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Anisotropic function spaces with applications

Shai Dekel and Pencho Petrushev

Abstract In this survey we review the recently developed theory obatnopic
spaces and representations of functions based on anigotmyftilevel ellipsoid
covers (dilations) ofR". We also exhibit the relations of the ellipsoid cover ap-
proach to earlier concepts of anisotropic structures akageio the framework of
general spaces of homogeneous type. A number of open prellenpresented and
discussed.

1 Introduction

Anisotropic phenomena appear in various contexts in madiieat analysis and its
applications. For instance, functions are frequently \&npoth on subdomains of
R" separated by smooth curves or manofolds, where they hayedisvontinuities.
This sort of singularities reduce significantly the clagsgmoothness of the func-
tions and create problems when attempting to find sparsegeptations of them.
One perhaps useful approach to resolving the singulatiganctions along
smooth curves and manifolds (and more general singulanvimsais the utiliza-
tion of the framework of anisotropic multiscale ellipsoidvers (dilations) ofR"
which may change rapidly from point to point at any level amdépth. The second
important element of this concept is to use anisotropipsdlid covers adaptively
by allowing them to adjust to the singularities of the funntunder question. Other
critical issues are related, in particular, to the anigutroepresentation of functions
and definition and characterization of the respective amipe&c smoothness spaces.
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Department of Mathematics, University of South CarolinaJuthbia, SC 29208, USA, e-mail:
pencho@math.sc.edu



2 Shai Dekel and Pencho Petrushev

The purpose of this survey paper is to review the main coscapd problems
of this relatively new undertaking, documented so far in, [12, 14]. Although we
will have some answers to reveal to some of the importanttopuness there will be
plenty of open problems presented as well.

This theory has three main components with the first beingtheture of the
underlyingellipsoid coversof R". The main role here is played by discrete multi-
level ellipsoid covers oR" of the form:© = Uncz0m, where eacl®, consists of
ellipsoids of volume~ 2-2I which coverR" and any ellipsoid®;, 6, € O, with
61N 6, # 0 have similar shapes and orientations. In depth the behatithe el-
lipsoids is similar, namely, iB, € O, 6 € Oy,1 and6; N 6, # 0, then6; and 6,
are similar in shape and orientation. An important featdrie set of all ellipsoid
covers ofR" is that it is invariant under affine transforms. Another imtpat issue
is that any ellipsoid cover dk" generates a quasi-distance, which coupled with the
Lebesgue measure transfori@sinto a homogeneous type space. The properties of
anisotropic covers are explored in [12]. A short descriptid them is given irg2,
where we also compare ellipsoid coversi#f with the so called multilavel strong
local regular (SLR) triangulations &2, introduced in [20].

The anisotropic elements (building blocks)introduced in [12] and the re-
lated representations of functions is the second compauieotr theory. A se-
quence of base§®ny}mcz is naturally associated to each discrete ellipsoid cover
O = Umez0Om. Here eachby, consists ofC* functions which are supported on the
ellipsoids inGn, reproduce polynomials of degreek and are locally linear inde-
pendent. The key property of these bases is that égcis a stable basis ibp for
0 < p < 0. This allows to define local projectors into the spaSgs= span ®@m)
which preserve polynomials of degreek. In turn, these maps induce a sequence of
two-level-split bases which provide representation otfions and are aligned with
the underlying anisotropic structureltf’. As is shown in [12] these representations
also allow to characterize the anisotropic Besov spacessifipe smoothness. The
next step is to define smooth (global) dualg{th,,} and thereby to construct ker-
nels{Sn} which reproduce polynomials of a certain degree in bothatdeis. This
enabled us to deploy the machinery of homogeneous spacks tmhstruction of
continuous and discrete anisotropic wavelet frames. &lséhconstructions and re-
sults are presented §3.

The third component of the theory we review here consistam$otropic
spacesassociated with anisotropic ellipsoid coversif. The anisotropic homo-
geneousl3gq(@)) and inhomogeneousf,(©)) Besov spaces (B-spaces) of pos-
itive smoothness are developed in [12] and briefly introduice§4. In the same
section we compare them with the anisotropic B-spaces gulbg multilevel SLR-
triangulations ofR? and with classical Besov spaces §we show that, in analogy
to the classical case, certain B-spaces naturally occurntimearN-term approxi-
mation from the two-level-split bases. §6 we advance the idea of using adaptively
anisotropic B-space for measuring the smoothness of thatifuns, which is closely
related to the problem for sparse representation of funstidhe development of
anisotropic Triebel-Lizorkin of an arbitrary smoothnesstlie grand open prob-
lem in this theory. The key is to construct anisotropic framéth well localized
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elements and prescribed vanishing moments which are didlitrdligned with the
underlying anisotropic ellipsoid cover.

Candés and Donoho (e.g. [5, 6]) have developed the so caliedets which
provide an alternative scheme for resolving singularitie&inctions along smooth
curves inR?. The advantage of curvlets over our approach is that thdetsrform a
frame, while our scheme is adaptive, and hence curvletsaaierdo implement. On
the other hand, the curvlet frame is overly redundant. Moegipely at every loca-
tion and scale there are numerous directional elementsaitbus orientations (the
number of orientations increases with the scale). Cundetspurelyl,-creatures
which rely on fine cancelations and are unusable for decoitigosf functions in
Lp, p#2.

Yet another approach to resolving singularities of funtdialong smooth curves
is developed in [1, 15] and is based on the so callddptive Geometric Wavelets
This method is closely related to the schemes employingselid covers and nested
triangulations considered here; it proved to be very effedh image compression.

Inthe final Section 7 the two-level-split bases and the nraatyiof Besov spaces
are applied in a regular set-up to the development of mesintestilevel Schwarz
preconditioners for elliptic boundary value problems. Tetails of this develop-
ment are given in [11], which was the starting point of thiskvo

Throughout we will us¢E| to denote the Lebesgue measur&af R"; we will
denote by, c1, ¢y, etc. positive constants which may vary at every appeardinee
equivalenca ~ b meangia < b < ca.

2 Anisotropic multiscale structures onRR"

In this article we are mainly concerned with anisotropiastures orR" induced by
anisotropic ellipsoid covers (dilations) &" and the related function spaces . For
comparison we will also briefly review the anisotropic meliel nested triangula-
tions of R?.

2.1 Anisotropic multilevel ellipsoid covers (dilations) of R"

We denote byB(x,r) the Euclidean ball ifR" of radiusr centered ax. The image of
the unit ballB* := B(0,1) in R" via an affine transform will be called atlipsoid

Definition 1. We call

mezZ

a discrete multilevel ellipsoid covenf R" if the following conditions are obeyed,
whereay, ..., ag, andN; are positive constants:

(a) Every leveloy, (me Z) consists of ellipsoid® such that
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6112760m < |6| < 6122760m Q)

andOn, is a cover oR", i.e.R" = Jgcg,, 6.
(b) For@ € O let Ag be an affine transform of the form

Ag(X) = MpgX+Vg, Mg € Rnxn,

such tha = Ag(B*) andvg := A(0) is the center 0B. We postulate that for any
0 € Onandb’ € Onyy (Me Z,v > 0) with 6N 8’ £ 0, we have

a2 MY < 1/||MgMo |1, < [IMg Mg [l p, < @527 26", 2)

(c) Each ellipsoid € 6, can be intersected by at madéi ellipsoids from@p,.

(d) For everyx € R" andm € Z there exist® € O, such thak € 8°, wheref° is the
dilated version oB by a factor ofay < 1, i.e.6° = Ag(B(0,ay)).

(e) If6nn # 0 with 6 € Oy andn € OmU By 1, then|@Nn| > ag|n|.

We will denote byp(©) := {ag, a1, .. .,as, N1 } the set of all parameters in the above
definition.
Several clarifying remarks are in order.

1. Itis crucial that the set of all discrete ellipsoid covefsR" is invariant under
affine transforms. More precisely, the imagg®) of all ellipsoids6 € © of a
given cover® of R" via an affine transform of the formA(x) = Mx+ v with
|detM| = 1 form an ellipsoid cover aR" with the same parameters@s

2. Condition (b) above indicates thatdfn 8’ # 0, then the ellipsoid® and 6’ are
similar in shape and orientation when they are from closel$evyn particular, if
M:= MglMef andM = UDV is the singular value decomposition ldf, where
U andV are orthogonal matrices, afil= diag(o1, 02, ..., 0n) is diagonal with
01>02>...>0n>0,then

IM[l, =01 and  [Mg*Mall,t, = IM~ Y| 1,0, = 1/ O
Therefore, condition (b) is equivalently expressed as
a2 M <o, <...<op<ag2 %, (3)

This condition has a clear geometric interpretation: TH’maftransformAgl,
which maps the ellipsoi@ onto the unit balB*, maps the ellipsoid’ onto an
ellipsoid with semi-axest, 0>, ..., 0, satisfying (3).

3. Condition (e) may seem restrictive, but this is not theecads is shown in [12]
if © is a discrete ellipsoid cover satisfying conditidas— (d) above, then there
exists a discrete ellipsoid covér of R" which obeys condition&) — (e) (with
possibly different constangg anday) obtained by dilating every ellipsoiél € ©
by a factorg satisfying(az +1)/2<rg < 1.
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Continuous and semi-continuous ellipsoid cover®iscrete ellipsoid covers @&"
are easy to derive from semi-continuous or continuous spvérich are in general
easier to construct.

In the case of asemi-continuous ellipsoid cove® = UpczOm, an ellipsoid
B(v,m) € Oy, is associated to everye R" andm € Z such that

2" M < |6(v,m)| < a2~ ™M,

which replaces (1) and the respective affine transformsfgaticondition similar to
(2); conditions (c)-(e) are void.

In the case of @ontinuous ellipsoid cove® := Uicr &, an ellipsoidf(v,t) € &
is associated to everye R" andt € R such that

a2 %" < |Q(vt)| < a2 %t

i.e. the scale is continuous as well. For more detail and Kaetedefinitions of
ellipsoid covers, se§?.2 in [12]

Examples.(i) The one parameter family of diagonal dilation matrices
Dy =diag(2 1,272 . 27y b, >0, j=1,...,n,

apparently induces a continuous ellipsoid coveRBf

(i) SupposeA is ann x n real matrix with eigenvalued satisfying|A| > 1.
Then itis easy to see that the affine transfofqg(x) := A~"™x+v,ve R", me Z,
define a semi-continuous ellipsoid cover (dilations)R3f This particular kind of
dilations are used in [2, 3, 4] for the development of aniguit Hardy, Besov, and
Triebel-Lizorkin spaces.

(iif) The continuous covers used in Section 6 (see §Bm [12]) are nontrivial
examples of anisotropic ellipsoid coversiA, where the ellipsoids change rapidly
from point to point and in depth.

The point is that, on the one hand, continuous and semi+foomiis covers are
easier to construct and, on the other, given a semi-conismoo continuous cover
one can construct a discrete ellipsoid cover with esséntiaé same (equivalent)
metric (see [12]).

Quasi-distance.A quasi-distance is naturally associated with any discreeni-
continuous or continuous ellipsoid covers®if. Recall that aquasi-distancen a
setX £ 0isamapp : X x X — [0, ) satisfying the conditions:

(@) p(xy) =0<+=x=Y,
(b) p(y,x) = p(x,y),
(©) p(%,2) <K(P(XY)+p(Y;2)).

Herek > 1 is a constant.

Definition 2. Assuming tha® is a continuous, semi-continuous or discrete ellip-
soid cover ofR", we defingp : R" x R" — [0, ») by
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p(x,y) :=inf{|6|: 6 € © andx,y € 6}. 4

Proposition 1. [12] For any ellipsoid cove® of R" the mapp : R" x R" — [0, )
defined above is a quasi-distanceRh

Spaces of homogeneous typsere first introduced in [8] (see also [9, 16]) as a
means for extending the Calderon-Zygmund theory of seaguategral operators to
more general settings. LEtbe a topological space endowed with a Borel meagure
and a quasi-distang®(-, -). Assume that the balB,(x,r) := {y € X : p(x,y) <r},

x e X, r > 0, form a basis for the topology K. The spacéX, p, ) is said to be of
homogenous typéthere exists a constamt> 0 such that for alk € X andr > 0,

H(Bp(x2r)) < AU(Bo(X.1)). (5)

If (5) holds thenu is said to be aoubling measurg5, Chapter 1, 1.1]. A space of
homogeneous type is said to bermal if uniformly p(B(x,r)) ~r.

Suppose? is an ellipsoid cover ofR" and letp(-,-) be the associated quasi-
distance, defined in (4). DendBy (x,r) :={y € R": p(x,y) <r} forxe R", r > 0.
As is shown in [12] there exist ellipsoid®, 8” € © such thatd’ C By(x,r) C 6”
and|@’| ~ |Bp(x,r)| ~[8"| ~r. ConsequenthyR" equipped with the distanqg(-, )
and the Lebesgue measure, {R", p,dx) is a homogeneous type space. Therefore,
the machinery of spaces of homogeneous type can be employaat fpurposes
here.

2.2 Comparison of ellipsoid coverswith nested triangulationsin R?

An alternative way of introducing anisotropic structune®? is through multilevel
nested triangulations. The strong locally regular (SLR)tgulations, introduced in
[20], provide a structure compatible with ellipsoid covéite next recall briefly the
definition of SLR-triangulations.

We call.7 = Upez Fm an SLR-triangulation oR? with levels {7} if the fol-
lowing conditions are obeyed:

(a) Every levely, consists of closed triangles with disjoint interiors whaziver
R? and there are no hanging vertices.

(b) 1 is a refinement of/y, (m € Z) and each trianglé\ € 7, is subdivided
and has uniformly bounded number of childrengf..1.

(c) For each\ € .7 let Ax be an affine transform of the form

AA(X):MAX—FVA, Ma ER”XH,

such thatA = Ap(A*), where A* is an equilateral reference triangle. Now the
condition is that for any\ € 9, and A’ € I, U Ime1 such thath' N A # 0 one
has

1 < 1/IMMallry—, < IMA™MAr Iy, < Co (6)
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In [20] condition (c) is formulated in an equivalent form \@aninimum angle con-
dition.

Note that the multilevel SLR-triangulations provide a medor constructing
discrete ellipsoid covers dk2. Given an SLR-triangulation” one considers for
each triangle\ € .7 the minimum area circumscribed ellipse. Then one dilates th
resulting ellipses by a sufficiently large facterl to obtain a discrete ellipse cover
of R?.

The main advantage of ellipse covers over SLR-triangutatis that the latter are
nested which makes them less flexible and harder to cons®uadhe other hand, as
shown in [13] in presence of an SLR-triangulation it is eagdeconstruct building
blocks consisting of piecewise polynomials. Also the resipe generalized Besov
spaces and nonlinear approximation theory are easier ®laewVe will be more
specific about these issues later on.

3 Building blocks

The construction of simple elements (building blocks) viarédlow to represent the
functions and characterize the norms of the spaces of sitsr@nperative for our

theory. Here we first define a sequence of of bases consisti@y tunctions sup-

ported on the ellipsoids of the underlying anisotropigositiid cover. Secondly, we
construct compactly supported duals which generate lgog@gtrors and two-level-
split bases. Thirdly, we develop smooth global duals whidvijole polynomial re-

producing kernels that we utilize to the construction ofatriopic frames.

3.1 Construction of a multilevel system of bases

Given a discrete ellipsoid cové of R", we first construct for each level € Z
a stable basi®,, whose elements are smooth functions supported on theatlps
of Om. The procedure begins by firsbloring the ellipsoids ir@. It is easy to see
that® can be split into no more tharl\g disjoint subsets (colors{)@‘g}[zgl1 so that
for anym e Z neither two ellipsoid®’, 8” € OnUBn1 with 8’ N 8” #£ 0 are of the
same color.

Our second step is to construct locally independent piessspalynomial bumps.

For fixed positive integersl andk (M > k) we define
@) = @Q—xHME r=1,2... 2N;.

Notice thatgy, £ = 1,...,2Ny, being of different degrees are linearly independent on
any ball contained i8* = B(0, 1).

The next step is to smooth out eaghby convolving it with a compactly sup-
portedC® function. Namely, leh € C*(R") be such that sugp= B*, h > 0, and
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Jznh = 1. Denotehs(x) := 6 "n(51x). Then for 0< & < 1 (we choose suffi-
ciently small) the bump

@ =@ xhs
belongs toaC”, ¢ is a polynomial of degree exactly® + (k) on B(0,1— d) and
suppy’ = B(0,1+ &). Now we definep,(x) := ¢ ((1+ 0)x).
For anyf € © we letAg denote the affine transform from Definition 1 such that
Ag(B*) = 6 and set

@ =@oA" for 6O 1<I<2Ny.

We introduce amnth level partition of unity by defining for each € O,
@o
pg = ——. (7)
Ze@emqh

By property (d) of ellipsoids covers it follows th@ilgcg,, #o(x) = 1 forx € R".
Let
{Ps:|B| <k—1}, where defs = |B|, (8)

be an orthonormal basis irp(B*) for the space? of all polynomials inn variables
of total degre& — 1. For eaclf € © and|f| < k we define

P@,B = |6|7l/2PB OAg:L and G0 = ¢9P6=B' (9)
To simplify our notation, we denote
Am= {/\ = (evﬁ):e€@m7|ﬁ|<k} and gA 5299,& A :(G,B) (10)

Also, forA = (8,3) we will denote byg, andf3, the components of.
Now we define thenth level basispy, by

®m:={0):A €An} andset Sp:=span ®n), (11)

where “span” means “closed span”.

By the definition of{g, } it readily follows that? C Sy. More importantly,®n,
is locally linearly independent anidy-stable, which will be recorded in the next
theorem.

Theorem 1. Any function fe Sy, has a unique representation

(=3 (1.6)% K. (12)

AEAM

where for every x R" the sum is finite and the functiod§, } have the follow-
ing properties:supp(@y) C 63, [|Gogllp ~ |6|P~Y/2 and the biorthogonal rela-
tion (gy/,8x) = dx/x holds. Moreover, for any € SyNLp, 0 < p < o, such that
f = Sxen, CA0x We have
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1/
1o~ (3 leagallg) (13)

AEAmM
with the obvious modification when=pco.

The proof of this theorem is based on the local linear inddpeoe of the functions
{05 : A € Am} and uses a compactness argument, see [12] for the details.
We will denote®m, := {§) : A € Am}.

3.2 Compactly supported duals and local projectors

Our next step is to introduce simple operators which m'@i)into Sy and locally
preserve the polynomialBe & with & being the set of all polynomials of degree
< k. These operators will give us a vehicle for developing a dgmusition scheme
which allows to characterize the anisotropic Besov norrdaded by ellipsoid cov-
ers of R". N

Using the base§®y,} and their duald @y} from Theorem 1 we introduce pro-
jectorsQm mappingL"g’C (1 < p < ) onto the spaceS,, defined by

Qnf = [ Quixy)y)dy with Qn(xy)i= § GHGH K. (14

AEAm

Evidently,Qn, is a linear operator which ma;h%’C into Sy, and preserves locally all
polynomials fromZ. To be more specific, setting

0" :=uU{0'€On:0N6 #£0} forb c O, (15)

it is easy to see that if|g« = P|g- with P € 2, thenQnf|g = P|e.

Another simple operator with similar properties is givejli].

Evidently, the operatorQnm} from above are no longer usable, when working in
Lp with p < 1. In this case, for a given ellipsolc ©, we letTg ,: Lp(8) — Pilo
be a projector such that

I —Topfllipe) < CE(F,8)p, feLp(B), (16)

whereE(f,0)p :=infpec 5 [|f —P||L6). ThusTg pf is simply a near best approx-
imation to f from & in Lp(0), and hencdy , can be realized as a linear projector
onto Zlg if p > 1 by using, say, the Averaged Taylor polynomials, see e3]. [1
Of course T p is @ nonlinear operator i < 1.

We now define the operatd, p : L'F?C — Sn by

T’ fi= ¢9Tb,f. (17)
m,p egém p
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Evidently, the operatofmp (0 < p < «) is a local projector ont@? (nonlinear if
p < 1) just like Qm. SinceTmpf € Sy, it can be represented in terms of the basis
functionsg, as

Tmpf = % bop(fldes= > ba(flas, (18)
650m|dT=k PY

whereb, (f) := (Tmpf,§y) depends nonlinearly ohif p < 1.
In summary, ifTm := Qm or Ty := Tmp, then

Tnf = 3 ba(fgs, whereb,\(f)_{<f’g}‘> f Tn = Qm. (19)

)\E/\m <Tm‘pf,g)\> |f -’I;m:Tm‘p

We now recall briefly the definition of local and global modafismoothness
that are standard means for describing the quality of apmpration. The forward
differences of a functiori on a seE C R" in directionh € R" are defined by

AKF(x) = i(—l)kﬂ (k) f(x+jh) if x,x+kh CE
= i

andAKf (x) := 0 otherwise. Then thith Lp-moduli of smoothness o andR" are
defined by

a(f,E)p:= sup|Afflle and w(ft)p:=sup||Aff[, t>0. (20)
heRrn Ih|<t

We next give the most important properties of the opera@ssind Ty, , from
above.

Proposition 2. Supposély, is any of the operators g or Tmp if 1< p < oo, and
Tm:=Tmpif 0< p< 1 Thenfor fe L'° and6 € On (me Z)

Hf—fmeLp(e) <c > ax(f,0")p.
6/ €Om: 6'NO£D
and|| f — T f [Lp(k) — 0as m— oo for any compact K- R".
Furthermore, if f€ Ly (Le := Cp), then||f — Tif||p — 0 as m— oo.

3.3 Two-level-split bases

Assume thally, (m e Z) is one of the operato®m or Tmp if p> 1, andTy := Tmp
if p< 1, defined in§3.2. These operators and the ba§&}mez from (11) will
be used to define two-level-split bases which will play anamt@nt role in what
follows.
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We will make use of the following representation of consieelevel polynomial
bases, defined in (9):

Poa=Y CoaPpp. 0€0Om 1N EOm (21)
A=k

Then sinc€ o, , $n = 1, we have

Poa= Y Y CofPyp¢n on 6.
N€Gmi1:0NN#0|Bl<k
This yields
T f —Tmf = g > bpp(f)Py sy — %m > boa(f)Poade (22)
neGmer 1A=k 658 di[<k

= bo g by s (F)Py.s0n
0¢ N€BOmt1 |B]<k

_eg%n > boalf) 5 3 mg’,gpn,ﬁd’e%

lal<k 0Nn#0|Bl<k
0,
= g % {bn,B(f)_ mo,,?;be,a(f)}Pn,ﬁ%(Pe,
NEBm;1 0€OM:BNN#D|B[<k laf<k

whereb, (f) are given by (19) and depends on the choic&ofThus, setting
Ymi={v=(n,0,B):n €0On1,0 €On, 0NN £0,|| <k}, meZ, (23)
the building blocks in (22) have the form
Fv:=P,gbnde, v=(n,0,B)¢c 7m, (24)
whereP, g are defined in (9) and,, ¢ are from (7). We define
Im:={F,:veynt and Wy:=spanFm), meZ. (25)

Note thatF, € C*, supg~y = 0nnif v=(n,0,B) and||F, |2 ~ 1.
One uses the argument of the proof of Theorem 1 (see [12])tablesh the
stability of the two-level-split bases:

Theorem 2. Any f € Wy, has a unique representation

f= Y c(hR, (26)

VEYm

where the dual functionals,¢:) are of the following form: For eaclr € ¥q, v =

(n,6,B), thereis an ellipsoid BC 6nn with |By| ~ |n| and B, = A, (B}) for some

ball B, ¢ B* such that ¢(f) = (f,F,), wheresupgF, C By, ||Fy|p ~ |n|¥/P~1/2,
Moreover, if fe W and f= 75,4, a/Fy, then
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1/p
Itlo~ (3 llawRullp)". 0<p<e, (27)

VE/m
with the obvious modification when=peo.

Using the results frorf§3.2 one easily derives multilevel decompositions of func-
tions using the two-level-split bases from above.

Theorem 3.For any f e LR¢(R"), 0< p < oo,

F=Tof+ § (Tnaf -Taf)= T 5 du(DF, (28)

m>0 m>—1ve’m

where the convergence is in(K) for all compacta KC R". Here for m> 0

dy(f) = z C beﬁ v:i=(n,8,B) (29)

laf<k

with Ce" from (21), while 7 1 := Ao, Fy :=g, and ¢, (f) := b (f)if A € ¥ 4.
Moreover if fe Lp (Lo :=Cp), then(28) as well as

f= S (T~ T)f (30)

mezZ

hold in Lp.

3.4 Global duals and polynomial reproducing kernels

A substantial drawback of the operat@g andTn, p considered ir§§3.2-3.3 is that
their transposed operators do not reproduce polynomialsiristance, it is easy
to see that for the operat@m, from (14) we haveQmP(X) = [rn Qm(X,y)P(y)dy
VP e Py, howeverQmP(y) = [rn Qm(X,Y)P(X)dxis no longer true foP € &. Con-
sequently, these operators do not fit in the general framewfoapproximation to
the identity operators in homogeneous spaces, which attmaesnstruct anisotropic
wavelet frames (see e.g. [16]). This problem is fixed in [1¢]riiroducing smooth
duals to the base)) }ca,,» Which we describe next.

As in [14] to simplify our set-up we will assume for the resttbis section that
in the definition of ellipsoid covers dk" we haveag = 0 (see Definition 1). Also
to make our presentation more compatible with [14] we wiljlslly change our
notation assuming that all operators of interest reprogotgmomials of degree r
instead of degree k.

The next step is to introduce an appropriate generaliz&tibigher orders of the
approximation to the identitgefinition given in [16]. To this end we first have to
establish some convenient notation. kgix,y) be a smooth kernel. Fory € R"
the Taylor representation &f(x,y) centered ak with y fixed can be written in the
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form
K(zy) = Tr-ax(K(,¥)(2) + Rx(K(-y)(2), zeR", (31)

whereT,_1 is the Taylor polynomial of degree— 1 andR; x is therth order Taylor
remainder.

In the particular case of spaces of homogeneous type geddrnaain anisotropic
ellipsoid cover ofR" with a qusi-distance(-, -) we will need the notation

_ J it p(xy) <d,
Hixy.d) '_{ul it p(x.y)>d. (32)

Definition 3. Let (R", p,dx) be a normal space of homogeneous type. A sequence
of kernel operator$Sn}mez, formally defined bySn(f)(X) := [zn Sn(X,y) f(y)dy,

is anapproximation to the identity of ordéy, d,r), wherep = (o, 1), 0< o <

p1 <1,6>0,r € N, with respect te(-,-), if for some constant > 0 the following
conditions are satisfied:

. —ms
() ISn(xy)] < CW, X,y € RN

(i) For 1<k <randallxy,ze R",

Sn(-¥))(2)] < ep(x 2H =2 K

2— mod 2 me
2 m_|_p X y 1+6+H(X,Z,2*m)k + (2*m+p(y7 Z))1+6+“(X~,Zx27m)k )

IRey(Sn(x,)(2)] < cp(y,z) K22 ™k

2m 2m
X (2,m+p(X’y))l+5+Il(y,Z,2’m)k + (Z*m—i-p(x, Z))1+6+u(y,z,2*m)k ’

(iii) For 1 <k <randallx,x,y,y € R"

Ry (Rex(Sm(5-)) ( ))(Y)| [Rix(Riy (Sl ) (Y) (X))
< op(x, X HOZKp(y y HOY 2K

2—md
x (2,m+p(x7y))1+5+[1(X,X’,Z’m)kJrLl(y,y',Z’m)k
2—md

+ (2—m+ p(X7yr))1+6+u(x,x’,zfm)k+u(y,y,2*m)k
27m5
+ (2—m+ p(xl’y))1+6+u(x,x’,Z*m)k+u(y,y’,2*m)k

2 md
+ (me_i_ p(x/7y/))1+6+u(x,x/,2*m)k+u(y,y’,2*m)k
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[To clarify our notation, denotgm(x,X,y) := Rcx (Sn(-,Y)) (X), then for fixed

XX € R, Rey (Rex (Sm(5+)) (X)) (¥) = Rey (Im(X. X)) (Y)]-

(iv)  P(X) = Jpn Sn(X,Y)P(y)dy and P(y) = [gn Sm(X,y)P(x)dx forall P e .

Note that the definition of an approximation of the identityeg in [16] corre-
sponds to the case9d <r =1.

To construct well localized kernelSy(x,y) which reproduce polynomials we
need to construct an appropriate dual basi®tp Let Gy, be the Gram matrix

Gm=[Ar ]y ey Aai=1(0r.0n) = /Rng)\g)v-
By Theorem 1, for any sequente- () )xca,, in 12(Am) we have

cltlh, < Gut) = | T ta |, <<l
AEAmM

where the constantg, c, > 0 are independent dnandm. Therefore, the operator
Gm : I2 — |2 with matrix G, is symmetric, positive anchl < Gy < col. Hence,G,;1
exists anct, ' < Gt < ¢, Denote byGyt =: [B, ’,\/}A)A,e/\m the matrix of the
operatoiG;L.

The next lemma shows that the entrie€gf* decay away from its main diagonal
at sub-exponential rate.

Lemma 1. [14] There exist constant$ < g.,y < 1 and c¢> 0 depending only on
p(©) and r such that for any entry By, of Gyt (A,A" € Am) and points x 6y,
ye 6)\/

1By /| < cgZ PO, (33)

Definition of smooth duals.We define new duals by

Gy = > Biaty, A€Am, (34)
A€M

and setfi)m = {8 eAm- FOrA € Am, let xo be any point ing,. Combining (33)
and (34) it follows that

G, (x)| < c27™?2 By <c2™™ 2qZ P )", (35)

Xeo,y,

Therefore, eaclfj, has sub-exponential decay with respect to the quasi-distan
induced byO. Also, it is easy to verify the biorthogonality relation,maly,

(9. Gr) = > Baar(r.o) = (Gr}le)N‘,\ = )
M EAm ’
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We use the base®, and 5,“ to introduce an approximation to the identity deter-
mined by the operatofsSy}mez with kernels

Snxy) =y 9 (G (y)- (36)

AEAm

In the next theorem we record the fact that these kernelsal#fe desired ap-
proximation to the identity.

Theorem 4. [14] For a discrete ellipsoid cove®, the kernels fron{36) define an
approximation to the identity with respect to the quastatisep (-, -) induced byo.
Here the vectop can be defined ag := (as,a4), the parameted can be selected
arbitrarily large and the parameter r is the degree of theywmials used in the
construction of the local ellipsoid “bumps” if3.1.

3.5 Construction of anisotropic wavelet frames

Wavelet operators. Let {Sn}mez be an approximation to the identity of order
(1, 9,r). Then evidently the kernels of thveavelet operators R := Sp1 — Sy sat-
isfy conditins (i)-(iii) in Definition 3, while the polynonail reproduction condition
(iv) is replaced by the followingero momentondition

/R Din(x.Y)P(y)dy=0, /R Dn(xy)PNdX=0PeZ.  (37)
The next lemma shows that any two wavelet operators (kerfrels different
scales are “almost orthogonal”.

Lemma 2. [14] Suppose two kernel operatofBL }mez and { D2} mez satisfy(37)
for some r> 1 and conditiongi)-(ii) of an approximation to the identity of order
(u,d,r) for somed > pir. Then

2—min{k|}o

(2-minfkl} +p(x, Y))Hé |

IDKD(x,y)| < c2 K lkor klcZ.  (38)

Dual wavelet operators.In this section we leverage significantly on the results of
Han and Sawyer [19] (see also [16]) concerning the Caldexproducing formula

in spaces of homogeneous type and adapt them to our spetifigs&Ve begin
with the definitions for anisotropic test functions and ncoles.

Definition 4. Let p(-,-) be a quasi-distance d&". A function f € C(R") is said to
be in theanisotropic test function space (&, d,%0,t),0< €,0 < 1,x € R",t € R,
if there exists a constafit > 0 such that

. —to
() [f(x)] < CW Vx e RM,
(i) [£00 —1(¥)| < CPXY)" 2 e forallxy € B,

2*‘+p(x,x0))l+6+€
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wherep(x,y) < Zl (271 4+ p(x,%0)) with k the constant of the quasi-distance (see
§2.1).

One can easily show tha# (€, d,%o,t) is a Banach space with norjif||_, de-
fined as the infimum of all constan@such that (i)-(ii) are valid. We also denote
M (€,0) = .4 (g,0,0,0).

Definition 5. The set oimolecules#y(¢€, d,xo,t) is defined as the set of all anisotropic
test functionsf € .7 (&, 9, Xo,t) such that/pa f (y)dy=0.

We denote by#(¢, d) the subspace of all molecules.i (¢, 9).
For somey > e let ///(e 0) be the closure of#(y,d) in the norm of.Z (¢, d).

Then, we defme%/’(s 0) as the dual of///(e 0).
We are now prepared to state the Calderdn reproducing farmiich implies
the existence of dual wavelet operators.

Theorem 5. [Continuous Caldebn reproducing formula] SupposéR", p,dx) is
a normal space of homogeneous type and 8t} 2z be an approximation to the
identity of order(y, 6,r) with respect t@(-, ) SetBh:=Sn.1—Snforme Z. Then
there exist linear operatorfDm} mez and{Dm}mez such that for any & .#(¢, y),

0< &,y < U,
i = 3 BuDn(f) = 5 Do) (39)

where the series converge in the norm#f(e’,y), & <€,y < y, and in Lp(R"),
1< p < . Furthermore, for ang < Lo, the kernels of D} and {Dn,} satisfy con-
ditions (i)-(iii ) of an approximation to the identity of ordém, £, 1) (with constants
depending o) and the r-th zero moments conditi@3i7).

By a duality argument we obtain

Corollary 1. Under the hypothesis of Theorem 5 for ang 7’ (¢, d) the series in
(39) converges in#’ (&, d,) with € < &. < Ho, ¥ < Vi < Ho.

We next sketch the proof of Theorem 5. The method of proofdsigally similar
to the method used in [19]. We use Coifman’s idea to write deafiity operatol as

I:ZDK:ZDKZD :%D@.

For an integeN > 0 we introduce the operat@} := Y Jij<nDmyj and define the
operatorsy andRy by

I:ngD|: EZDEDk—l- ; Dy jDk =: Tn + R
; ke [i[>Nk

Let 0< €,y < Uo. We claim thatRy is bounded on#y(&, y, xo,t) for anyxg € R"
andt € R. Moreover, there exist constarts> 0 andc > 0 such that
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||RN f ||(,//0(£,V,Xo,t) S CZ?NT” f Hk/ﬂo(t‘,y,Xo,t) for f € %O(Sa V7X07t) (40)

Assume the claim for a moment. ChoosiNgso thatc2~NT < 1, then (40) implies
that the operatoTN’1 exists and is bounded ow(&, v, Xo,t). Thus, we obtain

I =Ty'Tn=" (Ty'Di) D=y DD,
m m

whereDy, := TN’lDan. The regularity conditions on the kernéBny,} and (37) imply
that for any fixedN andy € R" the functionDN (-, ) is in .# (Lo, 8). This imme-
diately implies thaDm(-,y) = Ty 'DN.(-,y) is in .4 (g, y) for any 0< €,y < L.
Similarly, we can write

I =TnTy "= (3 DNDm) Ty ' = 5 DmDRTN " = S DD,
m m m

whereDy, := DT, *. By the same token, for any fixédl andx € R", the function
Dm(x,-) isin .#(e,y) for any 0< &,y < pp and the proof is complete.

Discussion.In the proof of Theorem 5 we applied tools from the generabthe
of spaces of homogeneous type to construct dual waveleatawsr Although the
kernels of the dual operatof®,} and{Dy,} have the same vanishing moments as
{Dm}, we only claim very “modest” regularity and decay on thenr. &ample, in
Theorem 5 we claim that for any<0 y < L, there exists a constaat- 0 such that

c2—mv

|5m(x,y)|,|5m(x,y)| < (2-m 4 p(x,y)) IV

At the same time, the construction of the anisotropic apipnakon of the identity
over an ellipsoid cover ii3.4 (see Theorem 4) produces wavelet kerfiBlg} such
that for anyd > 0

c2~m
(27™+ p(x,y)) o’

It is an open problento define higher order anisotropic test function spaces and
prove that the operatoRy := 3 |jj~n Ykez Dk+jDk are bounded on these higher
order spaces as in (40).

Applying the Calderdn reproducing formula we obtain thiéofwing Littlewood-
Paley type result (see [16]).

IDm(x,y)| <

=c(d).

Proposition 3. Suppose{Sn}mez IS an anisotropic approximation of the identity
and let Dn = Spy1— S, me Z. Then for any fe Lp(R"), 1 < p < o, we have

11~ (3 Pat07)" ]
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3.6 Discrete wavelet frames

Here we describe briefly the construction of wavelet framsisgithe discrete
Calderon reproducing formula, which in turn is obtained“bgmpling” the con-
tinuous Calderon reproducing formula (see e.g. [16, M. first introduce the
following sampling process.

Definition 6. Let p(-,-) be a quasi-distance dR". We call a set of closed domains
Qmx CR", me Z, k € Iy, and pointsymk € Qmk, asampling setf the following
conditions are satisfied:

(a) For eachm € Z, the set€y, k € Iy, have disjoint interiors.

(b) R" = Ukelm-Qm,k forme Z.

(c) Each seQy, satisfiesQmy C By (Xmk,c2™ ") for some poinky,x € R" (c>0'is
a constant).

(d) There exists a constant > 0 such that for anyn € Z andk € Ir,, we have
P (Ymk:Ym) > €2 M forall K’ € I, K' # k, except perhaps for a set of uniformly
bounded number of points.

In the next theorem we present the discrete Calderon repnog formula.

Theorem 6. [14] Let {Sn}mez be an anisotropic approximation to the identity of
order (u,d,r) with respect to the quasi-distance induced by an ellipsoiec©

of R". Denote O} := Sni1— Sn and let{Qmx} and {ymx} With ymk € Qmi be a
sampling set fo®. Then there exist M- 0 and linear operators{ém} such that for
any fe .#y(e,y), 0< g,y < Ho,

F=5 3 [QminklEm(F)Ymnk) Dml Yming), (41)

MeZKelmin

where the convergence is i (¢/,y), € < &,y <y, and in L,(R"), 1 < p < oo,
Furthermore, the kernels .} satisfy conditionsi)-(iii ) of anisotropic approx-
imations to the identity of ordgit, €,1) for any e < o (with constants depending
on ) and the rth degree zero moments condit{8).

The proof of this theorem follows in the footsteps of the glindhe general case
of homogeneous spaces (see e.g. [16]).

Definition of anisotropic wavet frames.We denote brieflKy, := Imn and define
the functions{ ymk} by

Ymk(X) = | Qmin kY *Din(X, Y )
and the functional$Jimx} by
me’k(x) = |-Qm+N,k|1/zém(Ym+N,kaX)7 me Z, ke Km-

Then (41) takes the form



Anisotropic function spaces with applications 19

f= %k; <f7’~pm,k>’~pm,k- (42)

The next theorem shows themk}, { Pmk} is a pair of dual frames.

Theorem 7. [14] Let {Sn}mez be an anisotropic approximation to the identity of
order (u,d,r). Denote Oy := Spy1 — Snand let{ Qn} and{ymx}, Ymk € Qmk be
a sampling set fo®. Then there exist constanls< A < B < o« such that for any
fe Lz(Rn)

AIFIZSS S I(F B 2 < B3 (43)

m keKm

3.7 Two-level-split frames

We now use the two-level-split construction frdj8.3 and the smooth dua{gj, }
from §3.4 to derive a useful representation for the wavelet keiDglx,y).

ForA = (6, ) we denotdj 5 := G, whereg, is defined in (34). Then the kernel
Sn(x,y), defined in (36), has the representation

y) = g P, .
Sn(xy) G;mwzrge,ﬁ(w 0.8%6(X)

Now precisely as ir33.3 we get
Dm(X, y) = S(THl(Xv y) - S‘n(xa y)
PRI {Brp®) = Y CoRBo.a) }Prp(X)9n ()6 (X,
NEBmt1 0€GM:ONN#0|B|<r

lal<r
The new dual functiongv, v=(n,0,B) € ¥m, are defined by

= % 0.n%
Fv=Fnes=81p— > Cyploa (44)

lal<r

Thus we arrive at the following representation

Din(xY) = ¥ Fu(y)Fv(x).
VEm
Observe that since ea¢he On is intersected by finitely many ellipsoids from
Om, 1 it follows by (35) that the dual§F, } have sub-exponential localization as the

duals{§, }. Also, Theorem 2 and Proposition 3 imply thd,}, {F,} is a pair of
dual frames.

Proposition 4. For any f € Lo(R")
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111z~ (3 10n(0IE) "~ (5(1.F02)

1/2

4 Anisotropic Besov spaces (B-spaces)

In this section we review the anisotropic Besov spaces atipesmoothness in-
duced by discrete ellipsoid covers®f, introduced in [12], and compare them with
the B-spaces based on anisotropic nested triangulatidisfodm [13, 20]. We will
be mainly interested in the homogeneous versions of theszesp

4.1 B-spacesinduced by anisotropic covers of R"

Assuming tha is discrete ellipsoid cover @&" (see Definition 1) we will define
the homogeneous B—spatﬁégﬁ(@) of positive smoothness > 0. In this definition
there is a hidden parametewhich we choose to be the smallest integer satisfying
the condition 2 «a

k>—.—. (45)

a n

This will guarantee the equivalence of the norméﬁa(@) introduced below. Here
ap andag are the constants from Definition §2.1.

Definition of ng(@) via local moduli of smoothnessFora > 0 and 0< p,q < o
the spaceng(@) is defined as the set of all functiofiss L'f,’c such that

|\f||ng(@) = ( Zz(e% |9|fap/nak(f,6)g)q/p)1/q o, (46)
me €0m

wherew(f, 8); is thekth local modulus of smoothness bisee (20)).
This definition needs some additional clarification. ObeethatHPHng(@) =0

for P € 2 and hence the norm ing(O) is a semi-(quasi-)norm arﬂgq(e) is
a quotient space modulg’y. We will use the operator@m and T, p from §3.2 to
construct a meaningful representation of eéchBj,(©). Let T (M € Z) be one
of the operatorQm or Typ if p> 1, andTy := Tmp if p < 1. We define

T - apma /n _ a\ 1/a
1) := ( 3, (2™ Tma =T Tl) ) (47)
Proposition 2 and property (c) of ellipsoid covers imply

1/p
It =Toflp<c( 3 a(f.0)p)

GEm



Anisotropic function spaces with applications 21
and sincd|(Tmy1 — Tm) fl|p < || f — Tmpa fllp+cf| f — Tmf||p, we get
T
||fH|'3gq(e) < C”fHng(@)- (48)
For more precise description ng(@) we have to distinguish between two basic

cases.

Case 1.0< a <n/pora=n/pandq< 1. Then as is shown in [12] for any
f € BJ,(©) there exists a polynomiéd € # such that

f= ZZ(TmH —Tm)f+P in Lp(K) (49)
me
for all compact set& c R".

Case 2:a >n/pora =n/pandg > 1. Now the spacng(O) can be viewed as
the set of all regular tempered distributiohsuch thaf| f Hng(@) < o and

=3 (Tmia= T,

where the convergence is if’ / Z. This means that there exist polynomiBls
P andPy € Py, me Z, such that

f =P+ lim Z(Tml—Tm)f+Pm in .7

J~>—oom:j
In addition,ng(O) is continuously embedded i#r”.

Other norms in ng(@). The good understanding of the B-spaces depends on hav-

ing several equivalent norms igq(@). Note that if {dy(f)} are defined from
(Tmp1— Tm) f = Y yey,, dv(f)Fy, then using Theorem 2

1540~ (3 (5 (mtemanrlp?) )™ 0

MEZ “VE/m

Observe that the above equivalence hold (ff ) are replaced byf, EV) due to the
sub-exponential localization of the dudls, }.
Also, we define

A . . —a/n p\&/P\Y/a
Mo = i, (2,05 (0 oo *") . e

Here the infimum is taken over all representatiéns ¥ ., ayF,, where the con-
vergence is to be understood as described in Cases 1-2 above.

In the next theorem we record the equivalence of the abovasor
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Theorem 8. [12]If a > 0, 0 < p,q < o, and condition(45) is satisfied, then the
_ T A ;
norms|| - Hng(@), |- ||ng(@>, and|| - Hng(@) are equivalent.

The embedding 0B, in . or (49) readily imply the completenessBf,(©).
Inhomogeneous B-spaces$Sometimes it is more convenient to use the inhomoge-

neous versiongq(@ﬂ of the B-spaces induced by anisotropic ellipsoid covers of

R", which are simpler than the homogeneous counter%a(@).
For the definition of the inhomogeneous spaB%&(@*) one only needs ellip-
soid covers with levelsm= 0, 1,..., i.e. covers of the form

m=0

The spaceBj,(0), a > 0, 0< p,q < =, is defined as the set of all functions
f € Lp(R") such that

|flagy01) = ( > ( % (|9|fap/nak(f,e)8)q/p)1/q o, (52)
€0m

m>0 "6

wherea(f, 8)p is thekth local modulus of smoothness bin Ly(6).
The (quasi-)norm iBZ,(©*) is defined by

1fllegye+) = Ifllp+flagy0+):

Other equivalentnorms B‘gq(@ﬂ can be defined similarly as for the homogeneous
B-spaces from above. In particular, using the notation fimm Theorem 3 one has

Ifllegor)~( 3 (3 (ml (DR 10))

m>—1 "v

q/p) 1/q' (53)

For more details about anisotropic B-spaces induced byseilil covers and
proofs we refer the reader to [12].

4.2 B-spaces induced by nested multilevel triangulations of R?

We first recall briefly some basic definitions and facts fro®, [P3].
Spline multiresolution analysis (MRA).Let.7 = U7z Zm be an SLR-triangulation
of R? (see§2.2). Denote by, the set of all vertices of triangles frotiy.

Forr > 0 andk > 2, we denote by&% = S(F) the set of allr times dif-

ferentiable piecewise polynomial functions of degre& over 9, i.e.s € S if
se C'(R?) ands= 3 rcz, 1A - Pa With Pa € 2.
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It will be convenient to denote, for any vertexc Vim, by Start(v) the union of
all trianglesA € 9, attached tov. Inductively for? > 2, we define Staﬁ(v) as the
union of Staf~1(v) and the stars of all vertices of Stat(v).

We assume that for each € Z there exists a subspa&g of §ﬁr and a family
®m = {¢g : 6 € Om} C Sy satisfying the following conditions:

(&) Sm C Sny1 and F; C Sy, for some 1< k <Kk,

(b) @ is a stable basis fd&y, in Lp (1 < p < o),

(c) For everyf € O there is a vertexy € Vi such thatge and its dual are
supported on Stafvg), wherel > 1 is a constant independent®andm.

We denote? := Jpez Pm ando = Jpez Om.

A simple example of spline MRA is the sequeng®y}mez of all continuous
piecewise linear functions & 0, k = 2) on the levels 9} mez of a given SLR-
triangulation.7 of R?. A basis for each spac8, is given by the setby, of the
Courant elementgg, supported on the cell® of .7, (6 is the union of all triangles
of I, attached to a vertex, say). The functiongg takes value 1 aty and 0 at all
other vertices.

A concrete construction of a spline MRA for an arbitrary SttRngulation.7
is given in [13], wheres,, = éﬁ’lr = S‘*r(ﬂm) for givenr > 1 andk > 4r + 1.

Local spline approximation. For A € 9, we set
QY = U{Star (v):ve Vi, A C Star'(v)}.
We now letSx (f)p denote the error df p-approximation fronS, on Q4 , i.e.
Sa(f)p:= Siensfn||f—s|||_p(%). (54)

Definition of %gq(¢). Given a spline MRA{Sn}mez over an SLR-tiangulatiorv”

of R? and an associated family of basis functiahsas described above, we define
the B-spacezy,(®), a >0, 0< p,q < », as the set of alf € L%’C(RZ) such that

- o 1/pya\ /g
flsggor= 3 [2( sa(0f) | ) <o (69)
Bal @) mgz Aey,zfmgmszmﬂ P

with the /g-norm replaced by the sup-normgt= c.

4.3 Comparison of different B-spaces and Besov spaces

The most substantial distinction betweBQq(O) and @gq(cb) is that the spaces
ng(@) are defined vigocal polynomiabpproximation ax(f, 8)p, while Z5,(®)
are defined vidocal splineapproximationS (f)p. As aresult, loosely speaking the
spacengq(O) have larger norms that the space§,(®). However, ifSx (f)p in

(55) is replaced byuK(f,Qi)p then the resulting quantity would be equivalent to
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||f|\ng(e), whereO is the ellipse cover oR? obtained by dilating the minimum
area circumscribed ellipses for all trianglec .7 as mentioned i2.2.

Another important distinction betweeng(O) and Z5,(®) is that the underly-
ing multilevel triangulation for the later space is nestetijle the ellipsoid cover
generating the former is not nested. Therefore, in constwiellipsoid cover and
dealing with B-spaceB{,(©) one has much more freedom.

It is quite easy to show that (see [11])@ is an ellipsoid cover ofR" con-
sisting of Euclidean balls, then the B-spac%(@) are the same as the respec-
tive classical Besov spacég (Lp) (with equivalent norms). We maintain that local
moduli of smoothness rather than global ones are more ndasrthe definition
of anisotropic (and even classical) Besov spaces of pesitivoothness since they
more adequately reflect the nature of the spaces. For theytbe(rlassical) Besov
spaces we refer the reader to [23, 26].

As already mentioned the powed$ of a realn x n matrix A with eigenvalues
A obeying|A| > 1 generate a semi-continuous and hence discrete ellipsoiet c
of R". It can be shown that foor > n(1/p— 1), the associated B-spacégo| are
exactly the same (with equivalent norms) as the anisotrBpgov spaces (with
weight 1) developed in [3].

As indicated in§2.1, R" equipped with the distange(-,-) introduced in Defi-
nition 2 and the Lebesgue measure is a space of homogengauarty hence the
general theory of Besov spaces on homogeneous spacessgigpkee.g. [19]). In
fact, in the specific setting of this paper the anisotropisd@espaces given by the
general theory are the same as the B-spaces from here faientfy smalla > 0.
The main distinction between the two theories is that we @ardle B-spaces of an
arbitrary smoothness > 0, while the general theory of Besov spaces on homoge-
neous spaces is only feasible for smoothressith |a| < € for some sufficiently
smalle.

5 Nonlinear approximation

One of the main applications of the anisotropic B-spaces iohlineaiN-term ap-
proximation from the two-level-split bases introduced®3, which is the purpose
of this section. We will also compare here the two-leveltdases with anisotropic
hierarchical spline bases as tools for nonlinear approtama

The B-spaces of nonlinear approximationA particular type of B-spaces plays
an important role in nonlinea-term approximation in.p. Given 0< p < « and
o > 0 lett be defined by

l/t=a/n+1/p, (56)

which in the case of classical Besov spaces signifies theairembedding irip.
For nonlinear approximation ih. := Cy 7 is determined by AT = a /n and neces-
sarily a > 1 (otherwise the embedding (60) below is not valid).
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~ Foragivendiscrete ellipsoid coverof R", the homogeneous B-spaché(@) =
BY,(©) are of a particular importance in nonlinear approximaticnt the two-
level-split bases. From (46) we have

1
IHlssior = (5 18] aa(f,0)) """ (57)
BY(0) T
S

Observe that in general< 1, however, just as in [20] it can be showen that for any
0<qg<p

1/t
Iflleg) ~ (> [6/%/P¥a(t,0)5) (58)
©) (BZO q)
This allows to work inLq with g > 1 if p> 1 instead ot.;.
The key point here is that the normi§ (©) has the representation
. 1/t
Ifllsgie) ~ (3 I(ORNE) ", 1= Unca¥in, (59)

vey

which implies the embedding &2 (O) in Lp: Every f € BY(0) can be identified
modulo Z as a function irL,(R") such that

[fllp<cllfllge o) (60)

This identification will always be assumed in what followsfact, the above shows
thatBY (©) lies on the Sobolev embedding line.

The situation is quite the same for the inhomogeneous Begfc:= BY(O)
associated with a discrete ellipsoid cO®&f = Uy>0Onm of R".

Nonlinear N-term approximation from .7 := Upez%m={Fy: v € ¥ }. We let
&N denote the nonlinear set of all functiogef the form

g: Z aVFVa
veln

wherely C 7, # <N, andl" is allowed to vary withg. Then the erroon(f)p of
bestL p-approximation off € L,(R") from &y is defined by

on()p:= inf It —gllp
Theorem 9 (Jackson estimate)lf f € BY(0), a > 0,0 < p < », then
UN(f)DSCNfa/anHBg(@)v (61)

where ¢ depends only an, p, and the parameters &.

When 0< p < o, estimate (61) follows by the general Theorem 3.4 in [20] and
in the casep = = its proof can be carried out as the proof of Theorem 3.1 in.[21]
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In a standard way the Jackson estimate (61) leads to a dgtttate for nonlin-
earN-term approximation fron# which involves the<-functional betweet., and
B‘T’(O). Itis a challengingppen problento prove a companion inverse estimate due
to the fact that# is possibly redundant and nonnested.

Comparison with nonlinear N-term approximation from nested spline bases.
NonlineaN-term approximationi.p (0 < p < ) from the spline basis elements in
® = Umez Pm (se€84.2) has been developed in [20, 13, 21, 10]. In [20, 13] Jatkso
and Bernstein estimates are established involving theeBesgB? (@) := %9 (®)
with norm

Ifllssay = 3 (218a(0)", (62)

o NeT

where Y1:=a+1/pfora>0if0< p<owanda >1if p=c. Then the
standard machinery of Approximation theory is used to attar&e the respective
approximation spaces as real interpolation spaces betweand 27 (®).

The most important difference between the nonlinear N-tapproximation
from % and @ is that the space®? (@) (defined by local spline approximation)
are specifically designed for the purposes of nonlineansgpproximation and al-
low to characterize the rates of approximat@(N—#) for all B > 0, while in the
former cas@3 is limited. On the other hand, the spa®&¥©) are of more general
nature and are direct generalization of Besov spaces. Tigeyiach less sensitive
to changes in the underlying ellipsoid cow®rcompared to changes i#Y (®)
when changing the respective triangulation In general, the space&?(@) are
better thanz? (®) as a tool for measuring the anisotropic features of funst{see
below).

6 Measuring smoothness via anisotropic B-spaces

It has always been a question in analysis how to measure thetsness of a given
function, and as a consequence, there is a variety of smesdlapace. We next show
how the anisotropic B-spacéﬁ’(@) can be deployed to measuring the smoothness
of functions and how this is related to nonlindditerm approximation from the
two-level-split bases.

We focus on two “simple” examples of discontinuous funcsi@mR?, namely,
1g(o,1) the characteristic function of the unit dig0, 1) and1q the characteristic
function of a squar® C R2. As shown in [12] each of these functions has higher
order smoothness in BY(O) for an appropriately selected ellipse co@rcom-
pared with its (classical) Besov space smoothness. Morgitnvgr smoothness via
suitable covers will be seen to differ substantially.

As in the previous section, for given<dp < o anda > 0, let T be defined by
1/t=a/2+1/p.
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Theorem 10. [12](i) There exists an anisotropic ellipsoid cov@rof R? such that
Igoy) € BY(@) for anya < 4/p. In comparison, in the scale of Besov spaBgs
one haslggy) € B?r for a < 2/p. Here the bounds faw are sharp.

(i) For any square Q irR? and anya > 0 there exists an anisotropic ellipsoid
cover@ of R? such thatlg € BY(©), while in the scale of Besov spadg% one
has onlylg € BY, for a < 2/p and this bound fou is sharp.

This theorem coupled with the Jackson estimate (61) leattsetéollowing ap-
proximation result.

Corollary 2. [12] (i) There exists a discrete ellipse cov@rof R? such that for any
0 < p < « the nonlinear N-term approximation frofig satisfies

on(1gp1))p <cNY forall y<2/p.

(i) For anya > 0 there exists a discrete ellipse cov@rof R? such that for any
0 < p < « the nonlinear N-term approximation froig satisfies

For comparison, ifoY (f), denotes the best N-term approximation of f in L
(p > 1) from any reasonable wavelet basis, then foeB(0,1) or E = Q

oy (lg)p<cNY forall y<1/p.
All estimates above are sharp.

Discussion.As indicated above for appropriate ellipse covers, the &spsmooth-
ness of the characteristic functions of the unit ball and sopyare inR? is higher
than their Besov space smoothness. Thus by using adagatieds the anisotropic
B-spaces are better able to resolve the singularities asomgoth or piecewise
smooth curves. Consequently, the two-level-split decasitipms of these functions
are substantially sparser than their wavelet decompasitiwhich leads to better
rates of nonlineaN-term approximation. It might surprise that charactezifitinc-
tions of polygonal domains have, in a sense, infinite smasgthwhile those of
domains with smooth boundaries have limited regularitywkleer, the covers that
yield higher and higher smoothness in the polygonal case twalsecome less and
less constrained, which means that the parametep$@) are subjected to more
and more generous bounds. Keeping these parameters witloimpact set would
limit the regularity that could be described in this way.

The above two examples illustrate clearly the concept ofsmeag the smooth-
ness of functions via anisotropic B-space and in partidoyethe B-spaces of non-
linear approximatio®? (©). The key idea is to allow the underlying ellipsoid cover
to adapt to the given function.

Itis a challengingppen problento devise a scheme which for a given functibn
finds an optimal (or near optimal) ellipsoid cov@rsuch thatf exhibits the highest
ordera of smoothness iB% (©) in the above sense.
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7 Application to Preconditioning for Elliptic Boundary Val ue
Problems

In this section we apply the two-level-split bases fr&3 in a regular set-up to
the development of multilevel Schwarz preconditionersgitiptic boundary value
problems. We consider the following model problem. Bét-) :V xV — R be a
symmetric bilinear form on a Hilbert spasewith norm|| - |y = (-,-)/? that is
V-elliptic, i.e. there exist positive constarts C, such that

a(wV) > cal[VIG, [a(uw)[ < CallVlv[wlv, vweV. (63)
The problemis, for a givefi € V' to findu € V such that
a(uv)=(f,v), VveVW (64)

For simplicity we only consider the model case= H3(Q) corresponding to
Dirichlet boundary conditions. Higher order problems cbioé treated in an anal-
ogous way. We assume th@t is a boundedxtensiordomain, which means that
Q has a sufficiently regular boundary to permit any elementf any Sobolev
or Besov spaceX(Q) over Q to be extended tor & X(R"), Vo = v, so that
[Vl[x®n) < Cx||V[x(@)- This is e.g. the case when the boundaryfs piecewise
smooth and? obeys a uniform cone condition. The homogeneous boundadgi-co
tions are supposed to be realized in the trial spaces bybseipelynomial factors
in the atoms.

We assume tha = Up> 16 is a regular multilevel cover dk" consisting of
balls. We will utilize the atomgF,} defined in§3.3 fory € ¥ = Un__1 ¥m, See
Theorem 3. For better notation we will index the elemdfytsf the two-level-split
basesZn by yinstead ofv as before.

We will put this in the context obtable splittingsin the theory ofmultilevel
Schwarz preconditionersee e.g. [22, 27].

LetVy 1= span(Fy), so thatH}(Q) :==V = 3, V,. The key fact is thafVy},c»
form astable splittingfor V:

Theorem 11.There exist constanty cCy > 0 such that for any & V

1/2
ov|viv < jgf <Z |ny|2/d||vy|§> < Cv|Ivllv. (65)

v=3yWw \ /&

Moreover,{Vy},. ¢ with ¥ =k 1 ¥m form a uniformly stable splitting for the
spaces & := span @) in the sense of65) with the same constantg Gy .

Using that the norma(-,-)*/? and|| - I1(@) are equivalent and the well known
fact that|| - [[42q) ~ II- ||B%(L2(Q)), estimates (65) are immediate from Theorem 8
taking into account that Besov and B-norms are equivalettténregular setting.
The second part of Theorem 11 follows from the fact that tlest®ping expansions
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underlying the inhomogeneous version|\of||ga(@) (see (47) and (53)) terminate
without affecting this norm. For more details, see [11].

This allows us to apply the theory of Schwarz methods aloaddhowing lines.
ForVp := S = span(®p) defineR,, : V — Vg andry, € S by

a(R/ova FV) = a(V, FV)? (rv07 FV)Lz = <fa FV>3 ye % - e0-
Furthermore, we introduce the auxiliary bilinear forms:
by (v,w) := |ny| "4 (v,w)L,, vweVy, ye ¥\ %. (66)

We now consider the spac®¥§ with norms||vlly, := (by(v,v))¥? and define the
linear operator®,, : V —V, andf, €V, by

|’7v|72/d(R/yVa FyL = a(vFy),
—2/d (67)

Iy~ (fy, Ry, = (f.Fy).
Thus, as usual,

Ryv=ay(V)Fy, fy=ry(f)F, (68)
where
_ |nyl*/%a(v,Fy) _ |’7y|2/d<f7|:y>'

(Fy.,Fy) (Fy. Fy)

The following theorem now is an immediate consequence ofdbelts in [18, 22].

ay(V) ry(f) (69)

Theorem 12.Problem(64) is equivalent to the operator equation

Ru=f, where (70)

R/ =Ry + ; Ry, f_::rvo+ ; fy.
YEV\ YEV\

Moreover, the spectral condition numbxefR,) of the additive Schwarz operatoy P
satisfies
CaCv

K(R/) < oy’ (71)

where g,C,, 0v,Cy are the constants frorf63) and (65).

Estimate (71) yields that simple iterative schemes, su@i@sardson iterations,
tl=u"+a(f-RU"), Nn=0,1,2,..., (72)

converge with a fixed error reduction rate per step.

We conclude with a few remarks. First, the operator equdfi®his formulated
in the full infinite dimensional space. Alternatively, nésting the summation to a
finite subset/ of 7 (e.g.7 = 7*), we obtain a finite dimensional discrete problem
whose condition fulfills (on account of Theorem 11) the samiertd uniformly in
the size and choice of . In this sense our preconditioner is asymptotically optima
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On the other hand, it is conceptually useful to consider thigrifinite dimen-
sional problem (70). Then (72) has to be understood ademlizedscheme whose
numerical implementation requires approprigp@roximateapplications of the (in-
finite dimensional) operatd®, quite in the spirit of [7]. This can be done by com-
puting in addition to solving the coarse scale problengga: Vg only finitely many
but properly selected componerg, each requiring only the solution of a one-
dimensional problem. This hints at the adaptive potenfigbch an approach sim-
ilar to the developments in [7]. This, in turn, raises thegjiom what accuracy can
be achieved at best when using linear combinations of at lho$the atoms. Thus
we arrive at the problem for nonlinellrterm approximation frordFy} in HL.

For more details we refer the reader to [11].
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