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Localized Tight Frames on Spheres *

F. J. Narcowich? P. Petrushev?® J. D. Ward}

Abstract

In this paper we wish to present a new class of tight frames on
the sphere. These frames have excellent pointwise localization and
approximation properties. These properties are based on pointwise lo-
calization of kernels arising in the spectral calculus for certain pseudo-
differential operators, and on a positive-weight quadrature formula for
the sphere that the authors have recently developed. Improved bounds
on the weights in this formula are another by-product of our analysis.

1 Introduction

Frames were introduced in the 1950s by Duffin and Schaeffer [2] to represent
functions via over-complete sets. Let us review the basic facts and terminol-
ogy for frames when the target functions belong to a Hilbert space H with
norm || - || and inner product (-,-). In that case, a set {¢;};e7s is a frame if
there are constants ¢, C' > 0 such that for all f € H

clFIP < D 1wl < ClFI™
JjeET

The smallest C' and largest c are called upper and lower frame bounds. If
C = ¢, we say the frame is tight. If C' = ¢ = 1, then the frame is normalized,
and if in addition ||¢;|| = 1 for all j, then the frame is an orthonormal basis.
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Frames, including tight ones, arise naturally in wavelet analysis on R"
when continuous wavelet transforms are discretized. They provide a redun-
dancy that helps reduce the effect of noise in data, and they have been con-
structed, studied, and employed extensively in both theoretical and applied
problems [1, 5, 6, 9, 11]. Tight frames, which are very close to orthonormal
bases, are especially useful in signal and image processing, for they simplify
the task of synthesizing a function from processed data [1].

On S", the n-dimensional unit sphere in R"*!, both wavelets and frames
have been developed (see [12, 15] for references and more discussion) and
applied to geoscience problems [7, 18].

Tight, well-localized frames are another matter. Although there have
been theoretical proofs of the existence of (normalized) tight frames on S”
(see Dykema et al. [3]), there is no computationally implementable method
of finding them.

The purpose of this paper is to construct and study a class of compu-
tationally implementable, well-localized, tight frames on S™. Central to this
construction is a class of extremely well-localized frame functions, which
arise in connection with kernels for certain pseudo-differential operators on
S™. This construction also has an interesting connection to wavelet masks.
The frame functions are of interest in their own right. In particular, they
can be used in the construction and characterization of many of the classical
Banach spaces including LP(S™), Besov and Triebel-Lizorkin. We will discuss
this in a subsequent paper that is now in preparation. Finally, the localized
frame functions give rise to improved quadrature formulas on the sphere,
and they allow us to obtain explicit upper and lower bound estimates on
the quadrature coefficients. We mention also that our the pseudo-differential
operators that we use provide a foundation of extending our construction to
other Riemannian manifolds.

This paper is organized as follows. In Section 2, an infinite series of
Hilbert space operators that forms a resolution of the identity is defined in
terms of a class of wavelet-like masks. Such a construction leads to simple
decomposition and reconstruction formulas within a Hilbert space setting. In
section 3, attention is focused on L?(S™) where the partial sums of the resolu-
tion of the identity are seen to be certain pseudo-differential operators when
the projections involved are interpreted as those associated with spherical
harmonics. These YDO operators are well-localized, provide good approxi-
mation orders. We discuss discretizing them, via quadrature, in section 3.2;
these discretized kernels lead to the construction of tight frames on S*. The



heart of the paper is in section 4, where a detailed analysis of the (point-
wise) localization of the kernels associated with the YDO operators is given.
Finally in section 5, much improved upper and lower bounds for quadrature
weights are obtained using the kernel approach of this paper. A key to this is
a new and extended Marcinkiewicz-Zygmund formula for classes of functions
which include polynomials.

2 Operator Frames

Let Pg,P1,P5... be a set of orthogonal projections on a Hilbert space H for
which P;P;, = ¢, P, and ZZOZO P, = I. In other words, the projections form
a resolution of the identity in #. Take a(t) to be in C(R), with support in
5,2] and let {1, }32 be an unbounded, monotonically increasing sequence,
with pg > 0; set j, := |logy(u,)|. For j =0,1..., define the operators:

1) 1,
6j,j1P0 + Za (2j+j1) PV7 Ho = 07
v=0

iy
Za(2j+jo)P”’ po > 0.

v=0

(1)

The split between py = 0 and po > 0 occurs later in connection with a split
between S! and S*, n > 2.

For fixed 7, the sum is finite; when ug = 0, it will be over those v for which
Jo satisfies ) —1<j,—j1 <j+1,and when pp > 0,7 —-1<7j5,—j0<j+ 1L
We have the following result.
Proposition 2.1 Ifa(t),a(t) € C(R), both with support in [5,2], and satisfy
a(t)a(t) + a(2t)a(2t) = 1 on [1,1], then > 2o AjA; = I, where convergence
s in the strong operator topology.

Proof: We will do the case when py > 0. The other case is nearly identical
to it. Let J > 0 be an integer. Multiply the terms in Zj:o A;A;. Note
that the coefficient of P, in this sum is Z}]:o a (54%5) @ (3855 ) Because the
support requirements on a and a imply that the only nonzero contributions
to this coefficient are from 5 = j, — jo and 7 = j, — jo + 1, we have that
0 Jv>J +Jo
Coefficient of P, = a (&) a (“—”) gy =4J + Jo

a(s)a(fs) +alehs)azhs), b <J+d




Applying the identity, with ¢ = 5£%;, to the expression on the right for
J» < J + jo shows that it is 1. We then have

]Zi;AjZ\; - Y P+ Z <2h)

o

/_\
?‘ t

N———
U

<

Jv<J+jo =J+jo

_ e

- Z P, + Z <2J+]o> a (2J+jo)P” (2)
]u<J+]0 J+]0

from which it easily follows that

J
1f =D AAFIP < (1 + lallolldllee)* D IPFIP
=0 dv>J+jo
Since the projections form a resolution of the identity, the right side will
vanish as J — oo, and so Z}]:o AjA; converges strongly to I. ([

There is an interesting way to view the partial sums from the proof.

Define the function
bt _ =l 3)
- a®a(e) t>1,

where a and @ satisfy the conditions in the proposition. Then from (2), we

see that
B, _ZA Zb(2J+JO) (4)

The point is that if we define the unbounded self-adjoint operator M =
Yoo o HwPy, then both A; and B, can be defined via spectral theory as A; =
a(279790 M) and B; = b(27/7% M). In section 3.1, the operator M will be
an order 1 pseudodifferential operator, essentially the square root of the
Laplace-Beltrami operator on S", and we will be working with ¥DO’s on S".

We can construct functions a and a that satisfy the conditions of the
proposition using biorthogonal wavelet masks [1, §8.3], mo(§) and mg(&),
which are continuous, 27-periodic functions that satisfy mo(7) = mo(7) = 0,
mo(0) = mo(0) = 1, along with mqg(&)me(&) +me(§+m)me(€ + ) = 1. Given
mg, we define

IN

mo(mlogy(1)), %_
alt) = { (wlog(1) S 5

t <2,
- 1
0 30 rt> 2,



and similarly for @ and mgy. Both a and @ are obviously continuous, have
support in [3, 2], and satisfy the identity a(t)a(t) + a(2t)a(2t) =1 on (3, 1].

Indeed, for any integer k > 0 it is possible to construct masks and cor-
responding dual masks that are at least in C**! and generate wavelets and
dual wavelets with k£ + 1 or more vanishing moments [1, §8.3], although the
number of vanishing moments may not be the same for mg and mg. Since
such mo(§) and my have zeros at least of order k+1 at £ = £, the functions
a(t) and a(t) will have derivatives to order k that will join smoothly to 0 at
t = 1/2 and t = 2. Both functions will be in C*(R). Of course, we can
also use one of the Daubechies masks that generate orthogonal wavelets. For
these mg = my, in which case a = a.

There is another way to generate a function for which a = a. Let g €
C>(R) have support in [3,2] and be such that |g(¢)] > 0 when £ <t < 2. It
is easy to check that the function a(t) defined by

g9(t)

a(t) =9 Vg(t/2)F +1g@)]* +[g(2t)]*
0, otherwise,

1
§<t<2,

(6)

is C* and satisfies |a(t)|” + |a(2t)]> = 1 when $ <t < 1. We summarize
these observations below.

Proposition 2.2 Let &k > 0 be an integer. There exist functions a,a €
C*(R) that are supported on [3,2] and satisfy a(t)a(t) + a(2t)a(2t) = 1 on
[%, 1]. In addition, there exist a € C*(R), including k = oo, such that @ = a,

in which case the identity above becomes |a(t)|” + |a(2t)]> =1 fort € [3,1].

We now can define decomposition and reconstruction operators for f € H.
We define the decomposition operator to be

f—w;=ALf.

From the proposition above, we have that f = If = Z;io Ajﬂ; f. Conse-
quently, we also see that f can be written as the sum

f = Z Ajwj,
j=0

which then gives us our reconstruction operator.
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Proposition 2.3 If a = a, then K;f = A f and the operator frame that we
have constructed is tight in the sense that

IF1P =D A 11
j=0

Proof: This follows immediately from the decomposition and reconstruction
formulas above. O

3 Frames on S"

3.1 UDO Frames on S"

We turn to the situation in which the underlying Hilbert space is H = L?*(S"),
with du being the usual measure on the n-sphere. Throughout the paper,
we will let A, := "T_l and {Yy, : ¢ =0,1,...,m = 1...d}} be the usual
orthonormal set of spherical harmonics [16, 21] associated with S”, where for

n> 2,
b4+ XN, (L4+n—2
h=_"" ) 7
= () 7)

Denote by H, the span of the spherical harmonics with fixed order ¢, and
let 11, = 691];:0 H, be the span of all spherical harmonics of order at most L.
The orthogonal projection P, onto H, is given by

dy

Pef = {f,Yem)Yem -
m=1

Using the addition formula for spherical harmonics, one can write the kernel
for this projection as

€—|—)\ (/\)
Ym Ym " ' )
S - S e

where \, = "T’l and PEO‘") is the ultraspherical polynomial of order A, and

degree ¢. We regard S™ as being the unit sphere in R**!, and we let the
quantity £ - n denote the usual “dot” product for R**1.

6



On the sphere, an operator K with a kernel of the form K(& - n) can be
written as a convolution on S"; that is, Kf = K x f, where

K f(§) = . K(&-n)f(n)du(n) -
Because of the form of the convolution, these operators commute with rota-
tions. Depending on the properties of the kernel, one may (and will!) apply
these operators to spaces other than L*(S™).

The spherical harmonic Y;,, is an eigenfunction corresponding to the
eigenvalue —(({ +n — 1) = X2 — (¢ + \,)? for Laplace-Beltrami operator
Agn on S". It follows that ¢ + A, is an eigenvalue corresponding to the
eigenfunctions Yy, ,m = 1...d}, of the pseudo-differential operator

I—n =/ )\?L - ASn

The operators A; introduced in section 2 can be written in terms of L,
if the projections are interpreted as those associated with the spherical har-
monics. Choosing the projections this way, setting u, = ¢ + \,, and using
the spectral theorem for L,,, we see that the A;’s become

5j,0P0 + a(2’jL1) n=1
T a(27979L,,) n =2, jo=[logy(An)],

where a € C*(R) is defined by (5). These are pseudo-differential operators
with kernels

=050+ 2300, a(2770) cos(€f), n=1, {-n=cosh
Y oa (52) £ P m), n2 2, o = [logy(An)).

We note that the assumption on the support of a implies that the orders of
the spherical harmonics in the kernels satisfy 2717071 < £ + X, < 2770+,
Virtually identical formulas and comments apply to the operators A; and

Aj(&n) = { (8)

their corresponding kernels Zj (€-7m). (Merely putting ~ over appropriate a’s,
A;’s, and A;’s will suffice!)

The partial sum By = Z}]:o AjK;, which is given in terms of b defined in
(3), has the spectral form

B, = b(2~/L,,).
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The kernel for B; is thus
5=b(0) + 2302 b(277C) cos(09), n=1, £-n=cosf
Zob (B2) 22 PO (E ), n>2, o= [logy(M)]-

(9)

We will study and establish various properties of such ¥DO kernels in sec-

tion 4. Here we will use those results to discuss the approximation properties
of these operator frames.

B;y(§-n) = {

Theorem 3.1 Let a, a be as in Proposition 2.2, with k > max{n,2}, and
let b be defined by (3). If f € LP(S"), 1 < p < o0, and if L > 0 is an integer
such that 277750 < (L + \,)7", then

1f = Boflly < CornFr(f)y, Eulf)yi=distis(f,T).  (10)
In addition, for 1 <p < oo or, if p= 00, for f € C(S"), we have
lim Byf = f. (11)
J =00

Proof: Apply Corollary 4.10 with x = b, k as above, and € = 277/, O

The theorem implies that B f approximates f to within an error compa-
rable to Er(f),, which is that for the best approximation to f from II; in
LP. Much work [10, 17, 19, 20, 24] has been done on estimating this error for
various smoothness classes and spaces. This work allows us to obtain rates
of approximation when f has additional smoothness requirements. A typical
result [10] is this: If f € LP(S™), with ||f|, = 1, belongs to a smoothness
class W3(S"), which is analogous to a Sobolev space, then Er(f), ~ L™,
Choosing f similarly and taking L ~ 27, we get a corresponding result for
our case: ||f —Byf|l, ~ 2.

3.2 Discretization: Tight Frames on S"

The frames themselves will be obtained by discretizing these formulas. Let
X be a finite set of distinct points in S”; we will call these the centers. There
are several important quantities associated with this set: the mesh norm,
hx = sup,cgn infeex d(&,y), where d(-,-) is the geodesic distance between
points on the sphere; the separation radius, gx = %min#gr d(&,¢&'); and the



mesh ratio, px = hx/qx > 1. The set of centers X is called p-uniform if
px < p. For p > n+1, there exists a p—uniform X with hx arbitrarily small
[13, Proposition 3.2]. Let X be the Voronoi partition of S* for X. (Other
partitions will do as well.) The region containing ¢ will be called Re.

The following quadrature formula is essential to our construction.

Theorem 3.2 ([13, 14]) There exists a constant ¢® > 0 (depending only on
n) such that for any L > 1 and a p-uniform set X in S™ with hx < ¢°/L,
there exist positive coefficients {c¢}ecx such that the quadrature formula

| Jmydun) =) _cef(©)

fex

is exact for all spherical polynomials of degree < L. In addition, ce ~ L ™"
with constants of equivalence depending only on n.

We remark that the in the papers [13, 14] only upper bounds on the
weights were established. Lower bounds, and a more precise version of the
theorem can be found in Theorem 5.4 and the remarks following it.

Fix p > n + 1. Pick a sequence of p-uniform sets X; so that hx, <
¢®279795=2 Then the quadrature formula above is exact for all spherical
harmonics of degree ¢ < 27+90%2 Also, ¢¢ a2 270F90)" and #X ~ 20F50)n,

The frame transform has the form w;(n) = Ajf(n) = (f((), 4;(C - n)).
The point is that w;(n) is a spherical polynomial of degree less than 27 7o*!,
because A;(¢ - n) is a spherical polynomial with degree less than 2/770+! In
the reconstruction formula this then contributes the term

Aus() = [ Ayl mus(dutn)

The product Aj(w - n)w;(n) is a spherical polynomial of degree less than
2Jtjo+l 4 9itjotl — 95+50+2 Tt can thus be integrated ezactly with the quadra-
ture formula, so that

Ajwi(w) = Y eedi(E-wwiw) = D (fdietie  (12)

£eX; £eX;

where ¥;¢(n) = /ceA;j(n-§), § € X, (13)

is the analysis frame function at level j. We can now prove this result.



Theorem 3.3 Let @ = a be as in Proposition 2.2, with k > max{n,2}, and
let A; be the kernel in (8). If f € C(S™) or, for 1 < p < oo, if f € LP(S*),
then f = Z;io deX](f, V;e)je, with convergence being in the appropriate
space. In addition, if f € L*(S*), the frame {¥j¢}jcz, ccx, is tight,

AP =D > KF el

7=0 ¢eX;
Finally, the frame functions have vanishing moments that increase with j.

Proof: From (12), we have that By f = Z;']:o Z§€Xj<f, Vie)Vje. By The-
orem 3.1 this converges to f in all of the spaces mentioned. To prove that
the frame is tight, just observe that for f € L?(S"), we have (B,f, f) =

Z;}:O dexj ‘(f, 1/1]-,5)‘2. Taking the limit as J — oo then yields the equa-

tion for || f||>. The statement concerning vanishing moments follows from the
structure of the A;’s. O

The next section is devoted to proving localization properties concerning
families of YDO’s depending on a small parameter. Applying the results from

there yields excellent localization properties for the level j frame function
defined in (13).

Proposition 3.4 Let @ = a be as in Proposition 2.2, with k > max{n,2},
let A; and By be the kernels in (8) and (9), respectively, and let ¢, ¢ be given
by (13). If 0 := cos™'(n - &), then for all 6 € [0, 71| there are constants C and
C', which depend on k, n, a, and X, such that these hold:

on(i+io)/2 ¢ on(J+io) ¢
[Yie(m)] < m and |B;(n-§)| < m-
Proof: For the bound on ;¢, apply Theorem 4.5 to A;(n - &), with kK = a
and € = 27777 then use the resulting bound, that ¢ a2 270+ and (13)
to obtain the estimate. To bound By (§ - 1), apply Theorem 4.5 with kK = b
and e = 277770, O
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4 Localization of YDO Kernels on S"

We want to study the localization properties of YDO kernels related to the
Laplace-Beltrami operator Ag. on the sphere. As we did earlier, let L, :=
VA2 — Agn and let k(t) € C*(R), with k¥ > max{2,n — 1}, be even and
satisfy

K@) < Co(1+|t]) " forallt €R, r=0,...,k, (14)

where « > n + k and C, > 0 are fixed constants. We remark that all
compactly supported, even C* functions satisfy (14), as do even functions in
the Schwartz class, S. Even functions in S satisfy (14) for arbitrarily large
k and «. Define the family of ¥DOs

= k(e +A))Py, 0<e< 1,
=0

Ken

T

along with the associated family of kernels

£ r(0) + 2302, k(L) cos 08, n=1,
Ks,n(g . 77) = { 2 =1 e+)\ ) (15)
ot > reo K(E( + An)) 3= Py (cos ), n > 2,

where cosf =¢-nand 0 <e < 1.

Our aim in this section is to obtain uniform bounds on the kernel K, (§-n)
for small e, with the bounds being explicitly dependent on €.

The simple estimates given below in section 4.1 on the terms in the series
used to define the kernels K., confirm that, under mild conditions, these

series are uniformly convergent. Let n > 2. Consider the ultraspherical
identity [22, (4.7.14)] with A = \,,

d
P (@) = 20, P (@),

Since A, +1 = A,12 and w,, = A\, 1ow,12/m, we have, for ¢ > 1,

d 0+ )\, . (—14 M\, o
(4 o) - ()

Wn

(-1
= 9 <)\;>\”+2> pz(i\rlzw)(x).

n+2wn+2

11



Multiply both sides by x(e(¢ + A,)) and sum on ¢ from 1 to co. Adjust the
summation index on the right side and on the left use %POO‘")(x) = 0 to
arrive at the identity

d

%Ka,n(m) = 2K, pio(). (16)

As can be directly verified, this holds even when n = 1.

4.1 Convergence issues and an L™ estimate on K.,

The series defining the kernels are uniformly and absolutely convergent, by
the M-test. This is easy to see for n = 1. For n > 2, start with the bound
[22, Eqns. (4.7.3) & (7.33.1)]

[P (cos )] < (E " o 2) = P(1), (17)

and note that

b4+XN, (L+n—2 {4+n—1 4
< < ne
- ( ! )_2( ! )_2(1+€)

From this and the assumptions on x(t), the terms in the series satisfy the
bound,

C+ N,

Anwn

20,140 _ 2Ce Y

IR(E(E+An))l on Lt el )" = (L el

‘PZ(’\") (cos)| <

which suffices for the M-test, since @« > n + k > n + 2 implies the series on
the right above is convergent. Note that the estimate holds even when n = 1,
provided the terms on the right are properly adjusted.

It is easy to take this a step further and obtain an estimate on || K. ,||co,
which we will need later on anyway.

Proposition 4.1 If k satisfies (14), then

3C, _
", 1
— (18)

n

[ Kenlloo <

12



Proof: From the series definition of the kernel and the estimate on each
term, we get this chain of inequalities:

>, 2C.e (D)

<
T = wn (1 + ef)a—ntl

2C, e~ (1) /°° 2C,. e~ "Dy
W 0 Wn(l+4eu)oentl

2C’,¢‘"< 1 >
< €+
W, a—n

Using ¢ < 1 and o —n > k > 2 in the previous inequality and simplifying,
we obtain (18). O

[ K enlloo

4.2 Integral representations

We now wish to obtain integral representations for the kernels K, (cosf). We
begin with the Dirichlet-Mehler integral representation for the Gegenbauer
polynomials [4, p. 177],

) 2T+ T+ 2N ™ cos ((€+ AN)p — M)
PN (cosh) = VAT (AT (2))(sin §)22 -1 /9 (cos @ — cos )2 d

Y

which holds for any real A > 0. We will take A = A, = "T’l, with n > 2

throughout this section. Multiply both sides of the previous equation by

%, and then simplify to get this:
-2 (7 C+ M) — A\
b )\nPE()‘")(cos ) = Tl + )"f)(g +n—2) / cos ((€+ An)p ) do.
AnWn, {!(sin §)n—2 o (cosf — cosp)lAn
(19)
where iy 1
24 N
ot 3) (20)

T A DO D(20)

Using the expression on the right in equation (19) in the series definition of
K. ,, we get this representation:

Tn " Cen(p)
K = ’ 21
=n(c0s0) (sin §)n—2 /9 (cosf — cos p)l=2n dp, (21)

13



where C. , is given by the series

Cs,n(so) =

- (4 M)l +n—=2)! [ sin(\,7)sin({+ \,)¢ n even
Z R(e(l+ An)) 0! cos(Apm) cos(f + A, n odd

(22)

=0

We want to put this series in a more convenient form. To begin, the
factor w is the product (¢ + A\,)({ +n —2)(l+n—3)--- (£ + 1),
which can be rewritten as

125t
L+ X)L +n—2)! ¢+ X, even,
7 = J] €+ 2= (=17 x{ | odd.

r=1

From this, we see that if we define the degree n — 1 polynomial

127+

Ques@)i= [T (= 1) { 2200 o o)

r=1

then we have that

cuti- Scermaeon TR 1 e

We want to make a few observations about the polynomial @,_;. First,
by direct calculation we have that Q,_1(—2) = (—1)"'Q,_1(2), so that Q,_;
is an even function for odd n and an odd function for even n. Second, the

zeros of @), 1 are located at +(\, — ), for r = 1,..., L"T’lj This means
that the function
o) = k() Qn1 (1) sin(tp) n even
' wt cos(ty) modd ’
is even in ¢ and has its zeros at t = £(\, —r) forr = 1..., |\, ]. In addition,

we have defined ¢ so that

Cen() =D _g(l+ o)
=0

14



We want to apply the Poisson summation formula (PSF),
> =Y fem). fw) = [ foea
UEZL veZ R

which holds for “nice” f, to f(t) = g(t + A,). Using the evenness of g and
what we said about its zeros, we see that the left side of the PSF becomes

D gln+An) =2 g(l+ ) = 2Ccn(9)
REZL =0
Employing elementary properties of the Fourier transform, we can show that
Fle) = ™) = e e (1L )R(2E2)

and so the right side of the PSF is

S i) = et ST (A e

VEZL VEZL

= & (DT Qu i) R(2E)

vEZ

Equating the two sides of the PSF and dividing by 2, we arrive at the fol-
lowing result.

Proposition 4.2 If k satisfies (14), then for n > 2 equation (21) holds with
Cen given by

Con() = (26)71 ) (=) Qo (i h )R (£22) (25)

veZ

In addition, for the n =1 case we have

K. 1(cosf) = (2me) 1) R(H2m) (26)

VvEZ

4.3 Estimates on C.,

We need to obtain bounds on the kernels C; ,, from the previous section. The
key to obtaining these bounds is this result.

15



Lemma 4.3 Let k satisfy (14). If 0 < j <n—1 and 0 < r < k are integers,
then, £ {t/k} € L' and
jw[" A (@)] < [ld7 (R} Il

Proof: Since k € C*, the derivative 2 W {t’k} is a linear combination of terms
of the form tPk(@, each of which is bounded by a multiple of (1 + [¢])PT7.
This is in L' because « —p — ¢ > a — (n — 1) — k > 1. This allows us
to apply standard pr@eﬂies of the Fourier transform to obtain the formula

(=) Hw &0 (w) = L {tix}, which immediately implies the inequality. O

Consider the function below,

(Z2)" Quorigh)A(2E2) = Y 70 (222)"RO(212),

where Qn1(2) = Y- oqu 227 is defined in (23). From Lemma 4.3, we have
that

(£22)" Qua(igh)R(2E2)

n—1 __j
Ia-
Zj:05 |%jn
Bn,k,ng_(n_l),

I {76} e

IN

where

By = Z|qw| max 14 (£}l (27)

Adding the inequalities we get for r = 0 and r = k£ and manipulating the
result, we get that

QBn,k,,.@&?*(nf 1)

Qua(ig;)R(£22)| <
et e

We can use this inequality in conjunction with the series for C, in (25) to
arrive at the bound,

QBn K _(n_l) Bn K -n
Conl@)] < (22)1Y —‘ = —‘ (28)

p+2mv p+2mv
VEZ 1+‘—5 uezl+‘—5

which holds for all ¢ € R and 0 < ¢ < 1. If we restrict ¢ to be in the
interval [0, 7], then the dominant term in the series on the right comes from
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v = 0. The other terms are each bounded above by By, j, .* "((2|v| —1)7) .
Summing them and then estimating the resulting series by an integral gives
e B - 2k —1
I =
vezo#o L+ ‘SDT| -
Multiply top and bottom on the left above by 1 + (f)lc anduse 0 < p <
and k£ > 2 to get

Z Bn,k,né‘in < 6Bn,k,ngin

v |k — k-
e

veZpro 1+
Combining this bound with that from equation (28) yields the result below.

Proposition 4.4 Let k satisfy (14), with k > 2 andn > 2. If 0 < ¢ <,
then the kernel C.,, defined in (22) satisfies the bound,

7Bn’k’,¢€_n
|Cenlp)l < —— (29)
1+ (%)
In addition, for the case n = 1 we have
TBi e !
K. 1 (cos )| < kR (30)
L+(3)

Proof: Only the second inequality requires comment. The proof we gave
works for the n = 1 case because it has the form given in equation (26),
which is essentially the same as that for the C;,,’s. O

4.4 Estimates on K,

We now turn to obtaining explicit bounds on the ¥DO kernels K., similar
to the bound on K. ; in (30). From the integral representation in (21) and
the bound on C; ,, we have that

| K n(cosf)| <

7By ks Y™ " /’T (cos B — cos @) "7 dyp (31)
o

(sin §)"—2 1+ (g)k
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The two values of 6 that present difficulties are §# = 0 and § = w. The
form of the inequality above is adequate for the § = 0 case, but needs to
be reformulated for the § = 7 case. To do that, we begin by denoting the
angle supplementary to an angle a by &, so throughout this section we will
let § = 7 — 6 and @ = m — . Changing variables in the integral on the right
above and using sin @ = sin « and cos & = — cos «, we have this reformulation

of (31):

n—

7Bp gk YnE™" /9 (cos @ — cos )"z d
0

| K. n(cosf)| < e =
el b (=)

(32)

The next step is to bound both of these integrals. Recall the sum-to-
product identity, cosa — cos 8 = 2sin O‘—;B sin ﬂfT‘x, which holds for all @ and

B. Assuming that 7 > > a > 7/2 and using the fact that S‘tﬂ is decreasing
for 0 <t < 7, we have that

6 < sin(3m/4) sin(7/4) _ cosa —cosf  _sin # sin ﬂ%"‘ <3
3n/4 /4 T p2—a® atf  ba =7
and so
n—3
COS ¥ — COSB 2 3(n—3) 2 n = 2 3(n—3)
s 3 <272 V3 < 2.2z 33
< p% —a? > - % { 1 n>3 — (33)

Assume that ¢ < 6 < /2, and apply (33) to (31) to get the chain of inequal-
ities below.

3(n—3)

14-277 BpjpuYne ™" /” (62 — p?)"2" dy
[7]

| K. n(cosf)| <

(sin§)n 2 1+ ()"
n-2 pr/0 (42 nzd
s g (2 —1)"2"dt
< 14-277 Buiwee | — 1+ (0/e)kth
= oI (sm@) /1 1+ (6/e)*t*
o 14 2" Byjonne "(m/2)" 2 / e
= (&) 1 t

Use 2(0/e)* > 1+ (6/¢)*, change variables of integration from ¢ — 1/¢, and
note that because k > max{2,n — 1} > n — 1, the resulting integral on the
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right is bounded above by fo (1—12)"2°dt = 27 3T(\,)2/T(2),) [23, p. 255).
After simplifying, we arrive at this estimate:

L1772 B el () 2/ T(2A)
g .
1+ (&)

The messy quantity in the numerator can be simplified considerably. This
requires employing the definition of 7, in (20), the formula for w,,, the familiar
properties of the I'-function, along with the less familiar duplication formula
23, p. 240], /7['(2z) = 227'T'(2)['(2+ 3), and manipulating the expressions
involved. The result is that

3(n
14-2

| K. n(cosf)| <

Wn—1 2
47’ T I(3)

Thus we can rewrite the previous inequality, which holds for ¢ < 8 < /2, as

3(n=3)

2 n—

Yl (An)*/T(20n) =

12

7wn—1Bnkn
K, ,(cosf)| < o
HenlesOl = 3 m L+ @1

If we now apply (33) to (32), with 0 < § < /2 (or, equivalently, m/2 <
6 < ), then

| K. .n(cosB)|

N

B jorVns " /‘5 (02 — @) dp
TGO o (228
(n— 3) a

14 - 2 Bn,k:,fi’yngin /9(52 ~2) 5 d(p
1+ (%) )(siné)"—2 0

Carrying out manipulations analogous to those for the previous case, we
obtain

7wn an k,k

| < €
4y/m(1+ (D))
The final case concerns 0 < # < . For such 0, we have, from the L*>
bound in (18), that

—n

| K¢ n(cosb)

3Cs _n _3Cx + &k 6C, .
e "< €S —— %€
Wn Wn 1+( ) Wn(1+(g)k)

which, when combined with equation (26) for n = 1, gives us the main result
of this section.

| K. n(cosB)| <

19



Theorem 4.5 Let k satisfy (14), with k > max{2,n — 1}. If0 < 6 < m,
then the kernel K., satisfies the bound,

Bn k,x _
K., (cosl)| < ——=—c™" 34
[Kenlcost)| < 1205 (39
where
7B1,k,n zfn = 1,
Bn,k,n = max{ﬁwc;f’ 7wn—21-/3%n,k,n} an > 2. (35)

We conclude this section with an application of this theorem to obtaining
a bound on the L' norm of K, ,(¢ - n), with n fixed. By the Funk-Hecke
formula [16, Theorem 6], this norm is given by

K (€ - ) dpa(€) = wa s / K. ,.(cos0) | sin™" 0 do),
Sn 0

which is of course independent of 1. For that reason we will drop any reference
to n and denote the norm by || K. ,||;. Here is the bound we want.

Corollary 4.6 Let n > 1. If k satisfies (14), with k > max{2,n}, then
1 Kepnllt < 2wn1Bn

Proof: By Theorem 4.5 and the remarks above, we have

™ T 3 n—1
. el . sin" -~ 6 db
||K57n||1 S (,:.}nl/ov |K5,n(COS 9)| Sin 0d9 S 5n,k,nwn,1€ /0 T(g)k

The integral on the right above can be estimated this way:
/” sin" 1 6 df o /”/E t"ldt
S 6 R
o 1+ (%) o 14tk

1 [e'¢)
dt
o[ [
{/0' " tk+1—n

kem < 9en
n(k—mn) — ©

The corollary then follows immediately from the estimate. 0
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4.5 Operator properties of K.,

We now turn to the operator properties of K. ,,. Our first result is calculating
the norm of the map of K., : LP — L4. After that we will prove a lemma
showing that for certain « the operator K. ,, will be a reproducing reproducing
kernel on II;,. We will close the section with a result showing that for such s
and £ < (L4 \,) ! then the norm of f — K., f is comparable to the distance
from f to Il, in appropriate norms.

Theorem 4.7 If k satisfies (14), with k > max{2,n}, then, for all 1 <p <
oo and 1 < g < oo, the operator K. ,: LP(S™) — LI(S") is bounded and its
norm satisfies

||K57”||p:q S 2wn—lﬁn,k,n(4wn_15n)_(%_%)Jr
where By 1. is defined in (35) and (z), = z forx > 0 and (z), = 0 otherwise.

Proof: The operators are all of the form K., * f and so, for the (p, q) pairs
(1,1, (00,00), (00, 1), all satisfy |Ken* £l < [Kenlallfll- By the Riess-
Thorin theorem [25, p. 95] and Corollary 4.6, we then have for 1 < ¢ <p < o0

||K5,n||p,q S ||Ks,n||1 S 2wn71ﬂn,k,n .

For the pair (1,00), we have || K., * flloo < || Kcnlloollfll1- By (18) and (35),
we have ||Ks,n||oo S %ﬁn,k,fcg_na and so ||Ks,n * f||oo S %ﬁn,k,feg_nn‘f“l' Apply
Riesz-Thorin to the pairs (p, ¢q), where % = (1—t)a+tand % =(1-t)a,

where 0 <t <land 0 <a <1, (% 1)and (1,00) to get

1
||K5,n||p,q S (2Bn,k,nwnfl)17t(§ﬁn,k,ngin)t = 2wnflﬁn,k,n(4wn71€n)it

Since%:(l—t)a%—t:%%—t,t: —%. Thus, for ¢ > p, we have

1
p

_(l1_1
||Ks,n||p,q < 2wn715n,k,n(4wn715n) (53

Putting the last inequality together with the one for ¢ < p then yields the
result. OJ

Lemma 4.8 Let L > 0 be an integer and let 0 < ¢ < (L+\,)~t. If k satisfies
(14), with k > max{2,n — 1}, and if k(t) = 1 on [0,1], then K.,(-n) is a
reproducing kernel on 1y, the space of spherical harmonics having degree at
most L.
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Proof: Let S(n) € II;,. Then, for { < L, we have that the projections
PeS(n) = Zf,f:l<5, Yim)Yem(n) and for £ > L, PpS = 0. From the definition
of K¢ ,, we see that

KenS() = SR+ A0)) (S, Vi) Ve ().

However, e({ + \,) < e(L+ \,) < 1, s0 k(e(£+ \,)) = 1 for all such . Tt
follows that

Ka,ns(ﬂ) = Z Z<S’ Y;f,m>Y;Z,m(77) = S(n),

=0 m=1

and so K., is a reproducing kernel on the space of such polynomials. U

Remark 4.9 Let L > 0 be an integer. If we choose € so that L = |e 1=\, ]|,
then by combining the previous theorem and lemma we get a familiar result
1

about harmonic polynomials: If S € II,, then ||S]|; < CnLn(Eﬁ)*HSHp.
We let EL(f), denote the distance of f € LP(S™) to I, i.e.,

Bu(f)y = o |1f — Sl (36)
Corollary 4.10 Let x satisfy(14), with k > max{2,n}, and in addition sup-
pose k(t) = 1 on [0,1]. If f € LP(S"), 1 < p < o0, and ¢ < (L + \,)7%,
then

||f - Ks,n * f”p S (1 + 2wn71ﬂn,k,n)EL(f)p : (37)
In addition, for 1 < p < oo or, if p= 00, for f € C(S"), we have
lim Ko+ f = £ (38)

Proof: By Lemma 4.8, the kernel K., reproduces harmonic polynomials in
II;. Consequently, if S € IIy, then K., * S =S, and

f-Kepxf=f—-S+K.,xS—K.,xf=I+K)(f—-09).
By Theorem 4.7 and this equation, we have that

If = Ken fllp < (L4 [[Kellpp)[[f = Sllp < (1 + 2018 k.0) 1 = Sllp-
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Taking the infimum over all S € IIj, yields (37). The limit in (38) follows
from (37) together with the fact that the spherical harmonics are dense in
LP for 1 < p < oo and in C(S") in the usual L*™ norm [21, § IV.2]. O

The estimate in (37) is useful for obtaining rates of approximation, simply
because rates of approximation by spherical harmonics are well known for
many classes of functions. See the discussion following Theorem 3.1.

5 Applications to Quadrature on S”

5.1 Marcinkiewicz-Zygmund Inequalities

In this section we wish to give inequalities resembling the Marcinkiewicz-
Zygmund ones for trigonometric polynomials. These inequalities provide
equivalences between norms defined through integrals and discrete norms
stemming from sampled points and certain weights. Here, instead of poly-
nomials, we will work with functions of the form K., * f for f € L'(S").
Out of this will come the inequalities derived in [13], with constants that can
be evaluated and via a proof that avoids the theory of doubling weights and
delayed means.

The place to start is with a decomposition of the sphere into a finite
number of non-overlapping, connected regions R, each containing an inte-
rior point ¢ that will serve for function evaluations as well as labeling. For
example, in the decomposition described in section 3.2, the centers in X play
the role of the special points, and the Voronoi region containing ¢ plays the
role of R¢. Indeed, we will let X be the set of the £’s used for labels and
X ={R: C S"|¢ € X}. In addition, let || X|| = maxecx{diam(R¢)}. The
quantity that we wish to estimate first is the magnitude of the difference
between the continuous and discrete norms for g = K, * f,

Ex = [lglh =D 19(&)|n(Re)

£ex

I’

where we assume that f € L}(S"). It is straightforward to show that

Ex <> [ lg(n) = g(&)ldu(n) < sup Fe (Ol

cex v Be
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where F. x(¢) == D e x fRs ‘Ke,n(ﬁ'o —K.,(¢ ()‘d,u(n), which is the quan-
tity we need to estimate.

Choose ( to be the north pole of S* and let # be the colatitude in spherical
coordinates; set 8, = cos '(n - () and ¢ = cos (£ - ¢). Denote by 9; and
0 , respectively, the high and low values for 6 over R¢. Using equation (16)
for the derivative of K. ,, we can write F_ x(() as

9"7
F. x(() = QWZ/ K. nyo(cost)sintdt|du(n)
¢ex /Re 1 /0¢
o
< QWZM(RQ/ | K¢ ni2(cost)|sint dt.
¢ex Oc

Divide S" into M = |7/||X||| equal bands in which (m — 1)7/M <
0 < mr/M, m =1,...,M. To avoid trivial situations and simplify later
inequalities, we will assume that M > 3. Call these bands By,..., By.
Each R¢ can have non-trivial intersection with at most two adjacent bands,
because diam(R;) < ||X|| < n/M. Soif Re C B,,UBy,41, then (m—1)1r/M <
0 <6 < (m+1)r/M. In addition, the sum of the contributions from all
R¢ C B,,, U B,,41 is bounded above by the quantity,

m—+1

e
27 p(Bm U Bpy1) / | K ni2(cost)|sintdt.
It follows that
M-1 ml
M
F.x(¢) < 27 ) (BmUBni) / | K. pyo(cost)|sint dt
m—1
m=1 M
M—1 ,mtl_ mt1
M c n—1 M .
< 2MWp_1 Z/ sin tdt/ | K¢ ni2(cost)|sint dt
m=1_ m=1_

Assume that we have chosen £ > n 4+ 2 > max{2,n + 1}. By the bound on
| K ni2(cost)| in Theorem 4.5 and because sint < ¢ on [0, 7], we have that

m+1
M T t

dt

M—-1 ,m+l_

M
F, < 2MWn-1Bnrorne "2 / t"ldt/
O D Dy nay 11 (DF
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The mean value theorem for integrals implies that for 2 <m < M — 1,

T ot t 2 _|_ 1 mily n
/ t”ldt/ @ < —(Z / et
m=1_ mo1. 14 (2)k M 1. 14
M M £
2 mﬂf
< 3t 7dt
M —lirr 1 + (E)

Summing both sides from m = 2 to M — 1, taking account of intervals
appearing twice in the sum, and doing some obvious manipulations, we obtain

M—1 m+1 m+l n—1 T in
—n—2 M n—1 M t 4 * 3 T /’E t dt
€ " dt ——dt < —— —_—
Z/rvn—lﬂ. /—1ﬂ. 1—|—(£)k - Me o 1+ tk

m=2 M M €

We have now come to the inequality,

or \" [ tdt 2-3°x;
Fe < 2 n— n K -t o
x(Q) < 27mwn 1B, {n (Ma) /0 1+tk+ Me }
——

27-[- _ 271' " n
< 2mn1fasrbn g {" 1 (Ve) e }

To finish up, we want to put our inequalities in terms of the ratio ||X||/e.
Since we have assumed that M > 3, we have that /M < 3||X||. Using this
in the previous inequality and simplifying, we arrive at this:

- 8| x| L (8IIXINT
F. < 273" Y 1Bniokr 14+ (3n)~ 1 =1
20 < 27 Wn-1Bnt2,k, 0z + (3n) 92

X XN\
< ore3ly lﬁmmugn{m%)1<||€||> }

We remark that if ||X] < e < 1, then the assumption that M > 3 is
automatically fulfilled. In addition, the right side of the inequality above is
independent of ¢, so it holds for the left replaced by sup.cgn F:, x(¢). Finally,
the inequality itself simplifies considerably. We collect all these observations
in the result below.
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Proposition 5.1 Let k satisfy (14), with k > n + 2, and, for f € L*(S"),
let g = K. x f. If X is the decomposition of S* described above and if
| X <e <1, then

X
ol ~ Y lo(€)n(Ro)| < 3'mi Bnean A (39

feX

This result leads immediately to a version of the Marcinkiewicz-Zygmund
inequities for S™.

Theorem 5.2 ([13, Theorem 3.1]) Let L > 0 be an integer and let 6 €
(0,1). If X is the decomposition of S™ described above and S € I, then
there exists a constant s, > 1, which depends only on n, such that

(L=)S <D 1S(E)u(Re) < (1+0)S|h (40)
£eX

holds whenever || X|| < ds, (L + \,) L.

Proof: Let « satisfy (14), with £ > n + 2. In addition, require x(t) = 1 for
t € [0,1). Choose € = (L + \,)""'. By Lemma 4.8, S = K., * S, and so
if we take f = S and [|X]| < e = (L+ A,)"! <1 in Proposition 5.1, then
g = K., *S =S there. Manipulating the resulting expression in (39) then
gives us

11 = Seex 1S(E) (Re)|
S, = su < 3"mwp_10y s
P LTSI 1Bnz

where the supremum is over all X and L > 0 such that ||X| < (L + \,)7!
and clearly depends only on n. Now, let

sp = max{1, 35, } < max{1,3"Tw,_18n+2kx} (41)

If we further restrict || X|| so that ||X|| < ds;'(L + A,)~" then (40) follows
easily. O

We now define an important map associated with II; and the decompo-
sition X and the corresponding finite set X. Let |X| be the cardinality of
X. We define the sampling map, T : IT;, — RIXI, by

TicS = (S(€)eex- (42)
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From Theorem 5.2, it follows that if || X| < ds, (L + A,)! holds and if
TxS = 0, we have that ||S||; = 0 and, hence, S = 0. The sampling map,
which is linear, is therefore injective. We state this formally below.

Corollary 5.3 Under the conditions in Theorem 5.2, the sampling map T'x
injective.

5.2 Estimates on Quadrature Weights for S"

Throughout the discussion below, we will assume that the conditions of The-
orem 5.2 hold. Consequently, the inequality (40) holds and Ty is injective;
moreover, if we let the subspace Vi, = TxII;, C R¥I, then T;l V= 1 is
a linear map. Also, we will let Sx = (S(§))ecx-

Since our interest here is in weights for quadrature, we start with the
linear functional ® : II; — R given by

®(S) = / S(n)du(n), S €1l

Let ®x(Sx) = ®(Tx'(Sx)) = ®(S). If Sx > 0, then |S(¢)| = S(¢) for
¢ € X, and so from (40) we have that

J

)= S(E)p < ISl = > S(€)u(Re) S—(SZ p(Re),
feX tex ex

provided only that ||X|| < ds;'(L + A,)~". For any é§ < %, this implies that

— > S(Eu(Re) < 2(S) < 1—15 > S(E)u(Re)

gex ex

Ux(Sx) = x(Sx) — —— Z S(&)u(Re) (43)

is positive on the cone 0 < Sy € Vi, which itself is contained in the positive
cone of RIX!,

There are two facts we will take account of. The first is that the positive
cone of Vj, is contained in the positive cone of RIX!. The second is that
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the vector (1)ecx, which is in both cones, is an interior point of the positive
cone of RI¥I. By the Krein-Rutman Theorem [8], there exists a positive linear

functional ¥ x that extends ¥x to all R, Consequently, there exist weights
ag > 0 such that Ux(z) = > .y aewe. Using this and ®x(Sx) = @(5) in
equation (43), we obtain

Y
$)= 2SO, ccmag T pu(Re), ac >0 (14)
£ex

This is of a course a positive-weight quadrature formula on S", with weights
bounded below by =2 1i(Ry).

We want to get upper bounds as well. To do that, we let L' = L%J and

fix § € X. If S € Iy, then S? is in IT;. The quadrature formula (44) then
implies that

1513 = ®(S) =Y ce(S(€))* = ¢, (S (%)™

£eX

Choose S(1) = XX ) S0, Yo () Vem(&) = Y £532 P (& - ), which
is real valued. The orthogonality of the Yy ,,’s 1mphes that

15115 = Z Z Yom(€0)Yem(€o) = S(o)-

=0 m=1
From the previous inequality, it follows that
1S3 1 1
5(&)* S(&)) Zz 0 fiii (An)(l)
From (17) and (7), we have

ieﬂ () LZ'uAn (+n—2
- WnAn ¢

nn

£=0

L' .
Z dg dim HLI
—0 “n Wn

Because dim I, = d’ﬁrl [16, p. 4], we finally arrive at the upper bound
Wn
o S e, 1o (L/2).

We summarize these results below.

28



Theorem 5.4 Adopt the notation of Theorem 5.2. In particular, s, is given
by (41) and depends only on n. For any 0 < § < % and any integer L > 0, if
|X| < s, (L+ A\,)7", then there exist positive weights ce, £ € X, such that
the quadrature formula,

Fn)dp(n) = cef(€), (45)
sm tex
is exact for spherical harmonics in Ily,. Also, the weights satisfy the bounds
1-26 Wh
———mRe) S < =5, I =[L/2]. (46)
1 - 5 dLI

The theorem just proved starts with L and puts conditions on the de-
composition X. It’s useful to turn this around, starting with X and putting
conditions on L. For a decomposition X, the largest L for which (45) holds
is L := [0s,'|X]7* — \n]. Now from (46) and (7), since L' = |L/2], we
have L — 9

H(Re) < e < gy =O(L) = O, (4D
where the constants involved depend on the dimension n for the sphere.

This has one further application. Fix § and consider the situation de-
scribed in section 3.2, where X is a p-uniform set of points with separation
radius gx and mesh norm h = hx, and X is the corresponding Voronoi de-
composition. For { € X, the corresponding R, contains a spherical cap of
radius ¢ = ¢x, so we have p(R¢) > Cq™. On the other hand, ||X| < 2h,
because the maximum distance from a point on S” to a £ € X is h. Since
q > p 'h, we have u(R¢) > Ch™. Putting this together with the remarks
above, we have ¢e = O{h"}.
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