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Abstract

A singularly perturbed convection-diffusion equation with constant coefficients is considered in a half
plane, with Dirichlet boundary conditions. The boundary function has a specified degree of regularity
except for a jump discontinuity, or jump discontinuity in a derivative of specified order, at a point. Precise
pointwise bounds for the derivatives of the solution are obtained. The bounds show both the strength of
the interior layer emanating from the point of discontinuity and the blowup of the derivatives resulting
from the discontinuity, and make precise the dependence of the derivatives on the singular perturbation
parameter.

1 Introduction

Singularly perturbed convection-diffusion problems (e.g., linearized Navier-Stokes equations at high Reynolds
number) arise in many applications and the precise determination of the behavior of their solutions is of
great interest. In particular, the numerical analysis of these problems has attracted the attention of many
researchers during the last two decades—see [3, 7] and their bibliographies—and to carry out such analyses
one needs to know a priori how the derivatives of the solution w of the problem depend on the singular
perturbation parameter. Much research has gone into the provision of such estimates. For elliptic convection-
diffusion problems on bounded domains, estimates of global Sobolev norms of u and some pointwise bounds
are given in [2], while in [5] pointwise bounds are proved. Further related references are given in the discussion
below.

The solution u to an elliptic convection-diffusion problem in a two-dimensional domain can in general
exhibit boundary and interior layers. Thus the bounds on derivatives of u in [5] show that u has exponential
boundary layers along two sides of the rectangular domain considered, certain bounds in [8] show a parabolic
boundary layer in u, and the bounds in [6] show both exponential and parabolic boundary layers. Our earlier
paper [4] extended the results of [6] by also considering the effects of incompatibilities in the problem data
at corners of the domain.

Despite the wealth of information provided by the papers cited, none of them gives any information about
the pointwise behavior of the solution u near interior layers. Such issues are examined in [9, Chapter IV],
but many details are omitted and it is difficult to ascertain the precise assumptions made. The purpose of
the present paper is to derive carefully pointwise bounds for the derivatives of the solution u of a simple
singular perturbation problem whose solution contains an interior layer. We study a convection-diffusion
problem on a half-plane. The interior layer is produced by a discontinuity in the boundary function, or a
derivative of the boundary function, at a particular point of the boundary.

When solving a classical (non-singularly perturbed) elliptic boundary value problem in which the bound-
ary function has a jump discontinuity, one obtains a solution whose derivatives become infinite near the
point of discontinuity. The situation is illustrated by the function tan~!(y/x), which is harmonic in the right
half-plane but whose boundary values are 7/2 for y > 0 and —n/2 for y < 0. If in addition the boundary
value problem is singularly perturbed, to what extent does the pointwise behavior of its solution derivatives
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depend on the singular perturbation parameter? We shall answer this question in the case of a singularly
perturbed convection-diffusion equation in a half-plane.
We study the half-plane problem

(1.1a) Lu := —eAu+ piug + pouy +qu = f forz >0,
(1.1b) u(0,y) = h(y) foryeR.

Here, p1, ¢ and ¢ are positive constants with 0 < ¢ < 1. The coefficient ps is also constant but no assumption
is made regarding its sign; it may even be zero. We denote by o = [p1, p2] the subcharacteristic direction and
by 3 = [—p2,p1] the direction normal to a. The function h is smooth on [0, c0) and has a smooth extension
from (—o00,0) to (—o0,0], but is allowed to have a jump discontinuity at 0. An integer-valued parameter
v > —1is used to indicate the degree of discontinuity that h has at the origin: the value v = —1 means that
h(4+0) # h(—0), while a value v > 0 means that

(1.2) D*h(+0) = D*n(=0) fork=0,--- ,v.

Our aim in this paper is to establish pointwise bounds for all derivatives of the solution w of (1.1) in
terms of the smoothness of h(y) for y # 0 and in terms of the degree v to which h is discontinuous at y = 0.
Furthermore, we shall make explicit the dependence of these bounds on the point of evaluation and on the
small diffusion parameter €. The solution of (1.1) will typically have an interior layer in its higher-order
derivatives that lies along the subcharacteristic p;y = pox that passes through the origin in R2. Along such a
layer the behaviour of the solution in the subcharacteristic direction (i.e., the direction of the characteristics
of the reduced differential operator defined by v — piv, + pavy + qu) is expected to be very different from its
behaviour in a direction perpendicular to those subcharacteristics. Thus we shall express our results using
“subcharacteristic” derivatives defined by D, = p1 D, + p2D, and “cross-characteristic” derivatives defined
by Dﬁ = —pQDx +p1Dy

Notation. Throughout the analysis, ¢ and C' are used to denote generic constants that are independent of
g,u,z,y and v. They can take different values in different places, even within the same argument. We also
use the Sobolev Hilbert spaces H"(R) and H"(Ry), H"(R?) and H"(R?), where we write Ry and R_ for
the intervals (0, 00) and (—oo,0) respectively, where Ry = Ry UR_, and where R% is the right half-plane
x> 0.

To state the main result of the paper, let 7 = \/2? + y? and let d(x,y) denote the distance from a point

(z,y) to the line p;y = pox. That is, d(z,y) = |p2x — p1y|/|a|? where || = /p? + p2.

Theorem 1.1. Let m and n be non-negative integers. Let h € H*™ Tt (Ry), f € H™ " 3(R2). Let v be
an integer with —1 < v < n and suppose that either v = —1 or h satisfies (1.2). Then there is a constant C
such that for 0 < e <1 the solution u of (1.1) satisfies

(1.3a) |D7Diu(z,y)| < C(14r~ ™4 for r < 2e,

(13b) |D(TDEU($,y)| <C (1 +E(fnJrVJrl)/2r7m+(7n+u+1)/2efcd2/5 + T,fmfnJrVJrlefcr/s) for 2¢ <r < 1.

The bound (1.3a) shows that the solution u(z,y) of (1.1) has the same singular behavior near the origin as
the solution of the half-plane problem for the Laplace operator with a discontinuity in the (v+ 1)th derivative
of the boundary data. (For the case v = —1, note the behavior of derivatives of the function tan=!(y/z).) The
bound (1.3b) shows a “parabolic” interior layer behavior of u(x,y) on the subcharacteristic line p1y = pax
when (z,y) is not close to the origin, and it shows how this interior layer changes as it approaches the
singularity at the origin. Note that the bounds are equivalent when r» = 2¢. In case the boundary function
h has more regularity at the origin than is allowed by the theorem, derivative bounds for the solution are
given in Lemma 2.1 below. Finally, we mention that derivative results related to the ones obtained here are
obtained in [4] for the equation (1.1a) with p; = 0 and posed in the unit square, but interior layers were not
considered in that paper.



2 Bounds on the convective derivatives

This section gives bounds on the convective derivatives of u. The analysis proceeds initially through an
investigation of some special cases of the final result. Then these special cases are combined to obtain the
desired bound.

The first special case is the situation where h has a certain amount of smoothness on all of (—o0, 00).
Then one expects the solution u to be well-behaved, in the sense that its lower-order derivatives should be
bounded independently of €, and this is borne out by the following result.

Lemma 2.1. Let m and n be non-negative integers. Assume that h € H™"*(R), f € H™ " T2(R3).
Then there exists a constant C such that the solution u of (1.1) satisfies
|D3' Dyu(z,y)| < CUIhllgmsnsr @) + 1 | m+n+2(mz))

for 0 <e <1 and all (z,y) such that z > 0.

Proof. Let F € H™2(R?) be an extension of f to R?* such that ||F||gm+nt2gz < Cllflzrm+n+zr2).-

Let U be the solution of the problem LU = F in R?. From the assumption ¢ > 0, an energy in-
equality can be applied to the problems L(D’;DiU) = D’;DSF, where k + ¢ = m + n + 2, to obtain
WU llgm+nt2m2) < C||F||gm+nt2(r2). Using a Sobolev inequality and the boundedness of the extension it
follows that |D;*DyU(z,y)| < C||f||Hm+n+2(R§r). Again using one of the Sobolev inequalities, one has

NU O, ) gmtntr(m) < C’||U||Hm+n+z(Rgr) < C||f||Hm+n+2(R§r). Since L(U — u) = 0 on R? , it remains to prove
the lemma in the case f = 0.
We use the Fourier transform

1 e .
iz, 7) / u(z, y)eVPidy.

=5 .
Denoting by & the Fourier transform of h, the problem (1.1) with f = 0 transforms to
(21) ey + Pris + (§” + ¢+ pigi)i = 0, (0,9) = h(3).

To solve (2.1) write @ = h(j)e™ where

(2.2) er? —pir — (sgj2 +q + p2gi) = 0.

Let A = \/p? + 4€2§2 + 4eq + 4epayi. The square root is defined in the cut plane with the cut along the
negative real axis, and producing positive values on the positive real axis. Since R(p? +4&2§%+4eq+4epagi) >
0, one has arg A% € (—7/2,7/2), so arg A € (—7/4,7/4) and RA > 0. We shall use the root

T__pl_A _ 2ey® 42 + 2poyi
2 pL+ A

of (2.2). Write A = Ay + Ayi; then A? — A2 = R(A?) = p? +4e2§? +4eq so Ay > max{p1,2ey} > p;. Hence
R(r) < 0. Furthermore, it follows that

2e4? + 2q + 2pa i 2e0? + 2q + 2psi R
(2.3) | = | 2287+ 20+ 2p20 y° +2q zjzlyl <C@+1).
p1+ A max{pi, 2y}
From Parseval’s formula,
o0 o0 R o0 R
ea) [ prDptuaPd= [ PmgPe @R g < [ PR di,
— 00 — 00 —0o0

and DDyt u(z, ) € L*(R) provided that the right-hand side of this inequality is finite.
Using (2.3) in (2.4),

o0 o0 R o0

(2.5) / | Dy u(z,y)* dy < C/ (L+ [gh)*™ "2 h(@)|* dy < C/ | D™ A(y)|* dy.

o0 —0o0 — 00



The integrations are only over y; the solution behaves continuously with respect to z. Therefore, applying
Sobolev’s inequality in one dimension, for all (z,y) one has

|D;" Dyu(z, y)| < Cllullgm+n+im) < Clh|| gm+n+i(w),

where the second inequality is a restatement of (2.5). This completes the proof of the Lemma. ]

Next we return to the more general situation where h(y) has only the degree of smoothness at y = 0 that
is specified by (1.2). Under the additional hypothesis that h(y) vanishes for y < 0, a bound is proved for the
convective derivatives of u(z,y) at those points (x,y) that lie below the subcharacteristic line y = p; *pox
passing through the origin.

Lemma 2.2. Let v > —1 be an integer. Let h € H"T2(Ry) and suppose that h(y) = 0 for y < 0. Suppose
that either v = —1 or h satisfies (1.2). Assume that (x,y) satisfies the inequalities

(2.6) x>0 and peox—py > 0.

Then for 0 < e <1 and each non-negative integer n there is a constant C,, such that the solution u of (1.1)
with f = 0 satisfies

(2.7a) |Dju(z,y)| < Cn(l+ r D) for r < 26,

(2.7b) |Dju(z,y)| < Cy (1 + g(ondvD)/2 (—ntv+1) /2 g—cd?/(er) ,,.—n+u+le—cr/s) for r > 2e.

Proof. The proof is in a series of steps.

(i) Suppose v > 0 and n < v. From (1.2), h € H"*!'(R). Then Lemma 2.1 shows that |Dgu(z,y)| < C for
all n <.

(i) Suppose n > v > —1. Since h = 0 for y < 0, the solution formula for (1.1) is (see, e.g., [4, (3.4)])

o0

(2.8) u(z,y) = h(t)¢y (t)%Kl (kr1(t)/(2¢))dt  for x > 0,

2me 0

where K7 is a modified Bessel function of the second kind [1] and we have set ri(t) = /z2 + (y — t)?,

k= /P2 +p2+4deq and (i (t) = ePretr2u=t))/(22) " (The square integrability of h and its derivatives
guarantees the convergence of this and subsequent integrals.) Define the integral operator Z by

mw = [ P

t1=t
Then v + 1 integrations by parts in (2.8) give

T o0

we) = 5o [ AOT (G KaGen /22 ),

2me Jo

where we used the property (1.2). To calculate Djju, note that Dy commutes with Z and that Dg(; = 0.
Setting

B, = /0 T R (e <<1Dg [%Kl(ml/(%))]) () dt,

we obtain

T pan
2.9 D} =—B,——B, ;.
( ) ﬁu(x)y) e n 2re n—1
It is therefore of interest to obtain bounds for B,,, and we pursue this next.

Iterations of the operator Z give the formula

TP F) () = e /Oo (t —t1)" F(t)dt.



Using this formula in B,,,

B [ [ e - wraons K (0)/(29)] e,

Interchange the orders of integration and take absolute values, recalling that ¥ < n and noting that from

Sobolev’s inequality, ¥+ ()| < C||h||gv+2(m ) is bounded on Ry . One obtains

(2.10) IB,| < C /0 T ) ‘Dg [Tl(t)Kl(’"l (1) /(25))} ‘ dt.

To calculate the integrand we will use the formula [1, (9.6.28)]

(2.11) (A‘ldil)\) KL (V)] = (D" AT K (N).

Set A = xr1/(2¢) and define the operator D(-) = A='Dy(-). Noting that ;! = (k/(2e))A~", Ay = Kz /(2e71),
Ay = k(y —t)/(2er1), and setting p(z,y) = —p2x + p1(y — t), we get

Dpp = |a|27 5
K K
Dy = ZFBp =% D
o 2 g2t
1 K3 .
Dg EKl(nrl/(Zs)) = @MD()\ Ki(\).

Let [j, k,¢] denote a term of the form Ce™Ip*D!(A~'K;())), where j,k and ¢ are non-negative integers.
Then

(2.12) Dglj, k, ¢ = k[j, k-1, +[j+2,k+1,0+1].

If £ = 0, the first term on the right hand side of (2.12) is not present. The following general formula is easily
proved by induction:

[n/2]
nll
Dy [ /2] = 3 pn =241, m2t )

where |[n/2]| denotes the largest integer m that satisfies m < n/2. Applying this formula in (2.10) then
invoking (2.11), we obtain

[n/2] 00
[Bal £ C ) ety / 2 (1 (26)) DG () K e (w1 /(22)) dt.
=0 0

We make the change of variable ¢ = 2e7 in the integrals. Set £ = z/(2¢), n =1y/(2¢), p1 = /& + (n — 7)?
and p = /2 +n?,s0r =2ep. Let i = —p2€ + p1(n — 1), so u = 2¢fi. We obtain

[n/2] oo
(2.13) |B,| < Ce vt Z / AR |ﬁ|”*2lp1_(n_£+1)eplEH’Z(”*T)Kn,prl (kpy) dr.
=0 70

The remainder of the proof divides into two cases: r < 2¢ and r > 2&.

(iii) Supposer > 2¢. Here, p = /€2 + 12 > 1. If ¢ > min{1/v/2,p1/|a|}, then clearly p; > min{1/v/2,p:/|a|}.
If ¢ < min{1/v/2,p1/|a|}, we claim that 5 < 0: for if not, then the inequality n < po&/p; of (2.6) implies that
n? < p3&?/pi so & +n? < (pf +p3)&2/pi = |a?&?/p? < 1, a contradiction; furthermore n? > 1—¢* > 1/2 so
|T —n| =7+ |n| > 1/v/2 and p; > 1/4/2. Hence in either event kp; > ¢ > 0, so we may use the inequality



K;(kp1) < Cpfl/ze_’w1 in (2.13). (See [1, (9.7.2)] for the corresponding asymptotic formula.) With this,
we obtain

n/2]
(2.14) |Bn| < Ce Y7 / " T () ar,
t=0 70

where ((1) = e (FP1—P1E=P2(n-T))
To estimate the integrals in (2.14) two inequalities are needed. Setting py = /€2 + s2 one has

K2p5 — (p1€ — pas)?
kp2 +p1& — p2s
(p1 + p3 + 4eq) (&% + 5%) — pi€® — p2s” + 2p1pats
kp2 +p1€ — pas
(p2€ + p15)? 4eq(€? + %)
Kp2 + 1§ —p2s  Kp2 + pr€ — pas

Kkp2 — p1§ +p2s =

The Cauchy-Schwarz inequality yields p1& — pas < kpa, SO
0 < kp2 + p1& — p2s < 2Kps.
Therefore

(p2€ +p18)2_

Kkp2 — p1§ + p2s >
2Kp2

Replacing s by 7 — n and noting that p, then becomes p;, we obtain

(p2f +pi(r—m)*

2.15 — — >
( ) kp1 — p1€§ +pa(T — 1) > e

Also, since po€ > pu1p, (P26 +p1(T =) = ((p2€ —p1n) +p17)* > (26 —p1m)® +pir?. Using this inequality
in (2.15) and setting 6 = |p2& — p1n|, we get

2 g

2.16 — -n) > .
(2.16) FpL=PiEpe(T =) 2 5o+ 5 o
Both (2.15) and (2.16) will be used in what follows. Note that &§/|a|? is the distance from (&,7n) to the line

p1n = p=£ in the £n-plane.
In (2.14) write ¢ = ¢'/2¢"/2. Use (2.15) to bound one of the factors ¢(*/? and (2.16) to bound the other

factor. This yields
((r) < e—Ccp26+p1(T=n))?/p1 o —c(6%+72) /o1

Now use the inequality
|ﬁa|€*C(P2E+P1(T*77))2/01 < CPT/2

to obtain

|Bn| < Ce—ntvtl /Oo 7_1/+1p;(n+3)/26—c(62+7—2)/p1 dr.
0

Hence |By,| < Bp,1 + By 2 where the two terms refer to integrations over (0, p) and (p, co) respectively.
If n > 0, since p2¢ > p1n one has £ bounded below by Cp. Hence for all 7 > 0 and all 7,
V2p1 > £+ |7 =
S {Cp+|7'—n| ifng>0
T |lE+Tm+n iEn<O
(2.17) > C)p.



First consider B, 1. For 7 < p, one has p1 <&+ |7 —n| < {+ p+|n| < Cp. Invoking this inequality and
(2.17),

P
Bn,l — C67n+u+1 / 7_1/+1pf(n+3)/2€7c(62+‘r2)/p dr = C67n+u+1p7(n+3)/2€7c62/p /p 7_1/+1€7c7'2/p dr.
0 0
Making the change of variable z = 72 /p we obtain

p
Bn,l — C87n+1/+1p(I/fnfl)/2efc62/p/ ZI//Zefcz dz
0

< Cs—n+u+1p(u—n—l)/2e—ct52/p

(218) — C8(7n+1/+3)/2r(7n+1/71)/267662/(51‘)'

Next consider By, ». For 7 > pone has p; < &+ 7+ |n| < V2p+7 < Cr, 50 e=°7° /P < e=°T Invoking
this inequality and (2.17),

Bn72 S Cs—n+u+1 /oo 7_1/+1p—(n—i-B)/2e—c-r dr
p
S Cs—n+u+1p—(n+3)/2pu+le—cp

— 06(3771)/27_1/7(n+1)/267cr/5
(2.19) < Cer—mtve=er/e,
since (r/e)"/?e~°"/¢ < C and €'/? < (r/2)'/2. From (2.18) and (2.19),
|Bn| S Bn L +Bn2 S Ce(fn+u+3)/27_(7n+1/71)/267cd2/(5r) + Csr7n+1/€7cr/5.
Therefore, recalling (2.9),
< C(ze™'Bp,+e'B,_1)
< CE(—n+u+1)/2T(—n+u+1)/2€—cd2/(sr) + Cr—n—i—u—i—le—cr/s

+C6(—n+u+2)/2T(—n+u)/2e—cd2/(sr) + Cr—n+u+le—cr/s
Ca(—n+u+1)/2T(—n+u+1)/2e—cd2/(sr) + Cr—n—l—u—i—le—cr/s’

|Diu(z,y)|

IN

since '/2 < (r/2)'/2. This proves (2.7b).

(iv) Suppose r < 2¢. In this case, p < 1. Using (2.13) we write By, < By 1 + By 2 where the two terms refer
to integrations over (0,4) and (4,00) respectively. Now |a|*~%¢ < Cp?_ﬂ since n — 2¢ > 0 in the summation
of (2.13), so it follows that

[n/2] .4
By < Cemmtvit Z / T e &R (k1) di
=0 /0

1 =

and

[n/2] oo
(2.20) B, » < Centvtl Z / T”“pl_e_leplﬁpzm*ﬂKn,ul(/ipl) dr.
=0 74

2 =

Counsider first the bound on By, ;. When 7 € (0,4), one has p; < C so K,,_¢41(kp1) < Cpf”“f1 (see [1,
(9.6.9)] for the corresponding asymptotic formula). As eP1€+P2(1=7) < €' we have

=

4
B, < Cs_”+”+1/ T”+1pf”72d7'.
0



Now p1 > e(§+ |7 —n|). If p < 0 one has p1 > c(§+|n|+7) > clp+ 7). If n > 0, then using (2.6) one
has n < C¢ so £ > ¢p; hence p1 > ¢(p + |n — 7]). Therefore in either event we get p1 > ¢(p + |b — 7|) where
0<b<n<p. Since v < n,

v+1

o0
B,1<C —n+v+1/ T—d
e otz

S C€7n+u+1p7n+u

(2.21) < Cer™mtv,

Next consider B, 2. For 7 > 4 one has p1 > 7 — || > 1, so in (2.20) we can use the inequality
Kn—g11(rp1) < Cpy /?e=#P1. Also invoking (2.16) we obtain

[n/2]
Bn,2 < Ce vt Z /oo TV+1p;l73/26—(’101—plﬁ—Pz(ﬂ—T))dT
=0 V4

e

_ 2

S CsfnJrVJrl / 7_1/+1p1 3/26707' /p1 dr
4

o] 7_2 3/2 5
— CsfnJrVJrl/ 7_1/72 <_> e~ T /pld,r
4 P1

o0
SCE_"+”+1/ rV=2e=em?/P1 gy
4

00
S CsfnJrVJrl/ 7_1/72€7c7'd7_
4
(2.22) < Qe vt

where the penultimate inequality follows from p; < {47+ || <2+ 7 < 27.
From (2.21) and (2.22),
|Bn| < Cer ™" 4 Ce "tV HL < Cep Y

as r < 2e and n > v. Consequently
|Dju| < C(re '*Bn,+¢e B, 1) <Cr "™+ for r < 2e.

This completes the proof of (2.7a) and of the lemma. ]

It will be noted that in Lemma 2.2 the order of the derivative being estimated does not depend on the
regularity assumed by h. This is possible because the vanishing of h for y < 0 and the condition (2.6) imply
that the derivatives are being estimated in a region associated with a zero boundary condition.

Now we give the main result of this section. In it, the inequalities (2.7) are established without requiring
that h satisfy (2.6).

Theorem 2.1. Let n be a non-negative integer. Let h € H" 1 (Ry). Let v > —1 be an integer with v < n
and suppose that either v = —1 or h satisfies (1.2). Then there is a constant Cy, such that for 0 < e <1 the
solution w of (1.1) with f =0 satisfies the inequalities (2.7a) and (2.7b).

Proof. To start, note that if » = —1 it suffices to prove the theorem in the two cases h(y) = 0 on (—o0,0)
and h(y) = 0 on (0,00), since the general result then follows from the linearity of the problem. The proofs
of these two cases are similar so one can assume that

(2.23) h(y) =0 for y < 0.

If v > 0 it also suffices to prove the theorem under the assumption (2.23), as the following argument shows.
Let h, € H" 1 (R) be a function with D*h,(0) = D*h(£0) for k = 0,--- , v, and let u, be the solution to the
problem Lu, = 0 for > 0, u4(0,y) = ha(y). From Lemma 2.1, |D*u,(z,y)] < C for k =0,---,n and all
(z,y) such that > 0. Therefore it suffices to prove that the function u — u, satisfies the inequalities (2.7a)



and (2.7b). Thus we may assume that h satisfies D¥h(£0) = 0 for k =0, --- ,v. We then write h = h +h_
where hy = 0 when y < 0 and A_ = 0 when y > 0, and again the proof has been reduced to the proof under
the assumption (2.23).

Lemma 2.2 yields (2.7) immediately for all (z,y) such that z > 0 and poz — p;y > 0. It remains to prove
(2.7) for all (z,y) such that z > 0 and psx — p1y < 0. Let hy € H""(R) be an extension of h from [0, 00)
to R. Let u; be the solution of the problem

Luy =0forz >0, wui(0,y) = hi(y) for y € (0o, 00).
By Lemma 2.1 we have
(2.24) |Djuy(z,y)| < C for x > 0.

Let us =u —uy, ha = h — hy, so ha(y) = 0 for y > 0. Let us and hs be defined by

uz(w,y) = ua(z,-y), ha(y) = ha(~y).

Then ug is the solution of the problem
—eAuz +prug e — paugy +quz =0forx >0,  u3(0,y) = hy(y) for y € (~o0,00).

By its definition, h3(y) = 0 for y < 0. Applying Lemma 2.2 to ug while noting that the coefficient of ug , in
the above differential equation is —p», we see that |(p2Dg + p1Dy)"us(x,y)| is bounded by the right-hand
sides of (2.7) for z > 0 and —p2x — p1y > 0. Hence Dju» satisfies (2.7) for all (z,y) such that z > 0 and
—p2x + p1y > 0. Using the triangle inequality and (2.24), it follows that Dju satisfies (2.7) for all (z,y)
with —poz 4+ p1y > 0. This completes the proof of the theorem. [

3 Bounds on all derivatives

This section contains the proof of Theorem 1.1. One can subtract from u the solution @ of the problem
La= fforz>0,a(0,y) =0 for y € R, and apply Lemma 2.1 to bound the derivatives of . Thus it suffices
to prove Theorem 1.1 in the case f = 0.

Note that the inequality (1.3b) of Theorem 1.1 is slightly different from the inequality (2.7b) of Lemma 2.2
and Theorem 2.1 in two respects: in (1.3b) there appears the factor e=cd’/ ¢, whereas the corresponding
factor in (2.7b) is e’CdQ/(”); also, the inequality (1.3b) is asserted only for a bounded range of r, which is
(arbitrarily) taken to be r < 1. Since e=¢@"/(e7) < e=¢d*/¢ for < 1, the inequality (2.7b) implies (1.3b) if
m = 0. The proof of Theorem 1.1 is by induction on m; the case m = 0 is covered in Theorem 2.1. Let M
be a non-negative integer, and assume (1.3) holds true for m = M and all n > 0.

One has D2 + D3 = |a*(D3 + Dj), so the differential equation is —¢|a|~*(Dau+ Dju) + Dau + qu = 0.
Let (z,y) be given with 2 > 0. For s > 0, define w(s) = Dg’[Dgu(x +p18,y+p2s) and F(s) = (6D£"Dg+zu+
|a|2qD£"Dgu) (z + p1s,y + p2s). The differential equation gives

(3.1) —ew" + |a*w’ = F.

The proof is now divided into two cases.
The case r > 2e. Using the integrating factor e*|“‘2s/g, one obtains
1
(3.2) W' (s) = w' (1)e=lo(1=9)/2 +a—1/ Ft)e=lolt=9)/e gy,
s

Integrating (3.2) over (0,1) and then solving for w'(1), one obtains

2 1 1 R
(3.3) w'(1) = L w(1) — w(0) —5—1/ F(t)e~loelt=s)/eqpqs| .
5(1 —e~lal /E) s=0Jt=s



Taking s = 0 in (3.2) gives
2 1 2
w'(0) = wl(l)e—\al /e +E_1/ F(t)e_‘o‘l t/eqs.
0

Using (3.3) to replace w'(1) in this formula, one obtains

"0) = M (1) — (0)_51/1 ' F(t) ~lal?(t=5)/= g4
v a 5(1_e—|a\2/6) v v s=0 Ji=s ¢ i

1
+s*1/ F(t)elalt/=gt.
0

Taking max |F| out of the integrals yields

(3.4) DX DjuCe, )| = u'(0)] < C[w(O)] + (D] + max |F(s)].

Let r(s) = \/(z + p15)2 + (y + p25)2, so 7(0) = r. For s > 0, one can show that r(s) > cr. Since v + 1 < n,
the bounds on the right hand sides of (1.3b) are bounded by a constant times the corresponding bounds at
s = 0. (This observation uses the fact that the distance d(s) from the point (z + p1s,y + pa2s) to the line
p1y = pox is independent of s.) Therefore, using the inductive assumption, if r > 2¢

|DA ! Diu(z, )| < C(Jw(0] + [w(1)] + | F(0)])

<C (1 + 6(—n+u+1)/2T_—M—i—(—n—i—u—i—l)/2€—cd2/s + T—M—n—i-u—i-le—cr/s)
+Ce (1 + 6(*”*2+V+1)/27-*M+(*n*2+’/+1)/2e*cdz/s + T—M7n72+1/+1efcr/€)
=C (1 + 6(—n+u+1)/2T—M+(—n+u+1)/2e—cd2/s + T,—M—n—i—u—i—le—cr/s)

+C (6 + 6(_n+u+1)/2r_(M+1)+(_n+"+1)/26—0d2/5 + Er—lr—(M+1)—n+u+1€—cr/s) )

Since 2¢ < r < 1 this inequality gives (1.3b) with . = M + 1, and so completes the inductive proof of (1.3b).

The case r < 2¢. Let s* > 0 be the smallest number such that r(s*) = 2¢. Using the integrating factor
e~1ol’s/s and integrating from 0 to s* one obtains

*

s
w'(0) = e""‘lzs*/gw'(s*) +et / e*‘o‘lzt/EF(t)dt.
0

Consequently

*

' (0)] < |w'(s™)] +61/03 |F'(t)]dt.

For |w'(s*)| we use the bound in (1.3b) and for |F(t)| we use the inductive assumption. Since r(t) > c(r +1t)
we get

5

|w’(0)| < CTﬁM?n+V+1 + 0671 / [5(7‘ + t)*M*(n+2)+V+1 + (7. + t)7M7n+V+1]dt
0

< CT7M7n+I/+1 + C[Tfo(n+2)+I/+2 +571T7M7n+1/+2]

— CT_M_n+V+1 + OT_(M+1)_n+V+1 + 05_17'2 X r—(M+1)—n+V+1‘

Since r < 2e < 2, & 'r? < 2r < 4. Therefore |[D)*! Dju(z,y)| = |w'(0)| < Cr—(M+1)—ntv+l which gives
(1.3a) with m = M + 1, and so completes the inductive proof of (1.3a). |
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