (2.28)

Next
‖gm −Gm‖D ≤ ‖f − gm‖D + ‖f −Gm‖D. (2.29)

By Theorem 2.4 we get

‖f −Gm‖D ≤ C2(t)σm(f)D ≤ C2(t)‖f − gm‖D. (2.30)

Combining (2.27)–(2.30) we obtain

‖fm‖X ≤ ‖f − gm‖X + C5(t)m‖f − gm‖D.
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Corollary 2.1. Using the inequality ‖g‖D ≤ ‖g‖X we obtain from Theorem
2.5

‖fm‖X ≤ C3(t)(1 +m)σm(f)X .

The proof of Theorem 2.5 and Remark 2.1 give the following variant of
Theorem 2.5 in a Hilbert space.

Theorem 2.6. Assume that D is an M-coherent dictionary in a Hilbert
space H. Then for m ≤ 2

3
t

1+t
1
M

we have

‖fm‖H ≤ C6(t) inf
g∈Σm(D)

(‖f − g‖H +m1/2‖f − g‖D).

3 Examples

The purpose of the following examples is to illustrate a possible use of the
Quasi-Orthogonal Algorithms in approximations, in place of their Orthogonal
correspondents. We will consider recovery in the finite dimensional space
Rd and the associate Hilbert space `2(Rd) or a Banach space `p(Rd), where
1 ≤ p ≤ ∞, p 6= 2.

We propose to replace the recovery with respect to a dictionary in `2 that
we will denote D2, with the recovery in `p, where the dictionary is Dp, the
re-normed version of D2.

While we have proved that the Quasi-Orthogonal Algorithms have the
same power of exact recovery as their Orthogonal counterparts, the benefit
will come from an improved geometry in the new space considered, namely
the coherence parameter Mp of the dictionary Dp would be smaller than the
coherence M2 of the original dictionary.

It is possible, then, that we can guarantee either exact recovery of more
terms in the re-normed dictionary, or a better approximation than in the
original setting.

Example 3.1. For a very simple example of this geometry change, let us
consider the basis D2 = {(1/2,

√
3/2), (

√
3/2, 1/2)} in R2. The 4-norm of its

elements is 4
√

10/2, so

D4 =

{(
1

4
√

10
,

√
3

4
√

10

)
,

( √
3

4
√

10
,

1
4
√

10

)}
.
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The norming functionals for p = 4 are unique and they form a conjugate
(dual) dictionary:

D∗4 =

{((
1

10

) 3
4

,

(
9

10

) 3
4

)
,

((
9

10

) 3
4

,

(
1

10

) 3
4

)}
.

The new geometry is characterized by the coherence parameter

M4 =
2
√

3

5
≈ 0.692 < 0.865 ≈

√
3

2
= M2,

which shows an improvement over the original coherence, see Figure 1.
Adding two other vectors, each orthogonal on one of the original vectors

of this basis produces a redundant dictionary with N = 4 elements that shows
exactly the same improvement of coherence.

Figure 1: The vectors of the original dictionary in `2 with coherence M2 ≈
0.865 are shown on the left side, and their re-normed versions in `4 with
improved coherence M4 ≈ 0.692 are shown on the right side. The elements
of the conjugate dictionary `4/3 are represented with interrupted lines.

Example 3.2. Another dictionary for d = 2, namely

D2 = {(cos(π/8), sin(π/8)), (cos(5π/8), sin(5π/8)}, (1, 0), (0, 1)}
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re-normed for p = 3/2 has a coherence improvement given by:

M3/2 ≈ 0.886 < 0.930 ≈M2,

see Figure 2.

Figure 2: The vectors of the original dictionary in `2 with coherence
M2 ≈ 0.930 are shown on the left side, and their re-normed versions in
`3/2 with improved coherence M3/2 ≈ 0.886 are shown on the right side. The
corresponding dual vectors in `3 are represented with interrupted lines.

We see that we can use either a p > 2 or a p < 2 to improve on the
coherence parameter of a dictionary.

Example 3.3. For a higher-dimension example, say d = 16, we consider a
dictionary with N = 2d vectors in which the first d come from the Discrete
Cosine Transform (DCT), which is popular in designing filters in Signal Pro-
cessing. Thus, our first d vectors are the column vectors of the square-matrix(

cos
(π
d

(k − 1)(n− 1/2)
))n=1,...,d

k=1,...,d
.

We obtain the other d vectors by Orthogonal Greedy Approximation with
m = 5

8
d = 10 terms from the above DCT, of the elements of the canonical
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basis ei, for i = 1, . . . , d, where ei(j) = δij (Kronecker delta). All the 2d
vectors are normalized in `2 to obtain D2.

The improvement obtained by re-norming to D3, when d = 16 is given by
the coherence:

M3 ≈ 0.327 < 0.380 ≈M2.

Both the OGA and QGA guarantee recovery of vectors with sparsity S ≤
1
2

(
1
M

+ 1
)
. In this example, QGA would guarantee the recovery of vectors

with sparsity S = 2, one more term than the classic OGA.

Example 3.4. The same construction for d = 64, where the first d vectors
in D2 are the normalized vectors in `2 from DCT and the other d vectors are
the m = 40-term Orthogonal Greedy approximants from DCT of the elements
of the corresponding canonical basis, holds the following improvement of the
geometry to D3:

M3 ≈ 0.221 < 0.312 ≈M2.

These examples show the potential improvement of the geometry of dic-
tionaries by switching the orthogonal recovery in the Hilbert setting to a
quasi-orthogonal recovery in a Banach counterpart. This improvement would
result in a greater range of sparsities to be recovered or possibly better m-
term approximants using essentially the same vectors in the dictionary.
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