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Abstract

The general theory of greedy approximation is well developed.
Much less is known about how specific features of a dictionary can
be used for our advantage. In this paper we discuss incoherent dictio-
naries. We build a new greedy algorithm which is called the Orthog-
onal Super Greedy Algorithm (OSGA). OSGA is more efficient than
a standard Orthogonal Greedy Algorithm (OGA). We show that the
rates of convergence of OSGA and OGA with respect to incoherent
dictionaries are the same. Greedy approximation is also a fundamental
tool for sparse signal recovery. The performance of Orthogonal Multi
Matching Pursuit (OMMP), a counterpart of OSGA in the compressed
sensing setting, is also analyzed under RIP conditions.

1 Introduction

We discuss here greedy approximation with regard to a redundant system
(dictionary). The general theory of greedy approximation with regard to
an arbitrary dictionary is well developed (see [15]). Much less is known
about how specific features of a dictionary can be used for our advantage
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– either to improve rate of convergence results for known algorithms or to
build more efficient algorithms with the same rate of convergence as known
general algorithms. A specific feature of a dictionary – M -coherence in our
case – allows us to build a more efficient greedy algorithm – Orthogonal Super
Greedy Algorithm – than a known algorithm – Orthogonal Greedy Algorithm
– with the same rate of convergence. We study rate of convergence of greedy
algorithms for elements of the closure of the convex hull of the symmetrized
dictionary, which is standard in the theory of greedy approximation setting.
We present these results in Sections 2–3.

It is well known that greedy algorithms are a suitable tool for recover-
ing sparse signals (see, for instance, [12], [16], [17], [9], [10], [11], [13], [5],
[4]). Along with `1-minimization they play a fundamental role in compressed
sensing. In Sections 4–6 we illustrate how the Orthogonal Super Greedy Al-
gorithm can be used in the compressed sensing setting. In signal processing
the standard name for the Greedy Algorithm is the Matching Pursuit. For
instance, the Orthogonal Greedy Algorithm is called the Orthogonal Match-
ing Pursuit. For the reader’s convenience we will use the term Matching
Pursuit for Greedy Algorithm in Sections 4–6. In particular, the Orthogo-
nal Super Greedy Algorithm will be called the Orthogonal Multi Matching
Pursuit. Further discussion and comments will be given in Sections 2, 4, 5,
6.

2 Weak Orthogonal Greedy Algorithm

We begin with a known result on the rate of convergence of the Orthogonal
Greedy Algorithm. We recall some notations and definitions from the theory
of greedy algorithms. Let H be a real Hilbert space with an inner product
〈·, ·〉 and the norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions (elements)
from H is a dictionary if each g ∈ D has a unit norm (‖g‖ = 1) and spanD =
H. Sometimes it will be convenient for us to consider along with D the
symmetrized dictionary D± := {±g, g ∈ D}. Let

M(D) := sup
ϕ6=ψ

ϕ,ψ∈D

|〈ϕ, ψ〉|

be the coherence parameter of dictionary D. Let a sequence τ = {tk}∞k=1,
0 ≤ tk ≤ 1, be given. The following greedy algorithm was defined in [14].
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Weak Orthogonal Greedy Algorithm (WOGA). We define
f o,τ

0 := f . Then for each m ≥ 1 we inductively define:
(1) ϕo,τ

m ∈ D is any element satisfying

|〈f o,τ
m−1, ϕ

o,τ
m 〉| ≥ tm sup

g∈D
|〈f o,τ

m−1, g〉|.

(2) Let Hτ
m := span(ϕo,τ

1 , . . . , ϕo,τ
m ) and let PHτ

m
(f) denote an operator of

orthogonal projection onto Hτ
m. Define

Go,τ
m (f,D) := PHτ

m
(f).

(3) Define the residual after mth iteration of the algorithm

f o,τ
m := f −Go,τ

m (f,D).

In the case tk = 1, k = 1, 2, . . . , WOGA is called the Orthogonal Greedy
Algorithm (OGA). Denote by A1(D) the closure of the convex hull of D±.
The following theorem is from [14].

Theorem 2.1. Let D be an arbitrary dictionary in H. Then for each f ∈
A1(D) we have

‖f −Go,τ
m (f,D)‖ ≤ (1 +

m∑

k=1

t2k)
−1/2. (2.1)

We note that in a particular case tk = t, k = 1, 2, . . . , the right hand side
takes form (1 + mt2)−1/2 that is equal to (1 + m)−1/2 for t = 1.

We now introduce a new algorithm. Let a natural number s and a se-
quence τ := {tk}∞k=1, tk ∈ [0, 1], be given. Consider the following Weak
Orthogonal Super Greedy Algorithm with parameter s.

WOSGA(s, τ). Initially, f0 := f . Then for each m ≥ 1 we inductively
define:

(1) ϕ(m−1)s+1, . . . , ϕms ∈ D are elements of the dictionary D satisfying
the following inequality. Denote Im := [(m− 1)s + 1,ms] and assume that

min
i∈Im

|〈fm−1, ϕi〉| ≥ tm sup
g∈D,g 6=ϕi,i∈Im

|〈fm−1, g〉|.

2) Let Hm := Hm(f) := span(ϕ1, . . . , ϕms) and let PHm denote an opera-
tor of orthogonal projection onto Hm. Define

Gm(f) := Gm(f,D) := Gs
m(f,D) := PHm(f).
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3) Define the residual after mth iteration of the algorithm

fm := f s
m := f −Gm(f,D).

In this paper we study rate of convergence of WOSGA(s, τ) in the case
tk = t, k = 1, 2, . . . . In this case we write t instead of τ in the notations. We
assume that the dictionary D is M -coherent and that f ∈ A1(D). We begin
with the case t = 1. In this case we impose an additional assumption that
the ϕi from the first step exist. Clearly, it is the case if D is finite. We call
the algorithm WOSGA(s, 1) the Orthogonal Super Greedy Algorithm with
parameter s (OSGA(s)). In Section 3 we prove the following error bound for
the OSGA(s).

Theorem 2.2. Let D be a dictionary with coherence parameter M := M(D).
Then for s ≤ (2M)−1 OSGA(s) provides, after m iterations, an approxima-
tion of f ∈ A1(D) with the following upper bound on the error:

‖fm‖2 ≤ 40.5(sm)−1, m = 1, 2, . . . .

We note that OSGA(s) adds s new elements of the dictionary at each
iteration and makes one orthogonal projection at each iteration. For com-
parison, OGA adds one new element of the dictionary at each iteration and
makes one orthogonal projection at each iteration. After m iterations of
OSGA(s) and after ms iterations of OGA both algorithms provide ms-term
approximants with a guaranteed error bound for f ∈ A1(D) of the same
order: O((ms)−1/2). Both algorithms use the same number ms of elements
of the dictionary. However, OSGA(s) makes m orthogonal projections and
OGA makes ms (s times more) orthogonal projections. Thus, in the sense of
number of orthogonal projections OSGA(s) is s times simpler (more efficient)
than OGA. We gain this simplicity of OSGA(s) under an extra assumption
of D being M -coherent and s ≤ (2M)−1. Therefore, if our dictionary D
is M -coherent then OSGA(s) with small enough s approximates with error
whose guaranteed upper bound for f ∈ A1(D) is of the same order as that
for OGA.

3 Rate of convergence

Proof of Theorem 2.2. Denote

Fm := span(ϕi, i ∈ Im).
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Then Hm is a direct sum of Hm−1 and Fm. Therefore,

fm = f − PHm(f) = fm−1 + Gm−1(f)− PHm(fm−1 + Gm−1(f))

= fm−1 − PHm(fm−1).

It is clear that the inclusion Fm ⊂ Hm implies

‖fm‖ ≤ ‖fm−1 − PFm(fm−1)‖. (3.1)

Using the notation pm := PFm(fm−1), we continue

‖fm−1‖2 = ‖fm−1 − pm‖2 + ‖pm‖2

and by (3.1)
‖fm‖2 ≤ ‖fm−1‖2 − ‖pm‖2. (3.2)

To estimate ‖pm‖2 from below for f ∈ A1(D), we first make some auxiliary
observations. Let

f =
∞∑

j=1

cjgj, gj ∈ D,
∞∑

j=1

|cj| ≤ 1, |c1| ≥ |c2| ≥ . . . . (3.3)

Every element of A1(D) can be approximated arbitrarily well by elements of
the form (3.3). It will be clear from the below argument that it is sufficient
to consider elements f of the form (3.3). Suppose ν is such that |cν | ≥ 2/s ≥
|cν+1|. Then the above assumption on the sequence {cj} implies that ν ≤ s/2
and |cs+1| < 1/s. We claim that elements g1, . . . , gν will be chosen among
ϕ1, . . . , ϕs at the first iteration. Indeed, for j ∈ [1, ν] we have

|〈f, gj〉| ≥ |cj| −M
∞∑

k 6=j

|ck| ≥ 2/s−M(1− 2/s) > 2/s−M.

For all g distinct from g1, . . . , gs we have

|〈f, g〉| ≤ M + 1/s.

Our assumption s ≤ 1/(2M) implies that M + 1/s ≤ 2/s − M . Thus, we
do not pick any of g ∈ D distinct from g1, . . . , gs until we have chosen all
g1, . . . , gν .
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Denote

f ′ := f −
ν∑

j=1

cjgj =
∞∑

j=ν+1

cjgj.

It is clear from the above argument that

f1 = f − PH1(f)(f) = f ′ − PH1(f)(f
′);

fm = f − PHm(f)(f) = f ′ − PHm(f)(f
′).

We now estimate ‖pm‖2. For fm−1 consider the following quantity

qs := qs(fm−1) := sup
hi∈D
i∈[1,s]

‖PH(s)(fm−1)‖,

where H(s) := span(h1, . . . , hs). Then

‖PH(s)(fm−1)‖ = max
ψ∈H(s),‖ψ‖≤1

|〈fm−1, ψ〉|.

Let ψ =
∑s

i=1 aihi. Then by Lemma 2.1 from [11] we bound

(1−Ms)
s∑

i=1

a2
i ≤ ‖ψ‖2 ≤ (1 + Ms)

s∑
i=1

a2
i . (3.4)

Therefore,

(1 + Ms)−1

s∑
i=1

〈fm−1, hi〉2 ≤ ‖PH(s)(fm−1)‖2 ≤ (1−Ms)−1

s∑
i=1

〈fm−1, hi〉2.

Thus

‖pm‖2 ≥ 1−Ms

1 + Ms
q2
s . (3.5)

Using the notation Jl := [(l − 1)s + ν + 1, ls + ν] we write for m ≥ 2

‖fm−1‖2 = 〈fm−1, f
′〉 =

∞∑

l=1

〈fm−1,
∑
j∈Jl

cjgj〉

≤ qs(1 + Ms)1/2

∞∑

l=1

(
∑
j∈Jl

c2
j)

1/2. (3.6)
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Since the sequence {cj} has the property

|cν+1| ≥ |cν+2| ≥ . . . ,

∞∑
j=ν+1

|cj| ≤ 1, |cν+1| ≤ 2/s (3.7)

we may apply the simple inequality,

(
∑
j∈Jl

c2
j)

1/2 ≤ s1/2|c(l−1)s+ν+1|,

so that we bound the sum in the right side of (3.6)

∞∑

l=1

(
∑
j∈Jl

c2
j)

1/2 ≤ s1/2

∞∑

l=1

|c(l−1)s+ν+1|

≤ s1/2(2/s +
∞∑

l=2

s−1
∑

j∈Jl−1

|cj|) ≤ 3s−1/2. (3.8)

Inequalities (3.6) and (3.8) imply

qs ≥ (s1/2/3)(1 + Ms)−1/2‖fm−1‖2

By (3.5) we have

‖pm‖2 ≥ s(1−Ms)

9(1 + Ms)2
‖fm−1‖4. (3.9)

Our assumption Ms ≤ 1/2 implies

1−Ms

(1 + Ms)2
≥ 2/9

and, therefore, (3.9) gives

‖pm‖2 ≥ (s/A)‖fm−1‖4, A := 40.5.

Thus, by (3.2) we get

‖fm‖2 ≤ ‖fm−1‖2(1− (s/A)‖fm−1‖2). (3.10)
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Using (3.7) we get for ‖f ′‖

‖f ′‖ ≤
∞∑

l=1

‖
∑
j∈Jl

cjgj‖ ≤
∞∑

l=1

(1 + Ms)1/2(
∑
j∈Jl

c2
j)

1/2 ≤ (1 + Ms)1/23s−1/2,

and
‖f1‖2 ≤ ‖f ′‖2 ≤ 27/(2s) ≤ A/s.

We need the following known lemma (see, for example, [7]).

Lemma 3.1. Let {am}∞m=1 be a sequence of non-negative numbers satisfying
the inequalities

a1 ≤ D, am+1 ≤ am(1− am/D), m = 1, 2, . . . .

Then we have for each m
am ≤ D/m.

By Lemma 3.1 with am := ‖fm‖2, D := A/s, we obtain

‖fm‖2 ≤ A(sm)−1, m = 1, 2, . . . .

This completes the proof of Theorem 2.2.
We now proceed to the case of WOSGA(s, t) with t ∈ (0, 1).

Theorem 3.1. Let D be a dictionary with coherence parameter M := M(D).
Then for s ≤ (2M)−1 WOSGA(s, t) provides, after m iterations, an approx-
imation of f ∈ A1(D) with the following upper bound on the error:

‖fm‖2 ≤ A(t)(sm)−1, m = 1, 2, . . . A(t) := (81/8)(1 + t)2t−4.

Proof. Proof of this theorem mimics the proof of Theorem 2.2, except that
in the auxiliary observations we choose a threshold B/s with B := (3+t)/(2t)
instead of 2/s: |cν | ≥ B/s ≥ |cν+1|, so that our assumption Ms ≤ 1/2 implies
that M + 1/s ≤ t(B/s −M). This, in turn, implies that all g1, . . . , gν will
be chosen at the first iteration. As a result, the sequence {cj} satisfies the
following conditions

|cν+1| ≥ |cν+2| ≥ . . . ,

∞∑
j=ν+1

|cj| ≤ 1, |cν+1| ≤ B/s. (3.11)
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To find an analog of inequality (3.5), we begin with the fact that

q2
s ≤ sup

hi∈D
i∈[1,s]

(1−Ms)−1

s∑
i=1

〈fm−1, hi〉2.

Now, in order to relate q2
s to ‖pm‖2, consider an arbitrary set {hi}s

i=1 of
distinct elements of the dictionary D. Let V be a set of all indices i ∈ [1, s]
such that hi = ϕk(i), k(i) ∈ Im. Denote V ′ := {k(i), i ∈ V }. Then

s∑
i=1

〈fm−1, hi〉2 =
∑
i∈V

〈fm−1, hi〉2 +
∑

i∈[1,s]\V
〈fm−1, hi〉2. (3.12)

From the definition of {ϕk}k∈Im we get

max
i∈[1,s]\V

|〈fm−1, hi〉| ≤ t−1 min
k∈Im\V ′

|〈fm−1, ϕk〉|. (3.13)

Using (3.13) we continue (3.12)

≤
∑

k∈V ′
〈fm−1, ϕk〉2 + t−2

∑

k∈Im\V ′
〈fm−1, ϕk〉2 ≤ t−2

∑

k∈Im

〈fm−1, ϕk〉2.

Therefore,

q2
s ≤ (1−Ms)−1t−2

∑

k∈Im

〈fm−1, ϕk〉2 ≤ 1 + Ms

t2(1−Ms)
‖pm‖2.

This results in the following analog of (3.5)

‖pm‖2 ≥ t2(1−Ms)

1 + Ms
q2
s . (3.14)

The use of (3.11) instead of (3.7) gives us the following version of (3.8)

∞∑

l=1

(
∑
j∈Jl

c2
j)

1/2 ≤ (B + 1)s−1/2.

The rest of the proof repeats the corresponding part of the proof of Theorem

2.2 with A := 9(B+1)2

2t2
= (81/8)(1 + t)2t−4.
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4 Introduction of Compressed Sensing

We now proceed to the compressed sensing (CS) setting. In this case H = Rm

equipped with the Euclidean norm ‖x‖ := 〈x, x〉1/2 andD = {ϕi}N
i=1 is a finite

set of elements (column vectors) of Rm. Then the dictionary D is associated
with a m×N matrix Φ = [ϕ1 . . . ϕN ]. The condition y ∈ A1(D) is equivalent
to existence of x ∈ RN such that y = Φx and

‖x‖1 := |x1|+ · · ·+ |xN | ≤ 1. (4.1)

As a direct corollary of Theorem 2.1, we get for any y ∈ A1(D) that the
Orthogonal Greedy Algorithm guarantees the following upper bound for the
error

‖y −Go
n(y,D)‖ ≤ (n + 1)−1/2. (4.2)

The bound (4.2) holds for any D (any Φ).
In compressed sensing the relation y = Φx has the following interpreta-

tion. Let ψ1, . . . , ψm be the rows of the matrix Φ. Then the corresponding
column vectors ψT

i belong to RN . The relation y = Φx is equivalent to
yi = 〈ψT

i , x〉, i = 1, . . . , m. The number yi = 〈ψT
i , x〉 is understood as a

linear measurement of an unknown vector x. The goal is to recover (or to
approximately recover) the unknown vector x from its measurements y.

The following error bound is one of fundamental results of CS (see [2], [8]
and also [15] for further results and a discussion). Denote by

AΦ(y) := argmin
v:Φv=y

‖v‖1 (P1)

the result of application of the `1-minimization algorithm AΦ to the data
vector y. Then under some conditions on the matrix Φ (RIP(2n, δ) with
small enough δ, which will be discussed momentarily) one has for x satisfying
(4.1)

‖x− AΦ(Φx)‖ ≤ Cn−1/2. (4.3)

The inequalities (4.2) and (4.3) look alike. However, they provide the error
bounds in different spaces: (4.2) in Rm (the data space) and (4.3) in RN (the
coefficients space).

To discuss the performance of greedy approximation in CS, let us begin
with the Restricted Isometry Property of Φ introduced by Candes and Tao
in [3]. RIP is useful in analysis of performance of recovery algorithms. A
vector x ∈ RN has the support T = supp(x) := {i ∈ N : 1 ≤ i ≤ N and
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xi 6= 0}. For a set of indices T , denote by |T | the cardinality of the set. If
|T | = K, x is called a K-sparse signal.

Definition 4.1. (Restricted Isometry Property) A m×N matrix Φ satisfies
the Restricted Isometry Property with parameters (K, δ) (we say Φ satisfies
RIP(K, δ) for simplicity) if there exist δ ∈ (0, 1) such that

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2 (4.4)

holds for every K-sparse x. Moreover, define δK := inf{δ : (4.4) holds for
any K-sparse x}.

To avoid confusions, let us clarify the notations that we use in the rest of
this paper. For x ∈ RN , xΓ ∈ R|Γ| is a vector whose entries are the entries
of x with indices in Γ. For m × N matrix Φ, ΦΓ is a m × |Γ| submatrix of
Φ with columns indexed in Γ. Given y ∈ Rm, the orthogonal projection of y
onto span(ΦΓ) := span{ϕi : i ∈ Γ} is denoted by

PΓ(y) := argmin
y′:y′∈span(ΦΓ)

‖y − y′‖.

It is known and easy to check that if Φ∗
ΓΦΓ is invertible then PΓ(y) = ΦΓΦ†

Γy,
where Φ†

Γ := (Φ∗
ΓΦΓ)−1Φ∗

Γ is the Moore-Penrose pseudoinverse of ΦΓ and Φ∗

is the transpose of Φ.
We complete this section by presenting one observation and two inequal-

ities that will be used in the proofs later. They are all consequences of RIP.
The observation, derived directly from the definition of RIP, is that if Φ
satisfies RIP of both orders K and K ′, with K < K ′, then δK ≤ δK′ .

The two inequalities (see [13] and [5]) are used frequently in this paper.

Lemma 4.1. Suppose Φ satisfies RIP of order s. Then for any set of indices
Γ such that |Γ| ≤ s and any x ∈ RN and y ∈ R|Γ|, we bound

(1− δ|Γ|)‖xΓ‖ ≤ ‖Φ∗
ΓΦΓxΓ‖ ≤ (1 + δ|Γ|)‖xΓ‖ (4.5)

and
‖Φ∗

Γy‖ ≤ (1 + δ|Γ|)
1/2‖y‖. (4.6)

Lemma 4.2. Assume Γ and Λ are two disjoint sets of indices. If Φ satisfies
RIP of order |Γ ∪ Λ| with constant δ|Γ∪Λ|, then for any vector x ∈ R|Λ|

‖Φ∗
ΓΦΛx‖ ≤ δ|Γ∪Λ|‖x‖. (4.7)
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5 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) in the CS setting is the counterpart
of OGA in the general setting. It is computationally simple and performs
well. Considering its applications in signal processing, let us present it in an
algorithmic way.

Algorithm: Orthogonal Matching Pursuit (OMP)

Input: Φ and y
Initialization: r0 := y, x0 := 0, Λ0 := ∅, ` := 0
Iterations: Define Λ`+1 := Λ` ∪ {argmaxi |〈r`, ϕi〉|}.
Then x`+1 := argminz ‖y − ΦΛ`+1z‖ and
r`+1 := y − PΛ`+1(y) = y − ΦΛ`+1x`+1.
If r`+1 = 0, stop. Otherwise let ` := ` + 1 and begin a new iteration.
Output: If algorithm stops at kth iteration, output x̂ is such that
x̂Λk = xk and x̂(Λk)C = 0.

It is known that if the columns of the matrix Φ form a dictionary D that
is M -coherent then OMP recovers exactly any K-sparse signal with K <
(1 + M−1)/2. The behavior of OMP with respect to incoherent dictionaries
is well studied (see, for instance, [12], [16], [9], [10], [11]). In this section
we study performance of OMP assuming RIP and prove a theorem that
guarantees the exact recovery of any K-sparse signal.

Let us take a close look at the first iteration of OMP. OMP chooses the
index that corresponds to the largest (in magnitude) inner product. When
can we conclude that this index is indeed in the support of x? A corollary of
the following more general lemma gives the answer.

From now on we always assume y = Φx, where x ∈ RN is K-sparse.

Lemma 5.1. Assume s ∈ N and s ≤ K and Φ satisfies RIP of order K + s
with constant δ := δK+s <

√
s

(1+
√

2)
√

K
. Define Λ := {i1, . . . , is} such that

|〈y, ϕi1〉| ≥ . . . ≥ |〈y, ϕis〉| ≥ sup
ϕ∈Φ,ϕ 6=ϕi,i∈Λ

|〈y, ϕ〉|. (5.1)

Then Λ ∩ T 6= ∅, where T is the support of x.

Proof. We proceed by contradiction. Assume Λ ∩ T = ∅. By Lemma 4.2

‖Φ∗
Λy‖ = ‖Φ∗

ΛΦT x‖ ≤ δ‖x‖. (5.2)
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Let T ′ := {n1, . . . , ns} be a subset of T which contains the s largest (in
magnitude) entries of x. Then

|xn1| ≥ . . . ≥ |xns | ≥ sup
n∈[1,N ],n6∈T ′

|xn|.

From the definition of Λ it follows that

‖Φ∗
Λy‖ ≥ ‖Φ∗

T ′y‖ = ‖Φ∗
T ′ΦT x‖

= ‖Φ∗
T ′ΦT ′xT ′ + Φ∗

T ′ΦT\T ′xT\T ′‖
≥ ‖Φ∗

T ′ΦT ′xT ′‖ − ‖Φ∗
T ′ΦT\T ′xT\T ′‖. (5.3)

Applying (4.5) and Lemma 4.2 to the last two terms in (5.3), we obtain

‖Φ∗
Λy‖ ≥ (1− δs)‖xT ′‖ − δK‖xT\T ′‖. (5.4)

Using (5.4) and (5.2) we get

δ‖x‖ ≥ (1− δs)‖xT ′‖ − δK‖xT\T ′‖.
Replacing in the above inequality δs and δK by δ we obtain

δ‖x‖ ≥ (1− δ)‖xT ′‖ − δ‖xT\T ′‖. (5.5)

Next, using the definition of T ′ we get

‖xT ′‖ ≥
( s

K

) 1
2‖x‖, (5.6)

and

‖xT\T ′‖ ≤
(
1− s

K

) 1
2‖x‖. (5.7)

Combining (5.6), (5.7) and (5.5) gives

δ‖x‖ ≥ (1− δ)
( s

K

) 1
2‖x‖ − δ

(
1− s

K

) 1
2‖x‖.

Thus ( s

K

) 1
2 ≤ δ + δ

( s

K

) 1
2

+ δ
(
1− s

K

) 1
2
. (5.8)

Using the inequality

( s

K

)1/2

+
(
1− s

K

)1/2

≤
√

2,
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we continue (5.8)
≤ (1 +

√
2)δ.

Clearly, we have (s/K)
1
2 > (1+

√
2)δ, if δ <

√
s

(1+
√

2)
√

K
. This contradiction

completes the proof.
When s = 1 in Lemma 5.1, we have the following corollary.

Corollary 5.1. Suppose Φ satisfies RIP(K+1, δK+1) with δK+1 < 1
(1+

√
2)
√

K
.

If i ∈ [1, N ] such that

|〈y, ϕi〉| ≥ sup
ϕ∈Φ,ϕ 6=ϕi

|〈y, ϕ〉|.

Then i ∈ T , where T is the support of x.

This Corollary tells us that under the above conditions on Φ OMP chooses
the right index at each step.

We now proceed to the main result of this section.

Theorem 5.2. Assume Φ satisfies RIP(K+1, δ) with δ := δK+1 < 1
(1+

√
2)
√

K
.

Then OMP recovers any K-sparse x ∈ RN exactly in K iterations.

Theorem 5.2 is a follow up to the corresponding result of Davenport
and Wakin, [6]. They proved an analog of Theorem 5.2 under assumption
δ < 1

3
√

K
. Thus, our contribution is in improving the constant from 1/3

to 1/(1 +
√

2). It is conjectured in [5] that there exist K-sparse x and Φ
satisfying RIP of order K + 1 with δK+1 ≤ 1√

K
such that OMP can not

recover x in K iterations. If this conjecture is true, then we cannot increase
the constant 1/(1 +

√
2) to 1. The question of best constant in Theorem 5.2

is an interesting open question.
Proof of Theorem 5.2. Take any ` < K. From the definition of OMP,
we know that Λ` contains the indices selected at the first ` iterations. All
indices contained in Λ` are distinct because we make an orthogonal projection
at each iteration. Assume Λ` ⊆ T , which is equivalent to the statement that
the OMP has selected ` correct indices (all selected indices are contained
in T ) after ` iterations. As a consequence of this assumption we get that
r` = y − PΛ`(y) is at most K-sparse and supported on T . If i is selected by
the (` + 1)th iteration, it satisfies

|〈r`, ϕi〉| ≥ sup
ϕ∈Φ,ϕ 6=ϕi

|〈r`, ϕ〉|.

14



By Corollary 5.1, if Φ satisfies RIP of order K +1 with constant δ := δK+1 <
1

(1+
√

2)
√

K
, we know that i ∈ T . Since r` = y − PΛ`(y), the inner product of

ϕi and any column indexed in Λ` is zero. This implies i 6∈ Λ`. Therefore,
i ∈ T\Λ`. If Φ satisfies RIP of order K + 1 with constant δ < 1

(1+
√

2)
√

K
, the

above argument works for any ` ∈ [0, K − 1].
By induction from ` = 0 to ` = K−1, we get the conclusion that ΛK = T ,

rK = y − PT (y) = y − ΦT xT = 0, and OMP stops after K iterations.
The output x̂ satisfies

x̂ΛK = xK = argmin
z

‖y − ΦΛKz‖
= argmin

z
‖y − ΦT z‖ = xT ,

and
x̂(ΛK)C = xT C = 0.

Hence, x̂ = x. This completes the proof.

6 Orthogonal Multi Matching Pursuit

Theorem 5.2 requires RIP condition with δK+1 < 1
(1+

√
2)
√

K
so that OMP

recovers a K-sparse signal exactly in K iterations. For doing this OMP
must select a correct index at each iteration. In this section we study an
algorithm that may pick wrong indices in its iterations yet finally recovers the
signal exactly. We study here the Orthogonal Multi Matching Pursuit with
parameter s (OMMP(s)), which is the Orthogonal Super Greedy Algorithm
with parameter s adjusted to the compressed sensing setting. Next, let us
establish the algorithm.
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Algorithm: Orthogonal Multi Matching Pursuit (OMMP)

Input: Φ, y and s
Initialization: r0 := y, x0 := 0, Λ0 := ∅, ` := 0
Iterations: Define Λ`+1 := Λ` ∪ {i1, . . . , is} such that
|〈r`, ϕi1〉| ≥ . . . ≥ |〈r`, ϕis〉| ≥ sup

ϕ∈Φ
ϕ6=ϕik

,k=1,...,s

|〈r`, ϕ〉|.

Then x`+1 := argminz ‖y − ΦΛ`+1z‖ and
r`+1 := y − ΦΛ`+1x`+1.
If r`+1 = 0, stop. Otherwise let ` := ` + 1 and begin a new iteration.
Output: If algorithm stops at kth iteration, output x̂ such that
x̂Λk = xk and x̂(Λk)C = 0.

Theorem 6.1. For s ∈ N and s ≤ K, assume Φ satisfies RIP of order
sK with a constant δ := δsK <

√
s

(2+
√

2)
√

K
. Then for any K-sparse x ∈ RN ,

OMMP(s) recovers x exactly within at most K iterations.

Proof. We will prove that OMMP(s) picks at least one correct index at each
iteration.

After running OMMP for ` iterations, we obtain a set of indices Λ`. We
prove that at the (` + 1)th iteration OMMP selects at least one correct
index. We carry out this proof without assumption that OMMP selected
correct indices at previous iterations. Denote T1 := Λ` ∩ T , K1 := |T1| and
T2 := T\Λ`, K2 := |T2|. We continue our proof by contradiction. Assume
that at the next iteration the OMMP(s) does not select any correct indices.
This means Λ′ ∩ T = ∅, where Λ′ := (Λ`+1\Λ`). From the definition of
OMMP, we easily derive that |Λ′| = s.

The residual after ` iterations can be written in the following form

r` = y − PΛ`(y)

= ΦT1xT1 + ΦT2xT2 − PΛ`(ΦT1xT1 + ΦT2xT2)

= ΦT2xT2 − PΛ`(ΦT2xT2). (6.1)

Let xp ∈ R|Λ`| give the coefficients of projection PΛ`(ΦT2xT2). Then we con-
tinue (6.1)

= ΦT2xT2 − ΦΛ`xp. (6.2)

We now focus on the second term of (6.2). Since Φ satisfies RIP of order
sK, it also satisfies RIP of order |Λ`|. By (4.5) Φ∗

Λ`ΦΛ` is invertible. By the
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property of the Moore-Penrose pseudoinverse we get

xp = (Φ∗
Λ`ΦΛ`)−1Φ∗

Λ`ΦT2xT2 .

Since Λ` ∩ T2 = ∅ we apply (4.5) and Lemma 4.2

‖xp‖ = ‖(Φ∗
Λ`ΦΛ`)−1Φ∗

Λ`ΦT2xT2‖
≤ δs`+K2

1− δs`

‖xT2‖

≤ δ

1− δ
‖xT2‖. (6.3)

By (6.2) we have

‖Φ∗
Λ′r

`‖ = ‖Φ∗
Λ′(ΦT2xT2 − ΦΛ`xp)‖

≤ ‖Φ∗
Λ′ΦT2xT2‖+ ‖Φ∗

Λ′ΦΛ`xp‖. (6.4)

By our assumption Λ′ ∩ T = ∅ and, therefore, Λ′ ∩ T2 = ∅. Moreover, the
definition of Λ′ indicates that Λ′ and Λ` are also disjoint. Using Lemma 4.2
we continue (6.4)

≤ δs+K2‖xT2‖+ δs(`+1)‖xp‖
≤ δ‖xT2‖+ δ‖xp‖
≤ δ‖xT2‖+

δ2

1− δ
‖xT2‖. (6.5)

In the last inequality we used (6.3).
The remainder of the proof consists of two cases depending on the size of

T2.
First, we consider the case K2 > s. Denote T3 := {n1, . . . , ns} such that

T3 ⊆ T2 and
|xn1| ≥ . . . ≥ |xns | ≥ sup

n∈T2,n6∈T3

|xn|.

The definition of the Λ′ implies

‖Φ∗
Λ′r

`‖ ≥ ‖Φ∗
T3

r`‖ = ‖Φ∗
T3

(ΦT2xT2 − ΦΛ`xp)‖
≥ ‖Φ∗

T3
(ΦT3xT3 + ΦT2\T3xT2\T3 − ΦΛ`xp)‖

≥ ‖Φ∗
T3

ΦT3xT3‖ − ‖Φ∗
T3

ΦT2\T3xT2\T3‖ − ‖Φ∗
T3

ΦΛ`xp‖. (6.6)
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By the definition of T3

‖xT3‖ ≥
( s

K2

) 1
2‖xT2‖, (6.7)

and

‖xT2\T3‖ ≤
(
1− s

K2

) 1
2‖xT2‖. (6.8)

We estimate the last three terms in (6.6). Applying (4.5) and Lemma 4.2 we
obtain

‖Φ∗
T3

ΦT3xT3‖ ≥ (1− δs)‖xT3‖
≥ (1− δ)‖xT3‖
≥ (1− δ)

( s

K2

) 1
2‖xT2‖, (6.9)

‖Φ∗
T3

ΦT2\T3xT2\T3‖ ≤ δK2‖xT2\T3‖
≤ δ‖xT2\T3‖

≤ δ
(
1− s

K2

) 1
2‖xT2‖, (6.10)

and

‖Φ∗
T3

ΦΛ`xp‖ ≤ δ(`+1)s‖xp‖ ≤ δ2

1− δ
‖xT2‖. (6.11)

Substituting (6.9),(6.10) and (6.11) in (6.6) we obtain

‖Φ∗
Λ′r

`‖ ≥ (1− δ)
( s

K2

) 1
2‖xT2‖ − δ

(
1− s

K2

) 1
2‖xT2‖ −

δ2

1− δ
‖xT2‖. (6.12)

Comparing (6.5) and (6.12) we get

δ
(( s

K2

) 1
2

+
(
1− s

K2

) 1
2
)

+ δ +
2δ2

1− δ
≥

( s

K2

) 1
2
,

which implies

(1 +
√

2)δ +
2δ2

1− δ
≥

( s

K2

) 1
2
.

If δ <
√

s

(2+
√

2)
√

K
< 1

3
, then

(1 +
√

2)δ +
2δ2

1− δ
< (2 +

√
2)δ <

( s

K

) 1
2

<
( s

K2

) 1
2
. (6.13)
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This contradiction implies Λ′ ∩ T 6= ∅.
Second, we consider the case K2 ≤ s. In this case |T2| ≤ |Λ′|. Using this

and the definition of Λ′ we get

‖Φ∗
Λ′r

`‖ ≥ ‖Φ∗
T2

r`‖ = ‖Φ∗
T2

(ΦT2xT2 − ΦΛ`xp)‖
≥ ‖Φ∗

T2
ΦT2xT2‖ − ‖Φ∗

T2
ΦΛ`xp‖

≥ (1− δK2)‖xT2‖ − δs+K2‖xp‖
≥ (1− δ)‖xT2‖ −

δ2

1− δ
‖xT2‖. (6.14)

Comparing (6.5) and (6.14), we obtain

δ‖xT2‖+
δ2

1− δ
‖xT2‖ > (1− δ)‖xT2‖ −

δ2

1− δ
‖xT2‖

or equivalently

2δ +
2δ2

1− δ
> 1, (6.15)

The above inequality does not hold for δ ≤ 1/3. This contradiction implies
that in the second case we also have Λ′ ∩ T 6= ∅.

These two cases show that if δ <
√

s

(2+
√

2)
√

K
then Λ′ ∩ T 6= ∅. Therefore,

OMMP picks at least one correct index at every iteration. This means T ⊆
ΛK . Thus

x̂ΛK = xK = argmin
z

‖y − ΦΛKz‖ = xΛK

and x̂(ΛK)C = x(ΛK)C = 0. Then we conclude that x̂ = x.
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