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Abstract. We study greedy algorithms in a Banach space from the point of view of conver-

gence and rate of convergence. There are two well studied approximation methods: the Weak
Chebyshev Greedy Algorithm (WCGA) and the Weak Relaxed Greedy Algorithm (WRGA).

The WRGA is simpler than the WCGA in the sense of computational complexity. However,

the WRGA has limited applicability. It converges only for elements of the closure of the convex
hull of a dictionary. In this paper we study algorithms that combine good features of both

algorithms the WRGA and the WCGA. In construction of such algorithms we use different

forms of relaxation. First results on such algorithms have been obtained in a Hilbert space
by A. Barron, A. Cohen, W. Dahmen, and R. DeVore. Their paper was a motivation for the

research reported here.

1. Introduction

Let X be a Banach space with norm ‖ · ‖. We say that a set of elements (functions)
D from X is a dictionary (symmetric dictionary) if each g ∈ D has norm bounded by one
(‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and spanD = X . We denote the closure (in X) of the convex hull of D by A1(D). We
introduce a new norm, associated with a dictionary D, in the dual space X ′ by the formula

‖F‖D := sup
g∈D

F (g), F ∈ X ′.

We will study in this paper greedy algorithms with regard to D. For a nonzero element
f ∈ X we denote by Ff a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by Hahn-Banach theorem. Let τ := {tk}
∞
k=1

be a given sequence of nonnegative numbers tk ≤ 1, k = 1, . . . . We define first the Weak
Chebyshev Greedy Algorithm (WCGA) (see [T3]) that is a generalization for Banach spaces
of Weak Orthogonal Greedy Algorithm defined and studied in [T2] (see also [DT] for Or-
thogonal Greedy Algorithm).
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Weak Chebyshev Greedy Algorithm (WCGA). We define f c0 := f c,τ0 := f . Then for
each m ≥ 1 we inductively define

1). ϕcm := ϕc,τm ∈ D is any satisfying

(1.1) Ffc
m−1

(ϕcm) ≥ tm‖Ffc
m−1

‖D.

2). Define
Φm := Φτm := span{ϕcj}

m
j=1,

and define Gcm := Gc,τm to be the best approximant to f from Φm.
3). Denote

f cm := f c,τm := f −Gcm.

We define now the generalization for Banach spaces of the Weak Relaxed Greedy Algo-
rithm studied in [T3] (see [T2] for the case of a Hilbert space).

Weak Relaxed Greedy Algorithm (WRGA). We define f r0 := f r,τ0 := f and Gr0 :=
Gr,τ0 := 0. Then for each m ≥ 1 we inductively define

1). ϕrm := ϕr,τm ∈ D is any satisfying

Ffr
m−1

(ϕrm −Grm−1) ≥ tm sup
g∈D

Ffr
m−1

(g −Grm−1).

2). Find 0 ≤ λm ≤ 1 such that

‖f − ((1 − λm)Grm−1 + λmϕ
r
m)‖ = inf

0≤λ≤1
‖f − ((1 − λ)Grm−1 + λϕrm)‖

and define
Grm := Gr,τm := (1 − λm)Grm−1 + λmϕ

r
m.

3). Denote
f rm := f r,τm := f −Grm.

Remark 1.1. It follows from the definition of WCGA and WRGA that the sequences
{‖f cm‖} and {‖f rm‖} are nonincreasing sequences.

Both of the above algorithms use the functional Ffm−1
in a search for the mth element

ϕm from the dictionary to be used in approximation. The construction of the approximant
in the WRGA is different from the construction in the WCGA. In the WCGA we build
the approximant Gcm in a way to maximally use the approximation power of the elements
ϕ1, . . . , ϕm. The WRGA by its definition is designed for approximation of functions from
A1(D). In building the approximant in the WRGA we keep the property Grm ∈ A1(D). We
call the WRGA relaxed because at the mth step of the algorithm we use a linear combination
(convex combination) of the previous approximant Grm−1 and a new element ϕrm. The
relaxation parameter λm in the WRGA is chosen at the mth step depending on f . Recently,
the following modification of the above idea of relaxation in greedy approximation has been
studied in [BCDD]. Let a sequence r := {rk}

∞
k=1, rk ∈ [0, 1), of relaxation parameters



RELAXATION IN GREEDY APPROXIMATION 3

be given. Then at each step of our new algorithm we build the mth approximant of the
form Gm = (1 − rm)Gm−1 + λϕm. With an approximant of this form we are not limited
to approximation of functions from A1(D) as in the WRGA. Remarkable results on the
approximation properties of such an algorithm in a Hilbert space have been obtained in
[BCDD] (see Section 5 below). We will study here a realization of the above new idea
of relaxation in the case of Banach spaces. In Section 2 we study the Greedy Algorithm
with Weakness parameter t and Relaxation r (GAWR(t, r)). In addition to the acronym
GAWR(t, r) we will use the abbreviated acronym GAWR for the name of this algorithm.
We give a general definition of the algorithm in the case of a weakness sequence τ .

GAWR(τ, r). Let τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f
and G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D is any satisfying

Ffm−1
(ϕm) ≥ tm‖Ffm−1

‖D.

2). Find λm ≥ 0 such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
λ≥0

‖f − ((1 − rm)Gm−1 + λϕm)‖

and define
Gm := (1 − rm)Gm−1 + λmϕm.

3). Denote
fm := f −Gm.

In the case τ = {t}, t ∈ (0, 1], we write t instead of τ in the notation. We note that in
the case rk = 0, k = 1, . . . , when there is no relaxation, the GAWR(τ, 0) coincides with
the Weak Dual Greedy Algorithm [T4, p.66]. We will also consider here a relaxation of the
X-greedy algorithm (see [T4, p.39]) that corresponds to r = 0 in the definition that follows.

X-Greedy Algorithm with Relaxation r (XGAR(r)). We define f0 := f and G0 := 0.
Then for each m ≥ 1 we inductively define

1). ϕm ∈ D and λm ≥ 0 are such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0

‖f − ((1 − rm)Gm−1 + λg)‖

and
Gm := (1 − rm)Gm−1 + λmϕm.

2). Denote
fm := f −Gm.

We note that, practically, nothing is known about convergence and rate of convergence of
the X-greedy algorithm. It will be seen from the results of Section 2 that relaxation helps
to prove convergence results for the XGAR(r).

The following version of relaxed greedy algorithm will be studied in Section 3.
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Weak Greedy Algorithm with Free Relaxation (WGAFR). Let τ := {tm}∞m=1,
tm ∈ [0, 1], be a weakness sequence. We define f0 := f and G0 := 0. Then for each m ≥ 1
we inductively define

1). ϕm ∈ D is any satisfying

Ffm−1
(ϕm) ≥ tm‖Ffm−1

‖D.

2). Find wm and λm ≥ 0 such that

‖f − ((1 − wm)Gm−1 + λmϕm)‖ = inf
λ≥0,w

‖f − ((1 − w)Gm−1 + λϕm)‖

and define
Gm := (1 − wm)Gm−1 + λmϕm.

3). Denote
fm := f −Gm.

We consider here approximation in uniformly smooth Banach spaces. For a Banach space
X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖ + ‖x− uy‖) − 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is easy to see that for any Banach space X its modulus of smoothness ρ(u) is an even
convex function satisfying the inequalities

max(0, u− 1) ≤ ρ(u) ≤ u, u ∈ (0,∞).

It is well known (see for instance [DGDS, Lemma B.1]) that in the case X = Lp, 1 ≤ p <
∞ we have

ρ(u) ≤

{

up/p if 1 ≤ p ≤ 2,

(p− 1)u2/2 if 2 ≤ p <∞.

It is also known (see [LT], p.63) that for any X with dimX = ∞ one has

ρ(u) ≥ (1 + u2)1/2 − 1

and for every X , dimX ≥ 2,
ρ(u) ≥ Cu2, C > 0.

This limits power type modulus of smoothness of nontrivial Banach spaces to the case
1 ≤ q ≤ 2.

We formulate in the Introduction two typical results of the paper. The first theorem is
proved in Section 2 and the second theorem is proved in Section 3.
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Theorem 1.1. Let a sequence r := {rk}
∞
k=1, rk ∈ [0, 1), satisfy the conditions

∞
∑

k=1

rk = ∞, rk → 0 as k → ∞.

Then the GAWR(t, r) and the XGAR(r) converge in any uniformly smooth Banach space
for each f ∈ X and for all dictionaries D.

Theorem 1.2. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then we have for the WGAFR

‖fm‖ ≤ max

(

2ε, C(q, γ)(A(ε) + ε)(1 +

m
∑

k=1

tpk)
−1/p

)

, p := q/(q − 1).

Remark 1.2. The setting in Theorem 1.2 with two functions f and f ε covers the following
noisy data setting. Let A(ε) = A and the target function f ε is such that f ε/A ∈ A1(D). The
task is to approximate f ε from the noisy data f of it.

In Section 4 we present some remarks on computational complexity of greedy algorithms
and introduce two thresholding type greedy algorithms. We also demonstrate in Section 4
how a special structure of Hilbert spaces can be used in improving (in the sense of numerical
constants) our error bounds.

Section 5 contains a discussion of the results of the paper. It also contains some historical
remarks.

2. Convergence and rate of convergence of the GAWR

We begin with known results on the behavior of the WCGA. There are results in [T3] that
give sufficient conditions for convergence of the WCGA in terms of the weakness sequence
τ and the modulus of smoothness ρ. In particular, it is proved in [T3] that the WCGA with
τ = {t}, t ∈ (0, 1] converges in any uniformly smooth Banach space for each f ∈ X and
any dictionary D. The following theorem from [T3] provides the rate of convergence of the
WCGA.

Theorem 2.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Then for a sequence τ := {tk}

∞
k=1, tk ≤ 1, k = 1, 2, . . . , we have for

any f ∈ A1(D) that

(2.1) ‖f c,τm ‖ ≤ C(q, γ)(1 +
m
∑

k=1

tpk)
−1/p, p :=

q

q − 1
,
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with a constant C(q, γ) which may depend only on q and γ.

This theorem gives the rate of convergence of WCGA for f in A1(D). It was pointed out
in [BCDD] that it is important to have estimates for the rate of approximation of greedy
algorithms for more general functions. We will now formulate the corresponding variant of
Theorem 2.1. Theorem 2.1 was derived in [T3] from the following lemma (see [T3, Lemma
2.3])

Lemma 2.1. Let X be a uniformly smooth Banach space with modulus of smoothness ρ(u).
Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then we have

‖f c,τm ‖ ≤ ‖f c,τm−1‖ inf
λ

(

1 − λtmA(ε)−1

(

1 −
ε

‖f c,τm−1‖

)

+ 2ρ

(

λ

‖f c,τm−1‖

))

, m = 1, 2, . . . .

In the same way as Theorem 2.1 was derived from Lemma 2.1 in [T3] we obtain the
following result.

Theorem 2.2. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then we have

(2.2) ‖f c,τm ‖ ≤ max

(

2ε, C(q, γ)(A(ε) + ε)(1 +

m
∑

k=1

tpk)
−1/p

)

, p := q/(q − 1).

We now proceed to the GAWR. We begin with an analogue of Lemma 2.1.

Lemma 2.2. Let X be a uniformly smooth Banach space with modulus of smoothness ρ(u).
Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then we have for the GAWR(t, r) and for the XGAR(r) (for
this algorithm t = 1)

‖fm‖ ≤ ‖fm−1‖

(

1 − rm

(

1 −
ε

‖fm−1‖

)

+ 2ρ

(

rm(‖f‖ + A(ε)/t)

(1 − rm)‖fm−1‖

))

, m = 1, 2, . . . .
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Proof. It is clear that it suffices to prove Lemma 2.2 in the case of the GAWR(t, r). By the
definition of fm

‖fm‖ = inf
λ≥0

‖f − ((1 − rm)Gm−1 + λϕm)‖.

We have for any λ

(2.3) f − ((1 − rm)Gm−1 + λϕm) = (1 − rm)fm−1 + rmf − λϕm

and

(2.4) ‖(1 − rm)fm−1 + rmf − λϕm‖ + ‖(1 − rm)fm−1 − rmf + λϕm‖ ≤

2(1 − rm)‖fm−1‖

(

1 + ρ

(

‖rmf − λϕm‖

(1 − rm)‖fm−1‖

))

.

We have

(2.5) ‖(1 − rm)fm−1 − rmf + λϕm‖ ≥ Ffm−1
((1 − rm)fm−1 − rmf + λϕm) =

(1 − rm)‖fm−1‖ − rmFfm−1
(f) + λFfm−1

(ϕm).

From the definition of ϕm we get

(2.6) Ffm−1
(ϕm) ≥ t sup

g∈D
Ffm−1

(g).

By Lemma 2.2 from [T3] we obtain

(2.7) sup
g∈D

Ffm−1
(g) = sup

φ∈A1(D)

Ffm−1
(φ) ≥ A(ε)−1Ffm−1

(f ε) ≥ A(ε)−1(Ffm−1
(f) − ε).

Combining (2.6) and (2.7) we get

(2.8) Ffm−1
(ϕm) ≥ tA(ε)−1(Ffm−1

(f) − ε).

We now choose λ := λ∗ := rmA(ε)/t. Then for this λ we derive from (2.5) and (2.8)

(2.9) ‖(1 − rm)fm−1 − rmf + λ∗ϕm‖ ≥ (1 − rm)‖fm−1‖ − rmε.

The relations (2.4) and (2.9) imply

‖(1 − rm)fm−1 + rmf − λ∗ϕm‖ ≤

(1 − rm)‖fm−1‖ + rmε+ 2(1 − rm)‖fm−1‖ρ

(

rm(‖f‖ + A(ε)/t)

(1 − rm)‖fm−1‖

)

. �

Proof of Theorem 1.1. We prove this theorem in two steps.
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I. First, we prove that lim infm→∞ ‖fm‖ = 0. The proof goes by contradiction. We want
to prove that lim infm→∞ ‖fm‖ = 0. Assume the contrary. Then there exists K and β > 0
such that we have for all k ≥ K that ‖fk‖ ≥ β. By Lemma 2.2 for m > K

‖fm‖ ≤ ‖fm−1‖

(

1 − rm

(

1 −
ε

β

)

+ 2ρ

(

rm(‖f‖ + A(ε)/t)

(1 − rm)β

))

, m = 1, 2, . . . .

We choose ε := β/2. Using the assumption that X is uniformly smooth and the assumption
rk → 0 as k → ∞, we find N ≥ K such that for m ≥ N we have

2ρ

(

rm(‖f‖ + A(ε)/t)

(1 − rm)β

)

≤ rm/4.

Then for m > N
‖fm‖ ≤ ‖fm−1‖(1 − rm/4).

The assumption
∑∞
m=1 rm = ∞ implies that ‖fm‖ → 0 as m → ∞. The obtained contra-

diction to the assumption β > 0 completes the proof of part I.
II. Secondly, we prove that limm→∞ ‖fm‖ = 0. Using the assumption rk → 0 as k → ∞

we find N1 such that for k ≥ N1 we have rk ≤ 1/2. For such k we obtain from Lemma 2.2

(2.10) ‖fk‖ − ε ≤ (1 − rk)(‖fk−1‖ − ε) + 2‖fk−1‖ρ

(

Brk
‖fk−1‖

)

with B := 2(‖f‖ + A(ε)/t). Denote ak := ‖fk−1‖ − ε. We note that from the definition of
fk and the representation (2.3) follows that

(2.11) ak+1 ≤ ak + rk‖f‖.

Using the fact that the function ρ(u)/u is monotone increasing on [0,∞) we obtain from
(2.10) for ak > 0

(2.12) ak+1 ≤ ak

(

1 − rk + 2
‖fk−1‖

ak
ρ

(

Brk
‖fk−1‖

))

≤ ak

(

1 − rk + 2ρ

(

Brk
ak

))

.

We now introduce an auxiliary sequence {bk} of positive numbers that is defined by the
equation

2ρ(Brk/bk) = rk.

The property ρ(u)/u → 0 as u → 0 implies bk → 0 as k → ∞. The inequality (2.12)
guarantees that for k ≥ N1 such that ak ≥ bk we have ak+1 ≤ ak.

Let
U := {k : k ≥ N1, ak ≥ bk}.

If the set U is finite then we get

lim sup
k→∞

ak ≤ lim
k→∞

bk = 0.
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This implies
lim sup
m→∞

‖fm‖ ≤ ε.

Consider the case when U is infinite. We note that part I of the proof implies that there
is a subsequence {kj} such that akj

≤ 0, j = 1, 2, . . . . This means that

U = ∪∞
j=1[lj, nj]

with the property nj−1 < lj − 1. For k /∈ U , k ≥ N1 we have

(2.13) ak < bk.

For k ∈ [lj, nj] we have by (2.11) and the monotonicity property of ak, when k ∈ [lj , nj],
that

(2.14) ak ≤ alj ≤ alj−1 + rlj−1‖f‖ ≤ blj−1 + rlj−1‖f‖.

By (2.13) and (2.14) we obtain

lim sup
k→∞

ak ≤ 0 ⇒ lim sup
m→∞

‖fm‖ ≤ ε.

Taking into account that ε > 0 is arbitrary we complete the proof. �

We now proceed to results on the rate of approximation. We will need the following
technical lemma. This lemma is a more general version of Lemma 2.1 from [T1] (see also
Remark 5.1 in [T6]).

Lemma 2.3. Let a sequence {an}
∞
n=1 have the following property. For given positive num-

bers α < β ≤ 1, A > a1 we have for all n ≥ 2

(2.15) an ≤ an−1 + A(n− 1)−α;

if for some ν ≥ 2 we have
aν ≥ Aν−α

then

(2.16) aν+1 ≤ aν(1 − β/ν).

Then there exists a constant C(α, β) such that for all n = 1, 2, . . . we have

an ≤ C(α, β)An−α.

Proof. We have a1 < A which implies that the set

V := {ν : aν ≥ Aν−α}
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does not contain ν = 1. We prove now that for any segment [n, n + k] ⊂ V we have
k ≤ C1(α, β)n. Indeed, let n ≥ 2 be such that n− 1 /∈ V , which means

(2.17) an−1 < A(n− 1)−α,

and [n, n+ k] ⊂ V , which in turn means

(2.18) an+j ≥ A(n+ j)−α, j = 0, 1, . . . , k.

Then by the conditions (2.15) and (2.16) of the lemma we get

(2.19) an+k ≤ an

n+k−1
∏

ν=n

(1 − β/ν) ≤ (an−1 +A(n− 1)−α)

n+k−1
∏

ν=n

(1 − β/ν).

Combining (2.17) – (2.19) we obtain

(2.20) (n+ k)−α ≤ 2(n− 1)−α
n+k−1
∏

ν=n

(1 − β/ν).

Taking logarithms and using the inequalities

ln(1 − x) ≤ −x, x ∈ [0, 1);

m−1
∑

ν=n

ν−1 ≥

∫ m

n

x−1dx = ln(m/n),

we get from (2.20)

−α ln
n+ k

n− 1
≤ ln 2 +

n+k−1
∑

ν=n

ln(1 − β/ν) ≤ ln 2 −

n+k−1
∑

ν=n

β/ν ≤ ln 2 − β ln
n+ k

n
.

Hence
(β − α) ln(n+ k) ≤ ln 2 + (β − α) lnn+ α ln

n

n− 1
,

which implies

n+ k ≤ 2
α+1

β−αn

and
k ≤ C1(α, β)n.

Let us take any m ∈ N. If m /∈ V we have the desired inequality with C(α, β) = 1. Assume
m ∈ V , and let [n, n + k] be the maximal segment in V containing m. Then similarly to
(2.19)

(2.21) am ≤ an ≤ an−1 +A(n− 1)−α ≤ 2A(n− 1)−α ≤ 2Am−α

(

n− 1

m

)−α

.

Using the inequality k ≤ C1(α, β)n proved above we get

(2.22)
m

n− 1
≤
n+ k

n− 1
≤ C2(α, β).

Substituting (2.22) into (2.21) we complete the proof of Lemma 2.3. �
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Theorem 2.3. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Let r := {2/(k + 2)}∞k=1. Consider the GAWR(t, r) and the
XGAR(r) (for this algorithm t = 1). For a pair of functions f , f ε, satisfying

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D)

we have

‖fm‖ ≤ ε+ C(q, γ)(‖f‖+ A(ε)/t)m−1+1/q.

Proof. By Lemma 2.2 we obtain

(2.23) ‖fk‖ − ε ≤ (1 − rk)(‖fk−1‖ − ε) + Cγ‖fk−1‖

(

rk(‖f‖ + A(ε)/t)

‖fk−1‖

)q

.

Consider, as in the proof of Theorem 1.1, the sequence an := ‖fn−1‖ − ε. We plan to apply
Lemma 2.3 to the sequence {an}. We set α := 1 − 1/q ≤ 1/2. The parameters β ∈ (α, 1]
and A will be chosen later. We note that

‖fm‖ ≤ ‖fm−1‖ + rm‖f‖.

Therefore, the condition (2.15) of Lemma 2.3 is satisfied with A ≥ 2‖f‖. Let ak ≥ Ak−α.
Then by (2.23) we get

ak+1 ≤ ak(1 − rk + Cγ(rk(‖f‖ +A(ε)/t)/ak)
q ≤

ak

(

1 −
2

k + 2
+
Cγ(‖f‖+ A(ε)/t)q2q

Aq
kαq

(k + 2)q

)

.

Setting A := max(2‖f‖, 2(2Cγ)1/q(‖f‖ +A(ε)/t)) we continue

≤ ak

(

1 −
3

2(k + 2)

)

.

Thus the condition (2.16) of Lemma 2.3 is satisfied with β = 3/4. Applying Lemma 2.3 we
obtain

‖fm‖ ≤ ε+ C(q, γ)(‖f‖+A(ε)/t)m−1+1/q. �

3. Convergence and rate of convergence of the WGAFR

We begin with the proof of Theorem 1.2. The proof of this theorem is based on the
following analogue of Lemma 2.1.
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Lemma 3.1. Let X be a uniformly smooth Banach space with modulus of smoothness ρ(u).
Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) ≥ ε. Then we have for the WGAFR

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(

1 − λtmA(ε)−1

(

1 −
ε

‖fm−1‖

)

+ 2ρ

(

5λ

‖fm−1‖

))

, m = 1, 2, . . . .

Proof. By the definition of fm

‖fm‖ = inf
λ≥0,w

‖fm−1 + wGm−1 − λϕm‖.

Similarly to the arguments in the proof of Lemma 2.2 we write the inequality

(3.1) ‖fm−1 + wGm−1 − λϕm‖ + ‖fm−1 − wGm−1 + λϕm‖ ≤

2‖fm−1‖(1 + ρ(‖wGm−1 − λϕm‖/‖fm−1‖))

and estimate for λ ≥ 0

‖fm−1 − wGm−1 + λϕm‖ ≥ Ffm−1
(fm−1 − wGm−1 + λϕm) ≥

‖fm−1‖ − Ffm−1
(wGm−1) + λtm sup

g∈D
Ffm−1

(g) =

By Lemma 2.2 of [T3]

‖fm−1‖ − Ffm−1
(wGm−1) + λtm sup

φ∈A1(D)

Ffm−1
(φ) ≥

‖fm−1‖ − Ffm−1
(wGm−1) + λtmA(ε)−1Ffm−1

(f ε) ≥

‖fm−1‖ − Ffm−1
(wGm−1) + λtmA(ε)−1(Ffm−1

(f) − ε).

We set w∗ := λtmA(ε)−1 and obtain

(3.2) ‖fm−1 − w∗Gm−1 + λϕm‖ ≥ ‖fm−1‖ + λtmA(ε)−1(‖fm−1‖ − ε).

Combining (3.1) and (3.2) we get

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(

1 − λtmA(ε)−1

(

1 −
ε

‖fm−1‖

)

+ 2ρ

(

‖w∗Gm−1 − λϕm‖

‖fm−1‖

))

.

We now estimate
‖w∗Gm−1 − λϕm‖ ≤ w∗‖Gm−1‖ + λ.

Next,
‖Gm−1‖ = ‖f − fm−1‖ ≤ 2‖f‖ ≤ 2(‖f ε‖ + ε) ≤ 2(A(ε) + ε).

Thus, under assumption A(ε) ≥ ε we get

w∗‖Gm−1‖ ≤ 2λtm(A(ε) + ε)/A(ε) ≤ 4λ.

Finally,
‖w∗Gm−1 − λϕm‖ ≤ 5λ.

This completes the proof of Lemma 3.1. �
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Remark 3.1. It follows from the definition of the WGAFR that the sequence {‖fm‖} is a
nonicreasing sequence.

Proof of Theorem 1.2. It is clear that it suffices to consider the case A(ε) ≥ ε. Otherwise,
‖fm‖ ≤ ‖f‖ ≤ ‖f ε‖ + ε ≤ 2ε. Also, assume ‖fm‖ > 2ε (otherwise, Theorem 1.2 trivially
holds). Then by Remark 3.1 we have for all k = 0, 1, . . . , m that ‖fk‖ > 2ε. By Lemma 3.1
we obtain

(3.3) ‖fk‖ ≤ ‖fk−1‖ inf
λ≥0

(

1 − λtkA(ε)−1/2 + 2γ

(

5λ

‖fk−1‖

)q)

.

Choose λ from the equation
λtk

4A(ε)
= 2γ

(

5λ

‖fk−1‖

)q

what implies that

λ = ‖fk−1‖
q

q−1 5−
q

q−1 (8γA(ε))−
1

q−1 t
1

q−1

k .

Denote
Aq := 4(8γ)

1
q−1 5

q

q−1 .

Using notation p := q
q−1 we get from (3.3)

‖fk‖ ≤ ‖fk−1‖

(

1 −
1

4

λtk
A(ε)

)

= ‖fk−1‖

(

1 −
tpk‖fk−1‖

p

AqA(ε)p

)

.

Raising both sides of this inequality to the power p and taking into account the inequality
xr ≤ x for r ≥ 1, 0 ≤ x ≤ 1, we obtain

‖fk‖
p ≤ ‖fk−1‖

p

(

1 −
tpk‖fk−1‖

p

AqA(ε)p

)

.

By Lemma 3.1 from [T2], using the estimates ‖f‖ ≤ A(ε) + ε and Aq > 1, we get

‖fm‖p ≤ Aq(A(ε) + ε)p

(

1 +
m
∑

k=1

tpk

)−1

which implies

‖fm‖ ≤ C(q, γ)(A(ε) + ε)

(

1 +

m
∑

k=1

tpk

)−1/p

.

Theorem 1.2 is proved. �

We now prove a convergence theorem for an arbitrary uniformly smooth Banach space.
Modulus of smoothness ρ(u) of a uniformly smooth Banach space is an even convex function
such that ρ(0) = 0 and limu→0 ρ(u)/u = 0. The following function s(u) := ρ(u)/u, s(0) := 0,
associated with ρ(u) is a continuous increasing on [0,∞) function. Therefore, the inverse
function s−1(·) is well defined.
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Theorem 3.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Assume that a sequence τ := {tk}

∞
k=1 satisfies the condition: for any θ > 0 we have

(3.4)

∞
∑

m=1

tms
−1(θtm) = ∞.

Then for any f ∈ X we have for the WGAFR

lim
m→∞

‖fm‖ = 0.

Proof. By Remark 3.1 {‖fm‖} is a nonincreasing sequence. Therefore we have

lim
m→∞

‖fm‖ = β.

We prove that β = 0 by contradiction. Assume the contrary that β > 0. Then for any m
we have

‖fm‖ ≥ β.

We set ε = β/2 and find f ε such that

‖f − f ε‖ ≤ ε and f ε/A(ε) ∈ A1(D)

with some A(ε) ≥ ε. Then by Lemma 3.1 we get

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(1 − λtmA(ε)−1/2 + 2ρ(5λ/β)).

Let us specify θ := β/(40A(ε)) and take λ = βs−1(θtm)/5. Then we obtain

‖fm‖ ≤ ‖fm−1‖(1 − 2θtms
−1(θtm)).

The assumption
∞
∑

m=1

tms
−1(θtm) = ∞

implies that
‖fm‖ → 0 as m→ ∞.

We got a contradiction which proves the theorem. �

We consider one more variant of the Weak Relaxed Greedy Algorithm. We first give a
remark explaining why we consider this variant. At the second step of the WRGA we are
finding the parameter λm from the optimization step

‖fm−1 − λm(ϕm −Gm−1)‖ = inf
λ∈[0,1]

‖fm−1 − λ(ϕm −Gm−1)‖.

In this case we can interpret relaxation as the replacement of an element ϕm by an element
ϕm −Gm−1 in the search for best approximation. This leads (for λ ∈ [0, 1]) to a limitation
of approximation of functions from A1(D). We want to get rid of this limitation and replace
the element ϕm−Gm−1 by the element ϕm−αmGm−1 with a prescribed in advance sequence
{αm} of nonnegative numbers. We note that in the case αm = 0 there is no relaxation and
we get the Weak Dual Greedy Algorithm (see [T4, p.66]).
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Weak α-Relaxed Greedy Algorithm (Wα-RGA). We define fα0 := fα,τ0 := f and
Gα0 := Gα,τ0 := 0. Then for each m ≥ 1 we inductively define

1). ϕαm := ϕα,τm ∈ D is any satisfying

Ffα
m−1

(ϕαm − αmG
α
m−1) ≥ tm sup

g∈D
Ffα

m−1
(g − αmG

α
m−1).

2). Find λm ≥ 0 such that

‖f − ((1 − λmαm)Gαm−1 + λmϕ
α
m)‖ = inf

λ≥0
‖f − ((1 − λαm)Gαm−1 + λϕαm)‖

and define
Gαm := Gα,τm := (1 − λmαm)Gαm−1 + λmϕ

α
m.

3). Denote
fαm := fα,τm := f −Gαm.

Theorem 3.2. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Assume that sequences τ := {tk}

∞
k=1 and α := {αk}

∞
k=1 satisfy the conditions: αm ∈

[0, 1], αm → 0 as m→ ∞,

∞
∑

m=1

tmαms
−1(θtmαm) = ∞ for any θ > 0.

Then the Wα-RGA converges for each f ∈ X and for all dictionaries D.

Proof. In the proof we will drop α from the notations. We begin with the inequality

(3.5) ‖fm−1 − λ(ϕm − αmGm−1)‖ + ‖fm−1 + λ(ϕm − αmGm−1)‖ ≤

2‖fm−1‖(1 + ρ(λ‖ϕm − αmGm−1‖/‖fm−1‖)).

Next, for λ ≥ 0

‖fm−1 + λ(ϕm − αmGm−1)‖ ≥ Ffm−1
(fm−1 + λ(ϕm − αmGm−1)) =

‖fm−1‖ + λFfm−1
(ϕm − αmGm−1) ≥ ‖fm−1‖ + λtm

(

sup
g∈D

Ffm−1
(g) − Ffm−1

(αmGm−1)

)

=

By Lemma 2.2 from [T3]

‖fm−1‖ + λtm

(

sup
φ∈A1(D)

Ffm−1
(φ) − Ffm−1

(αmGm−1)

)

.

Assume that φm ∈ A1(D) is such that

‖f − φm/αm‖ ≤ εm with εm → 0.
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Then we continue

≥ ‖fm−1‖ + λtm(Ffm−1
(φm) − Ffm−1

(αmGm−1)) ≥

‖fm−1‖ + λtm(Ffm−1
(αmf) − αmεm − Ffm−1

(αmGm−1)) =

‖fm−1‖ + λtm(Ffm−1
(αmfm−1) − αmεm) = ‖fm−1‖(1 + λtmαm(1 − εm/‖fm−1‖)).

This and (3.5) imply

(3.6) ‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(1 − λtmαm(1 − εm/‖fm−1‖) + 2ρ(λ(1 + 2‖f‖)/‖fm−1‖)) .

We complete the proof by the contradiction argument in the same way as in the proof of
Theorem 3.1. The sequence {‖fm‖} is nonincreasing. Suppose

lim
k→∞

‖fm‖ = β > 0.

Then (3.6) implies for big enough m

(3.7) ‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(1 − λtmαm/2 + 2ρ(λ(1 + 2‖f‖)/β)).

Our assumption on τ and α

∞
∑

m=1

tmαms
−1(θtmαm) = ∞

implies
∞
∏

m=1

(1 − tmαms
−1(θtmαm)) = 0.

From this and (3.7) one can derive that ‖fm‖ → 0 as m→ ∞ which is in contradiction with
β > 0. �

We conclude this section by the following remark. The algorithms GAWR and WGAFR
are both of dual type greedy algorithms. The first steps are similar for both algorithms: we
use the norming functional Ffm−1

in the search for an element ϕm. The WGAFR provides
more freedom than the GAWR does in choosing good coefficients wm and λm. This results
in more flexibility in choosing the weakness sequence τ = {tm}. For instance, the condition
(3.4) of Theorem 3.1 is satisfied if τ = {t}, t ∈ (0, 1] for any uniformly smooth Banach
space. In the case ρ(u) ≤ γuq, 1 < q ≤ 2, the condition (3.4) is satisfied if

∞
∑

m=1

tpm = ∞, p := q/(q − 1).

In Section 2 in parallel with consideration of the GAWR we studied the XGAR(r). In
the same way we can consider in parallel with the WGAFR the following analogue of the
XGAR(r).
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X-Greedy Algorithm with Free Relaxation (XGAFR). We define f0 := f and G0 :=
0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D and λm ≥ 0, wm are such that

‖f − ((1 − wm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0,w

‖f − ((1 − w)Gm−1 + λg)‖

and
Gm := (1 − wm)Gm−1 + λmϕm.

2). Denote
fm := f −Gm.

The technique developed in this section implies the following theorem.

Theorem 3.3. Theorems 1.2, 3.1 and Lemma 3.1 hold for the XGAFR with τ = {1}.

4. Some remarks

We begin with a remark on computational complexity of greedy algorithms. The main
point of this paper is in proving that relaxation allows us to build greedy algorithms (see
the WGAFR) that are computationally simpler than the WCGA and perform as well as
the WCGA. We note that the WCGA and the WGAFR differ in the second step of the
algorithm. However, the most computationally involved step of all greedy algorithms is the
greedy step (the first step of the algorithm). One of the goals of this paper was to get rid
of the assumption f ∈ A1(D) (as in the WRGA). All new relaxed greedy algorithms of
the paper are applicable to (and converge for) any f ∈ X . We want to point out that the
information f ∈ A1(D) allows us to simplify substantially the greedy step of the algorithm.
It is remarked in [T3, Remark 2.2] that we can replace the first step (1.1) of the WCGA by
the following search criterion

(4.1) Ffm−1
(ϕm) ≥ tm‖fm−1‖.

The requirement (4.1) is weaker than the requirement of the greedy step of the WCGA.
However, Theorem 2.1 holds for this modification of the WCGA. The relation (4.1) is a
threshold type inequality and can be checked easier than (1.1).

We now consider two algorithms with a different type of thresholding. These algorithms
work for any f ∈ X . We begin with the Dual Greedy Algorithm with Relaxation and
Thresholding (DGART).

DGART. We define f0 := f and G0 := 0. Then for a given parameter δ ∈ (0, 1/2] we
inductively define for m ≥ 1

1). ϕm ∈ D is any satisfying

(4.2) Ffm−1
(ϕm) ≥ δ.

If there is no ϕm ∈ D satisfying (4.2) then we stop.
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2). Find wm and λm such that

‖f − ((1 − wm)Gm−1 + λmϕm)‖ = inf
λ,w

‖f − ((1 − w)Gm−1 + λϕm)‖

and define
Gm := (1 − wm)Gm−1 + λmϕm.

3). Denote
fm := f −Gm.

If ‖fm‖ ≤ δ‖f‖ then we stop, otherwise we proceed to the (m+ 1)th iteration.
The following algorithm is a thresholding type modification of the WCGA. This modifi-

cation can be applied to any f ∈ X .

Chebyshev Greedy Algorithm with Thresholding (CGAT). For a given parameter
δ ∈ (0, 1/2] we conduct instead of the greedy step (1.1) of the WCGA the following thresh-
olding step: find ϕm ∈ D such that Ffm−1

(ϕm) ≥ δ. If such ϕm exists then we pick it and
apply steps 2 and 3 of the WCGA. If such ϕm does not exist then we stop. We also stop, if
‖fm‖ ≤ δ‖f‖.

Theorem 4.1. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then the DGART (CGAT) will stop afterm ≤ C(γ)δ−p ln(1/δ),
p := q/(q − 1), iterations with

‖fm‖ ≤ ε+ δA(ε).

Proof. We begin with the error bound. For both algorithms the DGART and the CGAT
our stopping criterion guarantees that either ‖Ffm

‖D ≤ δ or ‖fm‖ ≤ δ‖f‖. In the latter
case the required bound follows from simple inequalities

‖f‖ ≤ ε+ ‖f ε‖ ≤ ε+ A(ε).

Thus, assume that ‖Ffm
‖D ≤ δ holds. We will use the following well known lemma (see, for

instance, [T3, Lemma 2.1]).

Lemma 4.1. Let X be a uniformly smooth Banach space and L be a finite-dimensional
subspace of X. For any ψ ∈ X \ L denote by ψL the best approximant of ψ from L. Then
we have

Fψ−ψL
(φ) = 0

for any φ ∈ L.

In the case of CGAT we apply Lemma 4.1 with ψ = f and L = span(ϕ1, . . . , ϕm) and
obtain

‖fm‖ = Ffm
(fm) = Ffm

(f) ≤ ε+ Ffm
(f ε) ≤ ε+ ‖Ffm

‖DA(ε) ≤ ε+ δA(ε).



RELAXATION IN GREEDY APPROXIMATION 19

In the case of DGART we apply Lemma 4.1 with ψ = fm−1 and L = span(Gm−1, ϕm) and
get

‖fm‖ = Ffm
(fm) = Ffm

(fm−1) = Ffm
(f) ≤ ε+ Ffm

(f ε) ≤ ε+ ‖Ffm
‖DA(ε) ≤ ε+ δA(ε).

This proves the required bound.
We now proceed to the bound of m. We prove the bound for both algorithms simultane-

ously. We note that for the DGART

‖fk‖ = inf
λ,w

‖fk−1 + wGk−1 − λϕk‖ ≤ inf
λ≥0

‖fk−1 − λϕk‖.

We write for all k ≤ m, λ ≥ 0

(4.3) ‖fk−1 − λϕk‖ + ‖fk−1 + λϕk‖ ≤ 2‖fk−1‖(1 + ρ(λ/‖fk−1‖)).

Next,

(4.4) ‖fk−1 + λϕk‖ ≥ Ffk−1
(fk−1 + λϕk) ≥ ‖fk−1‖ + λδ.

Combining (4.3) with (4.4) we obtain

‖fk‖ ≤ inf
λ≥0

‖fk−1 − λϕk‖ ≤ inf
λ≥0

(‖fk−1‖ − λδ + 2‖fk−1‖γ(λ/‖fk−1‖)
q) .

Solving the equation δx/2 = 2γxq we get x1 = (δ/(4γ))1/(q−1). Setting λ := x1‖fk−1‖ we
obtain

‖fk‖ ≤ ‖fk−1‖(1 − δx1/2) = ‖fk−1‖(1 − c(γ)δp).

Thus,
‖fk‖ ≤ ‖f‖(1 − c(γ)δp)k.

By the stopping condition ‖fm‖ ≤ δ‖f‖ we get that m ≤ n where n is the smallest such
that

(1 − c(γ)δp)n ≤ δ.

This implies
m ≤ C(γ)δ−p ln(1/δ). �

We now make a remark on the case of a Hilbert space. It is known and easy to check
that for a Hilbert space one has

ρ(u) ≤ (1 + u2)1/2 − 1 ≤ u2/2.

Thus, a Hilbert space is a uniformly smooth Banach space with q = 2 and γ = 1/2. In
this case one can find numerical values for the constants in the error bounds for the ‖fm‖.
For instance, we get in Theorem 2.2 C(2, 1/2) = 4. We will show how the use of a special
structure of Hilbert spaces allows us to get better numerical constants in the error bounds.
We will consider the Weak Orthogonal Greedy Algorithm (WOGA) and the WGAFR. The
WOGA is the WCGA for a Hilbert space.



20 V. TEMLYAKOV

Theorem 4.2. Let H be a Hilbert space. Take a number ε ≥ 0 and two elements f , f ε

from H such that
‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then we have for the WOGA and for the WGAFR

‖fm‖ ≤ ε+ A(ε)(1 +
m
∑

k=1

t2k)
−1/2.

Proof. The proof is the same for both algorithms. We will carry it out only for the WOGA.
In the case ε = 0, A(ε) = 1, Theorem 4.2 for the WOGA has been proved in [T2]. The
proof of Theorem 4.2 repeats the arguments from [T2]. Assume ‖fm‖ ≥ ε (otherwise the
statement is trivial). Then for all k ≤ m we have ‖fk‖ ≥ ε. Next,

‖fk−1‖
2 = 〈fk−1, fk−1〉 = 〈fk−1, f〉 ≤ ‖fk−1‖ε+ 〈fk−1, f

ε〉 ≤ ‖fk−1‖ε+ A(ε) sup
g∈D

〈fk−1, g〉.

Therefore,
〈fk−1, ϕk〉 ≥ tkA(ε)−1(‖fk−1‖ − ε)‖fk−1‖,

and

(4.5) ‖fk‖
2 ≤ ‖fk−1‖

2 − 〈fk−1, ϕk〉
2 ≤ ‖fk−1‖

2

(

1 −
t2k(‖fk−1‖ − ε)2

A(ε)2

)

.

Using the inequality
(‖fk‖ − ε)/‖fk‖ ≤ (‖fk−1‖ − ε)/‖fk−1‖

we get from (4.5)

(4.6) (‖fk‖ − ε)2 ≤ (‖fk−1‖ − ε)2
(

1 −
t2k(‖fk−1‖ − ε)2

A(ε)2

)

.

Applying Lemma 3.1 from [T2] we obtain

(‖fm‖ − ε)2 ≤ A(ε)2

(

1 +

m
∑

k=1

t2k

)−1

. �

We conclude this section by a technical remark. An important part of the technique,
presented in the paper, consists in deriving desired upper bounds from some recurrent
inequalities. Typically, in order to avoid too much technical details, we prove the upper
bounds for the rate of convergence under an assumption that modulus of smoothness has
a power type. We will now demonstrate how one can handle a case of general modulus of
smoothness.
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Lemma 4.2. Let ρ(u) be modulus of smoothness of a uniformly smooth Banach space.
Assume a sequence a0 ≥ a1 ≥ a2 ≥ . . . of positive numbers satisfies the inequality

(4.7) ak ≤ ak−1 inf
λ

(1 − λtA−1 + 2ρ(Bλ/ak−1)), a0 ≤ A,

with positive constants A, B ≥ 1, t ∈ (0, 1]. Then

(4.8) am ≤
2AB

tmρ−1(1/(2m))
.

Proof. We specify λ := ak−1s
−1(θt)/B with θ :=

ak−1

4AB . This implies

(4.9) ak ≤ ak−1

(

1 − 2
ak−1t

4AB
s−1

(

ak−1t

4AB

))

.

Setting bk := akt
4AB and w(u) := us−1(u) we get from (4.9)

(4.10) bk ≤ bk−1(1 − 2w(bk−1)).

Using the property w(αu) ≤ αw(u), α ∈ (0, 1], we obtain from (4.10)

2w(bk) ≤ 2w(bk−1)(1 − 2w(bk−1)).

It is easy to check that 2w(b0) ≤ 1. Applying Lemma 3.4 from [DT], we conclude

2w(bm) ≤ 1/m.

It remains to note that w−1(x) = x/ρ−1(x). �

With a help of Lemma 4.2 one can prove the following version of Theorem 1.2 in the case
of general modulus of smoothness.

Theorem 4.3. Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u). Take a number ε ≥ 0 and two elements f , f ε from X such that

‖f − f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D),

with some number A(ε) > 0. Then we have for the WGAFR with τ = {t}, t ∈ (0, 1],

‖fm‖ ≤ max
(

2ε, CA(ε)(tmρ−1(1/(2m))−1
)

.
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5. Discussion

We begin with brief discussion of the development of the theory of greedy approximation
with regard to a general dictionary in order to show the place of results of this paper. The
first greedy algorithm with regard to a general dictionary was studied in a Hilbert space.
This algorithm is the Pure Greedy Algorithm (PGA) (see [FS], [H], [J1], [DT], [T4]). It
coincides with the XGAR(0) (X-greedy algorithm), defined in the Introduction, in the case
X = H is a Hilbert space and r = 0, which means there is no relaxation. Let us right away
point out one good feature of the X-greedy algorithm. For an element f ∈ X it provides
an expansion into a series

(5.1) f ∼

∞
∑

j=1

cj(f)gj(f), gj(f) ∈ D, cj(f) > 0, j = 1, 2, . . .

such that

Gm =

m
∑

j=1

cj(f)gj(f).

The first steps in the theory of greedy approximation were devoted to the study of con-
vergence of the expansion (5.1) and were done in a Hilbert space. P.J. Huber [H] proved
convergence of the PGA in the weak topology and conjectured that the PGA converges in
the strong sense (in the norm of H). L. Jones [J1] proved this conjecture. It is a funda-
mental result in the theory of greedy approximation that guarantees convergence of (5.1),
obtained by the PGA, for any f ∈ H and any dictionary D. The reader can find results on
greedy expansions in Banach spaces in [T5]. The next step was to understand efficiency of
the PGA in terms of rate of convergence. There is some progress in this direction. How-
ever, the problem is still open. We formulate only two results in this direction (see [T4] for
more details). It was proved in [DT] that for a general dictionary D the PGA provides for
f ∈ A1(D) the estimate

‖fm‖ ≤ m−1/6.

A lower estimate has been proved in [LiT]. It was shown that there exist a dictionary D, a
positive constant C, and an element f ∈ A1(D) such that for the PGA

(5.2) ‖fm‖ ≥ Cm−0.27.

We note that even before the lower estimate (5.2) was proved, people began looking for
other greedy algorithms that provide good rate of approximation of functions from A1(D).
Two different ideas have been used at this step. The first idea was the idea of relaxation
(see [J2], [B], [DT], [T2]). The corresponding algorithms (for example, the WRGA, defined
in the Introduction) were designed for approximation of functions from A1(D). These algo-
rithms do not provide an expansion into a series but they have other good features. It was
established (see [J2], [B]) for the WRGA with τ = {1} in a Hilbert space that for f ∈ A1(D)

‖fm‖ ≤ Cm−1/2.
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Also, for the WRGA we always have Gm ∈ A1(D). The latter property, clearly, limits the
applicability of the WRGA to the A1(D).

The second idea was the idea of building the best approximant from the span(ϕ1, . . . , ϕm)
instead of the use of only one element ϕm for an update of the approximant. This idea was
realized in the Weak Orthogonal Greedy Algorithm (see [DT], [T2]) in the case of a Hilbert
space and in the Weak Chebyshev Greedy Algorithm (see [T3]) in the case of a Banach
space.

The realization of both ideas resulted in construction of algorithms (WRGA and WCGA)
that are good for approximation of functions from A1(D). Both algorithms do not provide
expansions into series. The WCGA has the following advantage over the WRGA. It has been
proved that the WCGA (under some assumptions on the weakness sequence τ) converges
for each f ∈ X in any uniformly smooth Banach space [T3]. Moreover, the behavior of the
WCGA has been studied well enough to provide the upper estimates of approximation in
terms of the intermediate approximation of f by an element f ε and the A1(D) norm of f ε

(see Theorem 2.2 from the Introduction).
Recently, the following important question has been raised in [BCDD]. The authors

pointed out that the Orthogonal Greedy Algorithm (OGA) has a defect comparing to the
PGA: the OGA is computationally more complex than the PGA since each step of the OGA
requires the evaluation of the orthogonal projection. The WRGA does not have this defect
but it works only for elements from A1(D). The following remarkable result has been ob-
tained in [BCDD]. The authors proved the following error estimate for a proper modification
of the relaxed greedy algorithm: for f ∈ H with f ε such that ‖f−f ε‖ ≤ ε, f ε/A(ε) ∈ A1(D)

(5.3) ‖fm‖2 ≤ ε2 + 4(A(ε)2 − ‖f ε‖2)m−1.

They worked in a Hilbert space and used the following algorithm that is slightly different
from our GAWR. At the first step of the algorithm they define ϕm ∈ D as the one that
satisfies

〈f − (1 − rm)Gm−1, ϕm〉 = sup
g∈D

〈f − (1 − rm)Gm−1, g〉.

At the first step of the GAWR(1, r) in the case of a Hilbert space we look for ϕm ∈ D that
satisfies

〈fm−1, ϕm〉 = sup
g∈D

〈fm−1, g〉.

The steps 2 and 3 in their algorithm are the same as in the GAWR. They proved the
inequality (5.3) in the case r1 = 1, rk = 2/k, k ≥ 2.

The above result (5.3) from [BCDD] was a motivation for the research reported in this
paper. We considered different versions of the weak relaxed greedy algorithms. The WGAFR
and XGAFR, studied in Section 3, are the most powerful ones out of the versions considered
here. We proved convergence of the WGAFR in Theorem 3.1. This theorem is the same as
the corresponding convergence result for the WCGA (see [T3, Theorem 2.1]). The results
on the rate of convergence for the WGAFR and the WCGA are also the same (see Theorem
1.2 and Theorem 2.2). Thus, the WGAFR performs in the same way as the WCGA from
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the point of view of convergence and rate of convergence and outperforms the WCGA in
terms of computational complexity.

In the WGAFR we are optimizing over two parameters w and λ at each step of the
algorithm. In other words we are looking for the best approximation from a 2-dimensional
linear subspace at each step. In the two other versions of the weak relaxed greedy algorithms
(see GAWR and Wα-RGA), considered here, we approximate from a 1-dimensional linear
subspace at each step of the algorithm. This makes computational complexity of these
algorithms very close to that of the PGA. The analysis of these two versions turns out to
be more complicated than the analysis of the WGAFR. Also, the results, obtained for these
two versions, are not as general as in the case of the WGAFR. For instance, we present
results on the GAWR only in the case τ = {t}, when the weakness parameter t is the same
for all steps.

We introduce a new norm generated by a given dictionary D in a Banach space X :

‖f‖A1(D) := min{a > 0 : f/a ∈ A1(D)}.

If there is no a such that f/a ∈ A1(D) then we set ‖f‖A1(D) = ∞. Denote

A1(D) := {f ∈ X : ‖f‖A1(D) <∞}.

The results of this paper allow us to express the upper bounds of approximation by greedy
algorithms in terms of K-functional. This type of bounds have been obtained in [BCDD]
in the case of a Hilbert space. We remind a definition of the K-functional. Let two Banach
spaces Y ⊂ X with norms ‖ · ‖Y and ‖ · ‖X be given. Define for f ∈ X the K-functional

K(f, u) := K(f, u,X, Y ) := inf
y∈Y

(‖f − y‖X + u‖y‖Y ).

Then Theorem 2.2 implies for the WCGA and X with ρ(u) ≤ γuq, 1 < q ≤ 2, that

‖f c,τm ‖ ≤ C(γ, q)K(f, (1 +
m
∑

k=1

tpk)
−1/p, X,A1(D)).

Similarly, for the GAWR(t, r) and the XGAR(r), under conditions of Theorem 2.3 we obtain

‖fm‖ ≤ C(γ, q, t)K(f,m−1+1/q, X,A1(D)).

Theorem 1.2 gives for the WGAFR

‖fm‖ ≤ C(γ, q)K(f, (1 +
m
∑

k=1

tpk)
−1/p, X,A1(D)).

Theorem 4.1 gives for the CGAT and for the DGART

‖fm‖ ≤ K(f, δ,X,A1(D)).

Theorem 4.2 gives in the case of a Hilbert space for the WOGA and for the WGAFR

‖fm‖ ≤ K(f, (1 +
m
∑

k=1

t2k)
−1/2, H,A1(D)).

We note that in the case of OGA, i.e. WOGA with τ = {1}, the following error bound has
been obtained in [BCDD]

‖fm‖ ≤ K(f, 2m−1/2, H,A1(D)).
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