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Abstract

We study greedy approximation with respect to quasi-greedy bases.
For the Lp space, 1 < p < ∞, p 6= 2, we prove that the error of the
mth greedy approximation is bounded by the error of best m-term
approximation multiplied by an extra factor of order m|1/p−1/2|.

1 Introduction

We study the efficiency of greedy algorithms for m-term nonlinear approxi-
mation with regard to quasi-greedy bases. Let X be an infinite-dimensional
separable Banach space with a norm ‖ · ‖ := ‖ · ‖X and let Ψ := {ψk}∞k=1 be a
normalized basis for X (‖ψk‖ = 1, k ∈ N). All bases considered in our paper
are assumed to be normalized. For a given f ∈ X we define the best m-term
approximation with regard to Ψ as follows:

σm(f) := σm(f, Ψ)X := inf
bk,Λ

‖f −
∑

k∈Λ

bkψk‖X ,
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where the infimum is taken over coefficients bk and sets Λ of indices with
cardinality |Λ| = m. There is a natural algorithm of constructing an m-term
approximant. For a given element f ∈ X we consider the expansion

f =
∞∑

k=1

ck(f)ψk.

We call a permutation ρ, ρ(j) = kj, j = 1, 2, ..., of the positive integers
decreasing and write ρ ∈ D(f) if

|ck1(f)| ≥ |ck2(f)| ≥ ... .

In the case of strict inequalities here D(f) consists of only one permutation.
We define the m-th greedy approximant of f with regard to the basis Ψ
corresponding to a permutation ρ ∈ D(f) by formula

Gm(f) := Gm(f, Ψ) := Gm(f, Ψ, ρ) :=
m∑

j=1

ckj
(f)ψkj

.

It is a simple algorithm which describes a theoretical scheme for m-term
approximation of an element f . This algorithm is known in the theory of
nonlinear approximation under the name of Thresholding Greedy Algorithm
(TGA). The best we can achieve with the algorithm Gm is

‖f −Gm(f)‖X = σm(f, Ψ)X ,

or a little weaker
‖f −Gm(f)‖X ≤ Cσm(f, Ψ)X

for all f ∈ X with a constant C independent of f and m. The following
concept of a greedy basis has been introduced in [1].

Definition 1.1. We call a basis Ψ a greedy basis if for every f ∈ X there
exists a permutation ρ ∈ D(f) such that

‖f −Gm(f, Ψ, ρ)‖X ≤ Cσm(f, Ψ)X

with a constant C independent of f and m.
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We refer the reader to a survey [5] for further discussion of greedy type
bases. In this paper we are interested in special inequalities – Lebesgue-type
inequalities – for greedy approximation.

Lebesgue [3] proved the following inequality: for any 2π-periodic contin-
uous function f we have

‖f − Sn(f)‖∞ ≤ (4 +
4

π2
ln n)En(f)∞, (1.1)

where Sn(f) is the nth partial sum of the Fourier series of f and En(f)∞ is
the error of the best approximation of f by the trigonometric polynomials
of order n in the uniform norm ‖ · ‖∞. The inequality (1.1) relates the
error of a particular method (Sn) of approximation by the trigonometric
polynomials of order n to the best-possible error En(f)∞ of approximation by
the trigonometric polynomials of order n. By the Lebesgue-type inequality
we mean an inequality that provides an upper estimate for the error of a
particular method of approximation of f by elements of a special form, say,
form A, by the best-possible approximation of f by elements of the form A.
In the case of approximation with regard to bases (or minimal systems), the
Lebesgue-type inequalities are known both in linear and in nonlinear settings
(see surveys [2], [4] and [5]).

By the Definition 1.1 greedy bases are those for which we have ideal (up
to a multiplicative constant) Lebesgue inequalities for greedy approximation.
In this paper we concentrate on a wider class of bases than greedy bases –
quasi-greedy bases. The concept of quasi-greedy basis was introduced in [1].

Definition 1.2. The basis Ψ is called quasi-greedy if there exists some con-
stant C such that

sup
m
‖Gm(f, Ψ)‖ ≤ C‖f‖.

Subsequently, Wojtaszczyk [7] proved that these are precisely the bases
for which the TGA merely converges, i.e.,

lim
n→∞

Gn(f) = f.

The main result of this paper is the following Lebesgue-type inequality for
greedy approximation with respect to a quasi-greedy basis in the Lp spaces.

Theorem 1.1. Let 1 < p < ∞, p 6= 2, and let Ψ be a quasi-greedy basis of
the Lp space. Then for each f ∈ Lp we have

‖f −Gm(f, Ψ)‖Lp ≤ C(p, Ψ)m|1/2−1/p|σm(f, Ψ)Lp . (1.2)

3



We note that inequality (1.2) is known (see [7]) in the case of uncondi-
tional bases Ψ. Theorem 1.1 was announced in [6]. Theorem 1.1 does not
cover the case p = 2. It is mentioned in [7] that in the case p = 2 one has
the following inequality

‖f −Gm(f, Ψ)‖ ≤ C(log m)σm(f, Ψ).

We do not know if the above inequality is sharp in the sense that an extra
factor log m cannot be replaced by a slower growing factor. The reader can
find further discussion of this problem in [6].

2 Lebesgue-type inequalities for TGA

In our study of quasi-greedy bases we need the following known Lemma 2.1
(see, for instance, [5], p. 269). It will be convenient to define the quasi-greedy
constant K to be the least constant such that

‖Gm(f)‖ ≤ K‖f‖ and ‖f −Gm(f)‖ ≤ K‖f‖, f ∈ X.

Lemma 2.1. Suppose Ψ is a quasi-greedy basis with a quasi-greedy constant
K. Then, for any numbers aj and any finite set of indices P , we have

(2K)−2 min
j∈P

|aj|‖
∑
j∈P

ψj‖ ≤ ‖
∑
j∈P

ajψj‖ ≤ 2K max
j∈P

|aj|‖
∑
j∈P

ψj‖.

We will use the notation

an(f) := |ckn(f)|
for the decreasing rearrangement of the coefficients of f . For a set of indices
Λ we define the corresponding partial sum as follows

SΛ(f) :=
∑

k∈Λ

ck(f)ψk.

We will often use the following assumption: There exists an increasing func-
tion v(m) := v(m, Ψ) such that for any two sets of indices A and B, |A| =
|B| = m we have

‖
∑

k∈A

ψk‖ ≤ v(m)‖
∑

k∈B

ψk‖. (2.1)

We begin with a theorem for a Banach space X. Later on we will specify
this theorem for the Lp spaces.
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Theorem 2.1. Let Ψ be a quasi-greedy basis of X satisfying assumption
(2.1) with the property: For any set of indices Λ

‖SΛ(f)‖ ≤ w(|Λ|)‖f‖.

Then for each f ∈ X

‖f −Gm(f)‖ ≤ (1 + 2w(m) + (2K)3v(m)w(m))σm(f).

Proof. Let, for a given ε > 0, a polynomial

pm(f) =
∑

k∈P

bkψk, |P | = m,

satisfy the inequality

‖f − pm(f)‖ ≤ σm(f) + ε. (2.2)

Denote by Q the set of indices picked by the greedy algorithm after m iter-
ations

Gm(f) =
∑

k∈Q

ck(f)ψk.

We use the representation

f −Gm(f) = f − SQ(f) = f − SP (f) + SP (f)− SQ(f). (2.3)

First, we bound

‖f−SP (f)‖ = ‖f−pm(f)−SP (f−pm(f)‖ ≤ (1+w(m))‖f−pm(f)‖. (2.4)

Second, we write

‖SP (f)− SQ(f)‖ = ‖SP\Q(f)− SQ\P (f)‖ ≤ ‖SP\Q(f)‖+ ‖SQ\P (f)‖. (2.5)

We begin with estimating the second term in the right side of (2.5)

‖SQ\P (f)‖ = ‖SQ\P (f − pm(f))‖ ≤ w(m)‖f − pm(f)‖. (2.6)

For the first term we have by Lemma 2.1

‖SP\Q(f)‖ ≤ 2K max
k∈P\Q

|ck(f)|‖
∑

k∈P\Q
ψk‖
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≤ 2K min
k∈Q\P

|ck(f)|v(m)‖
∑

k∈Q\P
ψk‖ ≤ (2K)3v(m)‖SQ\P (f)‖. (2.7)

Combining (2.2) – (2.7) we obtain

‖f −Gm(f)‖ ≤ (1 + 2w(m) + (2K)3v(m)w(m))σm(f).

We define the following expansional best m-term approximation of f with
regard to Ψ (see [5], p. 269)

σ̃m(f) := σ̃m(f, Ψ) := inf
|Λ|=m

‖f −
∑

k∈Λ

ck(f)ψk‖.

It is clear that σm(f) ≤ σ̃m(f). It is known that for an unconditional basis
Ψ we have

σ̃m(f, Ψ) ≤ C(Ψ, X)σm(f, Ψ).

Theorem 2.2. Let Ψ be a quasi-greedy basis of X satisfying assumption
(2.1). Then for each f ∈ X

‖f −Gm(f)‖ ≤ C(Ψ, X)v(m)σ̃m(f).

Proof. Let, for a given ε > 0, a set of indices B be such that |B| = m and

‖f − SB(f)‖ ≤ σ̃m(f) + ε. (2.8)

Let as above
Gm(f) =

∑

k∈Q

ck(f)ψk.

Then
‖f −Gm(f)‖ ≤ ‖f − SB(f)‖+ ‖SB\Q(f)‖+ ‖SQ\B(f)‖. (2.9)

Our assumption that Ψ is quasi-greedy gives

‖SQ\B(f)‖ = ‖SQ\B(f − SB(f))‖
= ‖G|Q\B|(f − SB(f))‖ ≤ K‖f − SB(f)‖. (2.10)

Combining (2.8) – (2.10) and using (2.7) we obtain

‖f −Gm(f)‖ ≤ (1 + K + 8K4v(m))σ̃m(f).
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We now proceed to a discussion of quasi-greedy bases in Lp spaces. We
use the brief notation ‖ ·‖p := ‖ ·‖Lp . We will use the following theorem from
[6]. We note that in the case p = 2 Theorem 2.3 was proved in [7]

Theorem 2.3. Let Ψ = {ψk}∞k=1 be a quasi-greedy basis of the Lp space,
1 < p < ∞. Then for each f ∈ X we have

C1(p) sup
n

n1/pan(f) ≤ ‖f‖p ≤ C2(p)
∞∑

n=1

n−1/2an(f), 2 ≤ p < ∞;

C3(p) sup
n

n1/2an(f) ≤ ‖f‖p ≤ C4(p)
∞∑

n=1

n1/p−1an(f), 1 < p ≤ 2.

The following theorem is a corollary of the above Theorem 2.3.

Theorem 2.4. Let Ψ be a quasi-greedy basis of the Lp space, 1 < p < 2,
2 < p < ∞. Then for any set of indices Λ

‖SΛ(f)‖p ≤ C(p)|Λ|h(p)‖f‖p, h(p) := |1/p− 1/2|.
Proof. Let m := |Λ|. Using Theorem 2.3 we get for 1 < p < 2

‖SΛ(f)‖p ≤ C4(p)
m∑

n=1

n1/p−1an(SΛ(f))

= C4(p)
m∑

n=1

n1/p−3/2(n1/2an(SΛ(f))) ≤ C4(p)
m∑

n=1

n1/p−3/2(n1/2an(f))

≤ C5(p)m1/p−1/2 sup
n

n1/2an(f) ≤ C5(p)C3(p)−1m1/p−1/2‖f‖p.

Again using Theorem 2.3 we obtain for 2 < p < ∞

‖SΛ(f)‖p ≤ C2(p)
m∑

n=1

n−1/2an(SΛ(f))

= C2(p)
m∑

n=1

n−1/2−1/p(n1/pan(SΛ(f))) ≤ C2(p)
m∑

n=1

n−1/2−1/p(n1/pan(f))

≤ C6(p)m1/2−1/p sup
n

n1/pan(f) ≤ C6(p)C1(p)−1m1/2−1/p‖f‖p.
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It is pointed out in [6] that Theorem 2.3 implies the following inequality
for a quasi-greedy basis Ψ of Lp

v(m, Ψ) ≤ C(p)mh(p), 1 < p < ∞. (2.11)

Using inequality (2.11) in Theorem 2.2 we obtain the following Theorem 2.5.

Theorem 2.5. Let Ψ be a quasi-greedy basis of Lp, 1 < p < ∞ . Then for
each f ∈ Lp

‖f −Gm(f)‖p ≤ C(Ψ, p)mh(p)σ̃m(f), h(p) := |1/2− 1/p|.

We now give a proof of Theorem 1.1 from the Introduction.

Proof. The first part of the proof goes along the lines of proof of Theorem
2.1. We use the notation from that proof. By Theorem 2.4 we obtain

w(m) ≤ C(p)mh(p). (2.12)

Thus (2.4) gives

‖f − SP (f)‖p ≤ (1 + C(p)mh(p))‖f − pm(f)‖p. (2.13)

Next, using Theorem 2.3 and our assumption that Ψ is a quasi-greedy basis
of Lp we obtain for 1 < p < 2

‖SQ\P (f)‖p = ‖SQ\P (f − pm(f))‖p ≤ C4(p)
m∑

n=1

n1/p−1an(SQ\P (f − pm(f)))

≤ C4(p)
m∑

n=1

n1/p−1an(G|Q\P |(f − pm(f)))

= C4(p)
m∑

n=1

n1/p−3/2(n1/2an(G|Q\P |(f − pm(f))))

≤ C7(p)m1/p−1/2 sup
n

n1/2an(G|Q\P |(f − pm(f)))

≤ C7(p)C3(p)−1m1/p−1/2‖G|Q\P |(f − pm(f))‖p

≤ C8(p)Km1/p−1/2‖f − pm(f)‖p. (2.14)
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In the same way we treat the case 2 < p < ∞.

‖SQ\P (f)‖p = ‖SQ\P (f − pm(f))‖p ≤ C2(p)
m∑

n=1

n−1/2an(SQ\P (f − pm(f)))

≤ C2(p)
m∑

n=1

n−1/2an(G|Q\P |(f − pm(f)))

= C2(p)
m∑

n=1

n−1/2−1/p(n1/pan(G|Q\P |(f − pm(f))))

≤ C9(p)m1/2−1/p sup
n

n1/pan(G|Q\P |(f − pm(f)))

≤ C9(p)C1(p)−1m1/2−1/p‖G|Q\P |(f − pm(f))‖p

≤ C10(p)Km1/p−1/2‖f − pm(f)‖p. (2.15)

For the SP\Q(f) we have for 1 < p < 2

‖SP\Q(f)‖p ≤ C4(p)
m∑

n=1

n1/p−1an(SP\Q(f))

≤ C4(p)
m∑

n=1

n1/p−1an(SQ\P (f)) = C4(p)
m∑

n=1

n1/p−1an(SQ\P (f − pm(f)))

which has been estimated in (2.14)

≤ C8(p)Km1/p−1/2‖f − pm(f)‖p. (2.16)

In the same way we obtain the bound in the case 2 < p < ∞

‖SP\Q(f)‖p ≤ C2(p)
m∑

n=1

n−1/2an(SP\Q(f))

≤ C2(p)
m∑

n=1

n−1/2an(SQ\P (f)) = C2(p)
m∑

n=1

n−1/2an(SQ\P (f − pm(f)))

which has been estimated in (2.15)

≤ C10(p)Km1/2−1/p‖f − pm(f)‖p. (2.17)

Combining (2.13) – (2.17) we complete the proof of Theorem 1.1.
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3 Lebesgue-type inequalities for Weak Greedy

Algorithm

The greedy approximant Gm(f) considered above was defined as the sum

m∑
j=1

ckj
(f)ψkj

of the expansion terms with the m biggest (in absolute value) coefficients.
In this section we make a remark on a more flexible way of construction of
a greedy approximant. The rule of choosing the expansion terms for ap-
proximation will be weaker than in the greedy algorithm Gm(·). Instead of
taking m terms with the biggest coefficients we now take m terms with near
biggest coefficients. We proceed to a formal definition of the Weak Greedy
Algorithm with regard to a basis Ψ (see [5], p. 271).

Let t ∈ (0, 1] be a fixed parameter. For a given basis Ψ and a given f ∈ X
denote Λm(t) any set of m indices such that

min
k∈Λm(t)

|ck(f)| ≥ t max
k/∈Λm(t)

|ck(f)| (3.1)

and define
Gt

m(f) := Gt
m(f, Ψ) :=

∑

k∈Λm(t)

ck(f)ψk.

We call it the Weak Greedy Algorithm with the weakness parameter t.
Results similar to those proved in Section 2 for the greedy approximant

Gm(f) can be proved for the weak greedy approximant Gt
m(f). A general-

ization of Theorem 2.1 is straightforward.

Theorem 3.1. Let Ψ be a quasi-greedy basis of X satisfying assumption
(2.1) with the property: For any set of indices Λ

‖SΛ(f)‖ ≤ w(|Λ|)‖f‖.
Then for each f ∈ X

‖f −Gt
m(f)‖ ≤ C(K, t)v(m)w(m)σm(f).

It is well known that in the case of unconditional basis Ψ the function
w(m) is uniformly bounded: w(m) ≤ C(Ψ). In this case Theorem 3.1 implies
the following Corollary 3.1.
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Corollary 3.1. Let Ψ be an unconditional basis of X satisfying assumption
(2.1). Then for each f ∈ X

‖f −Gt
m(f)‖ ≤ C(Ψ, t)v(m)σm(f).

Using inequality (2.11) we obtain the following version of Corollary 3.1
for the Lp spaces.

Corollary 3.2. Let 1 < p < ∞ and let Ψ be an unconditional basis of X.
Then for each f ∈ X

‖f −Gt
m(f)‖p ≤ C(Ψ, t, p)m|1/2−1/p|σm(f)p.

The following analog of Theorem 2.2 holds for the weak greedy approxi-
mant Gt

m(f).

Theorem 3.2. Let Ψ be a quasi-greedy basis of X satisfying assumption
(2.1). Then for each f ∈ X

‖f −Gt
m(f)‖ ≤ C(K, t)v(m)σ̃m(f).

Proof. The proof of this theorem repeats the proof of Theorem 2.2. It defers
only at one step. Instead of the inequality in (2.10)

‖G|Q\B|(f − SB(f))‖ ≤ K‖f − SB(f)‖

that is a direct corollary of the definition of a quasi-greedy basis we use the
following known result (see [5], p. 272).

Theorem 3.3. Let Ψ be a quasi-greedy basis. Then for a fixed t ∈ (0, 1] and
any m we have for any f ∈ X

‖Gt
m(f)‖ ≤ C(Ψ, t)‖f‖.

Using Theorem 3.3 we can prove the following analogs of Theorems 2.5
and 1.1.

Theorem 3.4. Let Ψ be a quasi-greedy basis of Lp, 1 < p < ∞ . Then for
each f ∈ Lp

‖f −Gt
m(f)‖p ≤ C(Ψ, p, t)m|1/2−1/p|σ̃m(f).
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Theorem 3.5. Let 1 < p < ∞, p 6= 2, and let Ψ be a quasi-greedy basis of
the Lp space. Then for each f ∈ Lp we have

‖f −Gt
m(f)‖p ≤ C(Ψ, p, t)m|1/2−1/p|σm(f)p. (3.2)
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