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THE ENTROPY IN THE LEARNING THEORY. ERROR ESTIMATES

S.V. Konyagin and V.N. Temlyakov

Abstract. We continue investigation of some problems in learning theory in the setting
formulated by F. Cucker and S. Smale [CS]. The goal is to find an estimator fz on the base
of given data z := ((x1, y1), . . . , (xm, ym)) that approximates well the regression function fρ of

an unknown Borel probability measure ρ defined on Z = X × Y . We assume that fρ belongs
to a function class W . It is known from the previous works that the behavior of the entropy
numbers εn(W, C) of W in the uniform norm C plays an important role in the above problem.

The standard way of measuring the error between a target function fρ and an estimator fz is
to use the L2(ρX) norm (ρX is the marginal probability measure on X generated by ρ). This

way has been used in the previous papers. We also follow this way in the paper. The use of
the L2(ρX) norm in measuring the error has motivated us to study the case when we make
an assumption on the entropy numbers εn(W, L2(ρX)) of W in the L2(ρX) norm. This is the

main new ingredient of the paper. We construct good estimators in different settings: 1. we
know both W and ρX ; 2. we know W and we do not know ρX ; 3. we only know that W is
from a known collection of classes and we do not know ρX . An estimator from the third setting

is called universal estimator [DKPT].

1. Introduction

We discuss in this paper some mathematical aspects of supervised learning theory. Su-
pervised learning, or learning-from-examples, refers to a process that builds on the base of
available data of inputs xi and outputs yi, i = 1, . . . , m, a function that best represents
the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y . The central
question is how well this function estimates the outputs for general inputs. The standard
mathematical framework for the setting of the above learning problem is the following ([CS],
[PS], [DKPT],[KT]).

Let X ⊂ R
d, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z = X × Y . For

f : X → Y define the error

E(f) := Eρ(f) :=
∫

Z

(f(x) − y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability measure on Y and ρX - the
marginal probability measure on X (for S ⊂ X, ρX(S) = ρ(S × Y )). Define

fρ(x) :=
∫

Y

ydρ(y|x).

1
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The function fρ is known in statistics as the regression function of ρ. It is clear that
if fρ ∈ L2(ρX) then it minimizes the error E(f) over all f ∈ L2(ρX): E(fρ) ≤ E(f),
f ∈ L2(ρX). Thus, in the sense of error E(·) the regression function fρ is the best to describe
the relation between inputs x ∈ X and outputs y ∈ Y . Now, our goal is to find an estimator
fz, on the base of given data z = ((x1, y1), . . . , (xm, ym)) that approximates fρ well with high
probability. We assume that (xi, yi), i = 1, . . . , m are independent and distributed accoding
to ρ. There are several important ingredients in mathematical formulation of this problem.
We follow the way that has become standard in approximation theory and has been used
in [DKPT] and [KT]. In this approach we first choose a function class W (a hypothesis
space H in [CS]) to work with. After selecting a class W we have the following two ways
to go. The first one ([CS], [PS], [KT]) is based on the idea of studying approximation of
a projection fW of fρ onto W . In this case we do not assume that the regression function
fρ comes from a specific (say, smoothness) class of functions. The second way ([CS], [PS],
[DKPT], [KT]) is based on the assumption fρ ∈ W . For instance, we may assume that fρ

has some smoothness. The next step is to find a method for constructing an estimator fz

that provides a good (optimal, near optimal in a certain sense) error ‖fρ−fz‖ for all fρ ∈ W
with high probability with respect to ρ. A problem of optimization is naturally broken into
two parts: upper estimates and lower estimates. In order to prove upper estimates we need
to decide what should be the form of an estimator fz. In other words we need to specify
the hypothesis space H (see [CS], [PS], [KT]) (approximation space [DKPT], [KT]) where an
estimator fz comes from.

The next question is how to build fz ∈ H. In this paper we discuss a standard in statistics
method of empirical risk minimization that takes

fz,H = arg min
f∈H

Ez(f),

where

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2

is the empirical error (risk) of f . This fz,H is called the empirical optimum.
The paper [CS] indicates importance of a characteristic of a class W closely related to

the concept of entropy numbers. For a compact subset W of a Banach space B we define
the entropy numbers as follows

εn(W,B) := inf{ε : ∃f1, . . . , f2n ∈ W : W ⊂ ∪2n

j=1(fj + εU(B))}

where U(B) is the unit ball of Banach space B. We denote N(W, ε,B) the covering number
that is the minimal number of balls of radius ε needed for covering W . In the papers [CS],
[DKPT], [KT] in the most cases the space C := C(X) of continuous functions on a compact
X ⊂ R

d has been taken as a Banach space B. This allowed to formulate all results with
assumptions on W independent of ρ. In this paper we obtain some results for B = L2(ρX).
On the one hand we weaken assumptions on the class W and on the other hand this results in
the use of ρX in the construction of an estimator. Thus, we have a tradeoff between treating
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wider classes and building estimators that are independent of ρX . We show in Section 4
that in some special cases of interest in applications we can construct universal estimators
for wider classes. In [DKPT], [KT] the restrictions on a class W have been imposed in the
following form:

(1.1) εn(W, C) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(C).

In this paper we impose a weaker restriction

(1.2) εn(W,L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(L2(ρX)).

After building fz we need to choose an appropriate norm ‖·‖ to measure the error ‖fρ−fz‖.
In [CS] the quality of approximation is measured by E(fz)−E(fρ). It is easy to see that for
any f ∈ L2(ρX)

(1.3) E(f) − E(fρ) = ‖f − fρ‖2
L2(ρX).

Thus the choice ‖ · ‖ = ‖ · ‖L2(ρX) seems natural. This norm has also been used in [DKPT],
[KT] for measuring the error. The use of the L2(ρX) norm in measuring the error is the
main reason for us to consider restictions (1.2) instead of (1.1).

One of important questions discussed in [CS], [DKPT], [KT] is to estimate the defect
function Lz(f) := E(f) − Ez(f) of f ∈ W . If ξ is a random variable (a real valued function
on a probability space Z) then denote

E(ξ) :=
∫

Z

ξdρ; σ2(ξ) :=
∫

Z

(ξ − E(ξ))2dρ.

For a single function f the following theorem from [CS] is a corollary of the probabilistic
Bernstein inequality: if |ξ(z) − E(ξ)| ≤ M a.e. then for any ε > 0

(1.4) Probz∈Zm{| 1
m

m∑
i=1

ξ(zi) − E(ξ)| ≥ ε} ≤ 2 exp
(
− mε2

2(σ2(ξ) + Mε/3)

)
.

Theorem 1.1 [CS]. Let M > 0 and f : X → Y be such that |f(x) − y| ≤ M a.e. Then,
for all ε > 0

Probz∈Zm{|Lz(f)| ≤ ε} ≥ 1 − 2 exp
(
− mε2

2(σ2 + M2ε/3)

)
,

where σ2 := σ2((f(x) − y)2).

We will assume that ρ and W satisfy the following condition.

(1.5) For all f ∈ W, f : X → Y is such that |f(x) − y| ≤ M a.e.

The following useful inequality has been obtained in [CS].
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Theorem 1.2 [CS]. Let W be a compact subset of C(X). Assume that ρ, W satisfy (1.5).
Then, for all ε > 0

(1.6) Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ ε} ≤ N(W, ε/(8M), C)2 exp
(
− mε2

2(σ2 + M2ε/3)

)
.

Here σ2 := σ2(W ) := supf∈W σ2((f(x) − y)2).

This theorem contains a factor N(W, ε/(8M), C) that may grow exponentially for classes
W satisfying (1.1): N(W, ε, C) ≤ 2(D/ε)1/r+1. A stronger (in a certain sense) estimate than
(1.6) has been obtained in [KT] under assumption that W satisfies (1.1).

Theorem 1.3 [KT]. Assume that ρ, W satisfy (1.5) and W is such that
∞∑

n=1

n−1/2εn(W, C) < ∞.

Then for mη2 ≥ 1 we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)mη2)

with C(M, ε(W )) that may depend on M and ε(W ) := {εn(W, C)}; c(M) may depend only
on M .

By C and c we denote absolute positive constants and by C(·), c(·), and A0(·) we denote
positive constants that are determined by their arguments. We often have error estimates
of the form (lnm/m)α that hold for m ≥ 2. We could write these estimates in the form,
say, (ln(m + 1)/m)α to make them valid for all m ∈ N. However, we use the first variant
throughout the paper for the following two reasons: simpler notations, we are looking for
the asymptotic behavior of the error.

In Section 2 we prove that it is impossible to have even a weaker analog of Theorem 1.3
if we use the L2(ρX) norm instead of the uniform norm C. However, it turned out that we
can prove an L2(ρX) analog of Theorem 1.3 for the δ-net Nδ(W ) of W in the L2(ρX) norm
instead of W for δ2 ≥ η (see Theorem 2.2).

It is well known ([CS], [DKPT], [KT]) how estimates of the defect function Lz(f), f ∈ H,
can be used for estimating the error E(fz,H) − E(fρ), fρ ∈ W . We prove in Section 2 the
following theorem.

Theorem 1.4. Let fρ ∈ W and let ρ, W satisfy (1.5) and (1.2) with r > 1/2. Then there
exists an estimator fz such that for A ≥ 2

(1.7) Probz∈Zm{E(fz) − E(fρ) ≤ 3A1/2(lnm/m)1/2} ≥ 1 − C(M,D, r)m−c(M)A.

Also

Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4A1/2(lnm/m)1/2} ≥ 1 − C(M,D, r)m−c(M)A.

It is interesting to compare this result with the known result from [KT] when we assume
(1.1) instead of (1.2).
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Theorem 1.5 [KT]. Let fρ ∈ W and let ρ and W satisfy (1.1) and (1.5). Then there
exists an estimator fz such that for A ≥ A0(M,D, r)

(1.8) Probz∈Zm{E(fz) − E(fρ) ≤ Am− 2r
1+2r } ≥ 1 − exp(−c(M)Am

1
1+2r ).

We see that for r > 1/2 close to 1/2 the exponent 1/2 from (1.7) is close to the exponent
2r

1+2r from (1.8). However, for big r (1.8) provides much better error estimates than (1.7).
We do not know if (1.7) can be improved in this case. Surprisingly, in the case r ∈ (0, 1/2]
we obtain the error estimates only slightly worse than (1.8) under a weaker assumption
(1.2). We prove in Section 3 the following estimates.

Theorem 1.6. Let fρ ∈ W and let ρ, W satisfy (1.5) and (1.2). Then there exists an
estimator fz such that for A ≥ A0(M,D, r) ≥ 2

Probz∈Zm{E(fz) − E(fρ) ≤ 3A((lnm)3/m)1/2} ≥ 1 − C(M,D)m−c(M,D)A2
,

Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4A((lnm)3/m)1/2} ≥ 1 − C(M,D)m−c(M,D)A2
,

provided r = 1/2,

Probz∈Zm{E(fz) − E(fρ) ≤ 3A(lnm/m)
2r

1+2r } ≥ 1 − C(M,D, r)m−c(M,D,r)A1+ 1
2r ,

Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4A(ln m/m)
2r

1+2r } ≥ 1 − C(M,D, r)m−c(M,D,r)A1+ 1
2r ,

for m ≥ C(A,M) provided r ∈ (0, 1/2).

We note that the estimator fz from Theorem 1.6 is fz,H with H := Nδ(m,r)(W ) chosen as
a minimal δ(m, r)-net of W in the L2(ρX) norm. The parameter δ(m, r) depends on m and
r that comes from (1.2). Thus, in order to build fz from Theorem 1.6 we need to know the
class W (in particular, a parameter r from (1.2)) and the measure ρX . It is clear that if W
satisfies (1.1) then a minimal δ-net Nδ(W, C) of W in the C norm may serve as a δ-net of W
in the L2(ρX) norm for all ρX . Therefore, it is natural (see Theorem 1.5) that if W satisfies
(1.1) then a good estimator fz does not depend on ρX . In Section 4 we present a special
example of interest in applications where we build an estimator fz independent of ρX that
provides good error estimates for classes W satisfying approximation properties imposed in
the L2(ρX) norm. The above mentioned example is based on the idea used in [DKPT] of
imposing restrictions on the class W in terms of approximation by linear subspaces rather
than in terms of approximation by finite nets. We formulate here a particular case of
Theorem 4.1 from Section 4.

Let X be a compact subset of R
d. Let Pn denote the set of all partitions of X into n

disjoint Borel subsets. Let pn ∈ Pn, n = 1, . . . . Define Ln as a subspace of all functions
that are piecewise constant on the partition pn. For a finite dimensional linear subspace
L ⊂ L2(ρX) and f ∈ L2(ρX) we denote by d(f, L)L2(ρX) the L2(ρX) distance between f
and L.
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Theorem 1.7. Let ρ be such that |y| ≤ M a.e. For a given sequence {Ln}∞n=1 and numbers
m, r > 0, A ≥ A0(M, r) there exists an estimator fz such that for any ρ satisfying

d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

we get
Probz∈Zm{‖fρ − fz‖2

L2(ρX) ≤ (1 + D2)A(lnm/m)
2r

1+2r }

≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

Let us now discuss one more important issue. First, we remind the general scheme that
we follow in constructing an estimator fz. We begin with a function class W . Then we look
for an estimator that provides good estimation for the class W . In examples considered in
Sections 2 and 3 we choose a hypothesis space H where fz comes from depending on the
class W . It is a weak point of the above approach. In many cases we do not know exactly
the class W . However, we may know a collection W of classes where our unknown class W
belongs. Say, if we are thinking about W in terms of Sobolev smoothness classes we may
take as W the collection of all Sobolev classes with smoothness from a certain range. We
now discuss the universal method setting (see [DKPT]). In this setting a collection W of
classes is given and we need to find a procedure for constructing an estimator fz in such a
way that if fρ ∈ W ∈ W then ‖fρ − fz‖L2(ρX) is close to the optimal error for the class W
with high probability with regard to ρ × · · · × ρ (m times). In approximation theory this
approach is known under the name of universal method (see [T1–T4]). We would like to
build a universal estimator fz for a given collection W of classes. In Sections 4 and 5 we
address this issue. We use different ideas in constructing universal estimators. In Section 4
we prove the following theorem.

Theorem 1.8. Let ρ be such that |y| ≤ M a.e. For a given sequence {Ln}∞n=1 and numbers
m, A ≥ A0(M) there exists an estimator fz such that if for some r ∈ (0, 1/2] and some ρ
we have

d(fρ, Ln)L2(ρX) ≤ Dn−r,

then
Probz∈Zm{‖fρ − fz‖L2(ρX) ≤ C(D)A1/2(lnm/m)

r
1+2r } ≥ 1 − Cm−c(M)A.

We point out that the estimator fz from Theorem 1.8 does not depend on both ρX and
the specifics of W . This means that fz is a universal estimator.

In Sections 2–4 we build estimators fz as empirical optimums with hypothesis spaces H
suitable for a concrete problem under investigation. In constructing universal estimators in
Section 4 we employ the following two ideas: 1. use the L∞ balls of finite dimensional linear
subspaces as hypothesis spaces; 2. minimise a penalized empirical risk. The above method
uses the empirical risk function of the form

Ez(f) =
1
m

m∑
i=1

(f(xi) − yi)2
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that is designed for measuring the approximation error ‖fz − fρ‖ in the L2(ρX) norm. In
Section 5 we discuss a particular setting where we obtain the approximation error estimate in
the L∞(ρX) norm. In this setting we assume that ρX is a normalized Lebesgue measure on a
bounded domain Ω ⊂ R

d. Next, we formulate our assumptions and build estimators in terms
of a given sequence of kernels Kn of integral operators. A special case of Kn(x, u) = Vn(x−u)
- the de la Valleé Poussin kernel, Ω = [0, 2π], has been considered in [DKPT]. The technique
used in Section 5 is a generalization of the corresponding technique from [DKPT].

We note that in [DKPT] the above setting with ρX the Lebesgue measure has been
interpreted as a particular case of a general setting with estimating a function fµ instead
of fρ. In this setting we assume that ρX is an absolutely continuous measure with density
µ(x): dρX = µdx. We define fµ := fρµ. Then we estimate fµ instead of fρ. It is clear
that in the case of ρX is the Lebesgue measure we have fµ = fρ. One can find in [DKPT]
a motivation for considering fµ.

In Section 5 we build an estimator for fρ by the formula

fz :=
1
m

m∑
i=1

yiKn(x, xi)

which is simpler than an empirical optimum. In constructing a universal estimator instead
of penalization we use the size of the corresponding dyadic blocks

fs,z :=
1
m

m∑
i=1

yi(K2s(x, xi) −K2s−1(x, xi)).

2. The case r > 1/2

In the case of restrictions imposed in the uniform norm C the following theorem has been
proved in [KT] (see Theorem 1.3 from Introduction). We reformulate it here for convenience.

Theorem 2.1 [KT]. Assume that ρ, W satisfy (1.5) and W is such that

(2.1)
∞∑

n=1

n−1/2εn(W, C) < ∞.

Then for mη2 ≥ 1 we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)mη2).

First of all we will show that Theorem 2.1 cannot be extended onto the case L2(ρX) in
its form. The following example shows that if we consider entropy of W in L2[0, 1) rather
than in C[0, 1] then even a fast decay of εn(W,L2(ρX)) (say, εn(W,L2(ρX)) = o(n−r) for
every r > 0) does not guarantee nontrivial estimates for supf∈W |Lz(f)|. We assume that
Y = [−1, 1], and thus, the functions f ∈ W and fρ are uniformly bounded.
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Proposition 2.1. Let N be a non-increasing mapping (0,+∞) → [1,+∞) such that

(2.2) lim
u→0+

log N(u)/ log(1/u) = +∞.

Then there exist a set W ⊂ U(L∞[0, 1)) and a ρ such that

(2.3) N(W, ε, L2(ρX)) ≤ N(ε)

and for every m
Probz∈Zm{ sup

f∈W
|Lz(f)| ≤ 1/2} = 0.

Proof. Let us take an increasing sequence {Km} of positive integers so that

(2.4) Km > 2m3, N(K−1/3
m ) ≥ Km+1

m (m ∈ N).

The existence of Km satisfying (2.4) follows from our assumption (2.2). For every m, every
l = (l1, . . . , lm), 1 ≤ l1 < · · · < lm ≤ Km, and every x ∈ [0, 1) we define

fm,l(x) =
{

1, if [Kmx] + 1 ∈ {l1, . . . , lm},
0, otherwise.

Let Wm = {fm,l}, f0 ≡ 0, W = {f0} ∪
⋃

m Wm. We denote εm = K
−1/3
m . By (2.4), for any

f ∈ Wm we have

(2.5) ‖f‖L2[0,1) ≤ (m/Km)1/2 ≤ εm

and also

(2.6) ‖f‖2
L2[0,1) < 1/2.

Let us check (2.3). If ε ≥ ε1, then {f0} forms a ε1-net in the L2[0, 1) norm, and (2.3) holds
since N(ε) ≥ 1. If ε < ε1, then we can find m so that εm+1 ≤ ε < εm and using (2.5) take
the following ε-net for W :

A = {f0} ∪
⋃

j≤m

Wj .

We have

#A ≤ 1 +
m∑

j=1

#Wj ≤ 1 +
m∑

j=1

Kj
j ≤ (m + 1)Km

m < Km+1
m ,

and, by (2.4),
#A < N(εm) ≤ N(ε).

So, (2.3) holds.
We now take ρ so that ρX is the Lebesgue measure on [0, 1) and y is surely 0 for any x.

Clearly, fρ ≡ 0. On the one hand, by (2.6), we have for any f ∈ W

E(f) < 1/2.

On the other hand, for any z there is f ∈ Wm so that f(xi) = 1 (i = 1, . . . , m). Therefore,
Ez(f) = 1, Lz(f) < −1/2, and Proposition 2.1 is proven.

We will prove an analog of Theorem 2.1 in the case of L2(ρX) norm with the set W
replaced by a δ-net Nδ(W ) of W in the L2(ρX) norm. We begin with an axiliary lemma.
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Lemma 2.1. If |fj(x)− y| ≤ M a.e. for j = 1, 2 and ‖f1 − f2‖L2(ρX) ≤ δ, then for δ2 ≥ η

Probz∈Zm{|Lz(f1) − Lz(f2)| ≤ η} ≥ 1 − 2 exp
(
− mη2

9M2δ2

)
.

and for δ2 < η

Probz∈Zm{|Lz(f1) − Lz(f2)| ≤ η} ≥ 1 − 2 exp
(
− mη

9M2

)
.

Proof. Consider the random variable ξ = (f1(x) − y)2 − (f2(x) − y)2. We use

|ξ| ≤ M2, σ(ξ) ≤ 2Mδ.

Applying the Bernstein inequality (1.4) to ξ we get

Probz∈Zm{|Lz(f1) − Lz(f2)| ≥ η} = Probz∈Zm

{∣∣∣∣∣ 1
m

m∑
i=1

ξ(zi) − E(ξ)

∣∣∣∣∣ ≥ η

}

≤ 2 exp
(
− mη2

2(4M2δ2 + M2η/3)

)
,

and Lemma 2.1 follows.

Theorem 2.2. Assume that ρ, W satisfy (1.5) and W is such that

(2.7)
∞∑

n=1

n−1/2εn(W,L2(ρX)) < ∞.

Let mη2 ≥ 1. Then for any δ satisfying δ2 ≥ η we have for a minimal δ-net Nδ(W ) of W
in the L2(ρX) norm

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)mη2).

Proof. It is clear that (2.7) implies that

(2.8)
∞∑

j=0

2j/2ε2j (W,L2(ρX)) < ∞.

Denote δj := ε2j (W,L2(ρX)), j = 0, 1, . . . , and consider minimal δj-nets Nj := Nδj (W ) ⊂
W of W . We will use the notation Nj := |Nj |. Let J be the minimal j satisfying δj ≤ δ.
We modify δJ by setting δJ = δ. Then NJ = Nδ(W ). For j = 1, . . . , J we define a mapping
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Aj that associates with a function f ∈ W a function Aj(f) ∈ Nj closest to f in the L2(ρX)
norm. Then, clearly,

‖f − Aj(f)‖L2(ρX) ≤ δj .

We use the mappings Aj , j = 1, . . . , J to associate with a function f ∈ W a sequence of
functions fJ , fJ−1, . . . , f1 in the following way

fJ := AJ(f), fj := Aj(fj+1), j = 1, . . . , J − 1.

We introduce an auxiliary sequence

(2.9) ηj := 3Mη2(j+1)/2ε2j−1 , j = 1, 2, . . . ,

and define I := I(M, ε(W )) to be the minimal number satisfying

(2.10)
∑
j≥I

M2(j+1)/2ε2j−1 ≤ 1/6 or
∑
j≥I

ηj ≤ η/2.

We now proceed to the estimate of Probz∈Zm{supf∈Nδ(W ) |Lz(f)| ≥ η} with m, η satisfying
mη2 ≥ 1. If J ≤ I then the statement of Theorem 2.2 follows from Theorem 1.2. We
consider the case J > I. Assume |Lz(fJ)| ≥ η. Then rewriting

Lz(fJ) = Lz(fJ) − Lz(fJ−1) + · · · + Lz(fI+1) − Lz(fI) + Lz(fI)

we conclude that at least one of the following events occurs:

|Lz(fj) − Lz(fj−1)| ≥ ηj for some j ∈ (I, J ] or |Lz(fI)| ≥ η/2.

Therefore

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ Probz∈Zm{ sup
f∈NI

|Lz(f)| ≥ η/2}(2.11)

+
∑

j∈(I,J]

∑
f∈Nj

Probz∈Zm{|Lz(f) − Lz(Aj−1(f))| ≥ ηj}

≤ Probz∈Zm{ sup
f∈NI

|Lz(fI)| ≥ η/2}

+
∑

j∈(I,J]

Nj sup
f∈W

Probz∈Zm{|Lz(f) − Lz(Aj−1(f))| ≥ ηj}.

By our choice of δj = ε2j (W,L2(ρX)) we get Nj ≤ 22j

< e2j

. Let η, δ be such that mη2 ≥ 1
and η ≤ δ2. It is clear that δ2

j ≥ ηj , j = 1, . . . , J . Applying Lemma 2.1 we obtain

sup
f∈W

Probz∈Zm{|Lz(f) − Lz(Aj−1(f))| ≥ ηj} ≤ 2 exp

(
− mη2

j

9M2δ2
j−1

)
, j ≤ J.
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From the definition (2.9) of ηj we get

mη2
j

9M2δ2
j−1

= mη22j+1

and

Nj exp

(
− mη2

j

9M2δ2
j−1

)
≤ exp(−mη22j).

Therefore

(2.12)
∑

j∈(I,J]

Nj exp

(
− mη2

j

9M2δ2
j−1

)
≤ 2 exp(−mη22I).

By Theorem 1.2

(2.13) Probz∈Zm{ sup
f∈NI

|Lz(f)| ≥ η/2} ≤ 2NI exp
(
− mη2

C(M)

)
.

Combining (2.12) and (2.13) we obtain

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)mη2).

This completes the proof of Theorem 2.2.

We get the following error estimates for E(fz) − E(fW ) from Theorem 2.2.

Theorem 2.3. Assume that ρ, W satisfy (1.5), (2.7), and also fρ ∈ W . Let mη2 ≥ 1.
Then there exists an estimator fz such that

Probz∈Zm{E(fz) − E(fρ) ≤ 3η} ≥ 1 − C(M, ε(W )) exp(−c(M)mη2)

with C(M, ε(W )), c(M) from Theorem 2.2.

Proof. Let us take δ = η1/2 and H := Nδ(W ) a minimal δ-net for W in the L2(ρX) norm,
fz = fz,H. Then we have (fW = fρ)

E(fz,H) − E(fW ) = E(fH) − E(fW ) + E(fz,H) − Ez(fz,H) + Ez(fz,H) − Ez(fH)(2.14)

+Ez(fH) − E(fH) ≤ E(fH) − E(fW ) + E(fz,H) − Ez(fz,H) + Ez(fH) − E(fH).

Therefore,

(2.15) E(fz,H) − E(fW ) ≤ η + E(fz,H) − Ez(fz,H) + Ez(fH) − E(fH),

and to complete the proof it remains to use Theorem 2.2.

Let us now prove an estimate for E(fz) − E(fW ) without an assumption fρ ∈ W .
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Theorem 2.4. Assume that ρ, W satisfy (1.5), (1.2) with r > 1/2. Let mη1+max(1/r,1) ≥
A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈ W such that

Probz∈Zm{E(fz) − E(fW ) ≤ 5η} ≥ 1 − C1(M,D, r) exp(−c1(M)mη2).

Proof. It suffices to prove the theorem for r ∈ (1/2, 1]. Let us take δ0 := η1/2 and H0 :=
Nδ0(W ) to be a minimal δ0-net for W . Let δ := η/(2M) and H := Nδ(W ) to be a
minimal δ-net for W . Denote fz := fz,H. For any f ∈ H there is A(f) ∈ H0 such that
‖f − A(f)‖L2(ρX) ≤ δ0. By Lemma 2.1,

Probz∈Zm{|Lz(f) − Lz(A(f))| ≤ η} ≥ 1 − 2 exp
(
− mη

9M2

)
.

Using the above inequality and Theorem 2.2 (mη2 ≥ 1) we get

Probz∈Zm{sup
f∈H

|Lz(f)| ≥ 2η} ≤ Probz∈Zm{sup
f∈H

|Lz(f) − Lz(A(f))| ≥ η}(2.16)

+ Probz∈Zm{ sup
f∈H0

|Lz(f)| ≥ η} ≤ 2#H exp
(
− mη

9M2

)
+ C(M,D, r) exp(−c(M)mη2)

≤ 4 exp
(
(η−1/r)(2MD)1/r

)
exp

(
− mη

9M2

)
+ C(M,D, r) exp(−c(M)mη2).

Let us specify A0(M,D, r) := max(18M2(2MD)1/r, 1), r ∈ (1/2, 1]. Then

(2.17) mη1+1/r ≥ 18M2(2MD)1/r

and (2.16) imply

Probz∈Zm{sup
f∈H

|Lz(f)| ≥ 2η} ≤ 4 exp
(
− mη

18M2

)
+ C(M,D, r) exp(−c(M)mη2).

Further, we can assume that η < M2 (otherwise, the statement of Theorem 2.4 is trivial).
Therefore, we deduce from the last estimate that

Probz∈Zm{sup
f∈H

|Lz(f)| ≥ 2η} ≤ C1(M,D, r) exp(−c1(M)mη2).

We now observe that, by the choice of δ,

E(fH) − E(fW ) = ‖fH − fρ‖2
L2(ρX) − ‖fW − fρ‖2

L2(ρX)(2.18)

= (‖fH − fρ‖L2(ρX) − ‖fW − fρ‖L2(ρX))(‖fH − fρ‖L2(ρX) + ‖fW − fρ‖L2(ρX)) ≤ η.

Using (2.14) we see that (2.15) holds. Hence, if supf∈H |Lz(f)| ≤ 2η, then E(fz,H)−E(fW ) ≤
5η. This completes the proof of Theorem 2.4.

Theorem 2.5. Let fρ ∈ W and let ρ, W satisfy (1.5) and (1.2) with r > 1/2. Then there
exists an estimator fz such that for A ≥ 2

(2.19) Probz∈Zm{E(fz) − E(fρ) ≤ 3A1/2(lnm/m)1/2} ≥ 1 − C(M,D, r)m−c(M)A.

Also

(2.20) Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4A1/2(lnm/m)1/2} ≥ 1 − C(M,D, r)m−c(M)A.

Proof. First, we use Theorem 2.3 with η = A1/2(lnm/m)1/2 and get (2.19) with fz =
fz,N

η1/2 (W ). Second, we use Theorem 2.2 with the above η and δ = η1/2 and obtain (2.20).
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3. The case r ∈ (0, 1/2]

The following results have been obtained in [KT] in the case when we impose restrictions
in the uniform norm C.

Theorem 3.1 [KT]. Assume that ρ, W satisfy (1.5) and W is such that

∞∑
n=1

n−1/2εn = ∞, εn := εn(W, C).

For η > 0 define J := J(η/M) as the minimal j satisfying ε2j ≤ η/(8M) and

SJ :=
J∑

j=1

2(j+1)/2ε2j−1 .

Then for m, η satisfying m(η/SJ)2 ≥ 480M2 we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)m(η/SJ)2).

Corollary 3.1 [KT]. Assume ρ, W satisfy (1.5) and εn(W, C) ≤ Dn−1/2. Then for m, η
satisfying mη2/(1 + (log(M/η))2) ≥ C1(M,D) we have

Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ η} ≤ C(M,D) exp(−c(M,D)mη2/(1 + (log(M/η))2)).

Corollary 3.2 [KT]. Assume ρ, W satisfy (1.5) and εn(W, C) ≤ Dn−r, r ∈ (0, 1/2). Then
for m, η, δ ≥ η/(8M) satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have

Probz∈Zm{ sup
f∈Nδ(W,C)

|Lz(f)| ≥ 2η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2),

where Nδ(W, C) is a minimal δ-net of W in the C norm.

We prove here the following analogs of these results with restrictions imposed in the
L2(ρX) norm.

Theorem 3.2. Assume that ρ, W satisfy (1.5) and

∞∑
n=1

n−1/2εn = ∞, εn := εn(W,L2(ρX)).

Let η, δ be such that δ2 ≥ η. Define J := J(δ) as the minimal j satisfying ε2j ≤ δ and

SJ :=
J∑

j=1

2(j+1)/2ε2j−1 , J ≥ 1; S0 := 1.
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Then for m, η satisfying m(η/SJ)2 ≥ 36M2 we have

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)m(η/SJ)2),

where Nδ(W ) is a minimal δ-net of W in the L2(ρX).

Proof. In the case J = 0 the statement of Theorem 3.2 follows from Theorem 1.1. In the
case J ≥ 1 the proof differs from the proof of Theorem 2.2 only in the choice of an auxiliary
sequence {ηj}. Thus we keep notations from the proof of Theorem 2.2. Now, instead of
(2.9) we define {ηj} as follows

ηj :=
η

2
2(j+1)/2ε2j−1

SJ
.

Proceeding as in the proof of Theorem 2.2 with I = 1 we need to check that

2j − mη2
j

9M2δ2
j−1

≤ −2j m(η/SJ)2

36M2
.

Indeed, using the assumption m(η/SJ)2 ≥ 36M2 we obtain

mη2
j

9M2δ2
j−1

− 2j =
m(η/SJ)2

36M2
2j+1 − 2j ≥ m(η/SJ)2

36M2
2j .

We complete the proof in the same way as in Theorem 2.2.

Corollary 3.3. Assume ρ, W satisfy (1.5) and εn(W,L2(ρX)) ≤ Dn−1/2. Then for m, η
satisfying mη2/(1 + (log(M/η))2) ≥ C1(M,D) we have for δ2 ≥ η

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D) exp(−c(M,D)mη2/(1 + (log(M/η))2)).

Corollary 3.4. Assume ρ, W satisfy (1.5) and εn(W,L2(ρX)) ≤ Dn−r, r ∈ (0, 1/2). Then
for m, η, δ2 ≥ η satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have

Probz∈Zm{ sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).

The proofs of both corollaries are the same. We present here only the proof of Corollary
3.4.

Proof of Corollary 3.4. We use Theorem 3.2. Similarly to the proof of Theorem 3.2 it is
sufficient to consider the case J ≥ 1. We estimate the SJ from Theorem 3.2:

SJ =
J∑

j=1

2(j+1)/2ε2j−1 ≤ 21/2+rD
J∑

j=1

2j(1/2−r) ≤ C1(r)D2J(1/2−r).

Next,
D2−r(J−1) ≥ ε2J−1 > δ implies 2J ≤ 2(D/δ)1/r.

Thus
SJ ≤ C1(D, r)(1/δ)

1
2r −1.

It remains to apply Theorem 3.2.
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Theorem 3.3. Let fρ ∈ W and let ρ, W satisfy (1.5) and (1.2). Then there exists an
estimator fz such that

(3.1) Probz∈Zm{E(fz)−E(fρ) ≤ 3η} ≥ 1−C(M,D) exp(−c(M,D)mη2/(1+(log(M/η))2)),

(3.2)
Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4η} ≥ 1 − C(M,D) exp(−c(M,D)mη2/(1 + (log(M/η))2)),

provided r = 1/2, mη2/(1 + (log(M/η))2) ≥ C1(M,D),

(3.3) Probz∈Zm{E(fz) − E(fρ) ≤ 3η} ≥ 1 − C(M,D, r) exp(−c(M,D, r)mη1+1/(2r)),

(3.4) Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4η} ≥ 1 − C(M,D, r) exp(−c(M,D, r)mη1+1/(2r)),

provided r ∈ (0, 1/2), mη1+1/(2r) ≥ C1(M,D, r) with constants C(M,D), c(M,D), C1(M,D),
C(M,D, r), c(M,D, r), C1(M,D, r) from Corollaries 3.3 and 3.4.

Proof. We combine the proof of Theorem 2.3 with Corollaries 3.3 and 3.4. In the case
r = 1/2 we take η such that mη2/(1 + (log(M/η))2) ≥ C1(M,D) and set δ = η1/2. Denote
H := Nδ(W ). Then similarly to (2.14), (2.15) we obtain

(3.5) E(fz,H) − E(fρ) ≤ δ2 + E(fz,H) − Ez(fz,H) + Ez(fH) − E(fH).

Using Corollary 3.3 we continue
≤ 3η

with probability at least 1 − C(M,D) exp(−c(M,D)mη2/(1 + (log(M/η))2)). This proves
(3.1). Applying Corollary 3.3 one more time we obtain (3.2).

We proceed to the case r ∈ (0, 1/2). We now take η such that mη1+1/(2r) ≥ C1(M,D, r)
and set δ = η1/2. Denote as above H := Nδ(W ). We now use (3.5) and apply Corollary 3.4.
We get

E(fz,H) − E(fρ) ≤ δ2 + 2η ≤ 3η

with probability at least

1 − C(M,D, r) exp(−c(M,D, r)mη1+1/(2r)).

This proves (3.3). Applying Corollary 3.4 again we get (3.4). The proof of Theorem 3.3 is
now complete.

We give a direct corollary of Theorem 3.3.
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Corollary 3.5. Let fρ ∈ W and let ρ, W satisfy (1.5) and (1.2). Then there exists an
estimator fz such that for A ≥ A0(M,D, r) ≥ 2

Probz∈Zm{E(fz) − E(fρ) ≤ 3A((lnm)3/m)1/2} ≥ 1 − C(M,D)m−c(M,D)A2
,

Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4A((lnm)3/m)1/2} ≥ 1 − C(M,D)m−c(M,D)A2
,

provided r = 1/2,

Probz∈Zm{E(fz) − E(fρ) ≤ 3A(lnm/m)
2r

1+2r } ≥ 1 − C(M,D, r)m−c(M,D,r)A1+ 1
2r ,

Probz∈Zm{|Ez(fz) − E(fρ)| ≤ 4A(ln m/m)
2r

1+2r } ≥ 1 − C(M,D, r)m−c(M,D,r)A1+ 1
2r ,

for m ≥ C(A,M) provided r ∈ (0, 1/2) with constants C(M,D), c(M,D), C(M,D, r),
c(M,D, r) from Corollaries 3.3 and 3.4.

We now prove an analog of Theorem 2.4.

Theorem 3.4. Assume that ρ, W satisfy (1.5), (1.2) with r ∈ (0, 1/2]. Let mη1+1/r ≥
A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈ W such that

Probz∈Zm{E(fz) − E(fW ) ≤ 5η} ≥ 1 − C(M,D) exp(−c(M,D)mη2/(1 + (log(M/η))2))

provided r = 1/2,

Probz∈Zm{E(fz) − E(fW ) ≤ 5η} ≥ 1 − C(M,D, r) exp(−c(M,D, r)mη1+1/(2r))

provided r ∈ (0, 1/2).

Proof. The proof in both cases r = 1/2 and r ∈ (0, 1/2) is similar to the proof of Theorem
2.4. We will sketch the proof only in the case r ∈ (0, 1/2), η ≤ 1. We use the notations
from the proof of Theorem 2.4. We choose A0(M,D, r) ≥ C1(M,D, r) - the constant from
Corollary 3.4. Then we can use Corollary 3.4 with δ = η1/2 because

mη2δ1/r−2 = mη1+1/(2r) ≥ mη1+1/r ≥ A0(M,D, r) ≥ C1(M,D, r).

We obtain the following analog of (2.16)

Probz∈Zm{sup
f∈H

|Lz(f)| ≥ 2η}

≤ 4 exp
(
(η−1/r)(2MD)1/r

)
exp

(
− mη

9M2

)
+ C(M,D, r) exp(−c(M,D, r)mη1+1/(2r)).

We complete the proof in the same way as in the proof of Theorem 2.4.
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4. Some specifications

Assume that n-dimensional linear subspaces Ln have the following property: for any
probability measure w on X one has

(4.1) ‖Pw
Ln

‖L∞(w)→L∞(w) ≤ K, n = 1, 2, . . .

where Pw
L is the operator of L2(w) projection onto L. First of all we note that

d(fρ, Ln)L2(ρX) = ‖fρ − P ρX

Ln
(fρ)‖L2(ρX).

In this section we will assume that |y| ≤ M a.e. Then by (4.1) we get

‖P ρX

Ln
(fρ)‖L∞(ρX) ≤ MK.

Denote Vn := MKU(L∞(ρX)) ∩ Ln.

Theorem 4.1. Let ρ be such that |y| ≤ M a.e. Assume that a sequence {Ln}∞n=1 satisfies
(4.1). For given m, r > 0, A ≥ A0(M,K, r) there exists an estimator fz such that for any
ρ satisfying

d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

we get
Probz∈Zm{‖fρ − fz‖2

L2(ρX) ≤ (1 + D2)A(lnm/m)
2r

1+2r }

≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

Proof. We set ε = A(lnm/m)
2r

1+2r , n = [ε−1/(2r)] + 1 and fz := fz,Vn . We now estimate
E(fz,Vn) − E(fρ). Let f∗ := P ρX

Ln
(fρ). Then by (4.1) f∗ ∈ Vn and

‖fρ − f∗‖L2(ρX) ≤ Dn−r ≤ DA1/2(lnm/m)
r

1+2r .

Therefore,

(4.2) E(f∗) − E(fρ) =
∫

X

(f∗(x) − fρ(x))2dρX ≤ D2A(ln m/m)
2r

1+2r .

We have
0 ≤ E(fz,Vn) − E(fρ) = E(fz,Vn) − E(f∗) + E(f∗) − E(fρ).

Denote for a compact subset H of L2(ρX)

fH := arg min
f∈H

E(f).

It is clear that f∗ = fVn . We will use the following theorem from [CS].
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Theorem 4.2 [CS]. Suppose that either H is a compact and convex subset of L∞(ρX) or
H is a compact subset of L∞(ρX) and fρ ∈ H. Assume that for all f ∈ H, f : X → Y is
such that |f(x) − y| ≤ M a.e. Then, for all ε > 0

Probz∈Zm{E(fz,H) − E(fH) ≤ ε} ≥ 1 − N(H, ε/(24M), L∞(ρX))2 exp
(
− mε

288M2

)
.

It is well known that [P,p.63]

N(Vn, ε, L∞(ρX)) ≤ (1 + 2MK/ε)n.

Using this estimate and taking into account the choice of ε = A(lnm/m)
2r

1+2r and n =
[ε−1/(2r)] + 1 we get from Theorem 4.2 for A > A0(M,K, r)

(4.3) Probz∈Zm{E(fz,Vn) − E(f∗) ≤ A(lnm/m)
2r

1+2r }
≥ 1 − exp(−c(M)A(m(lnm)2r)

1
1+2r ).

Using (4.2) we obtain from here

(4.4) Probz∈Zm{E(fz,Vn) − E(fρ) ≤ (1 + D2)A(lnm/m)
2r

1+2r }
≥ 1 − exp(−c(M)A(m(lnm)2r)

1
1+2r ).

This completes the proof of Theorem 4.1.

We note that the estimator fz = fz,Vn from Theorem 4.1 does not depend on ρX and
depends on the class W (n is chosen using r). We will formulate one result on construction
of universal estimators fz in a spirit of Theorem 2.6 from [DKPT]. For a given sequence
L = {Ln}∞n=1 satisfying (4.1) and for a given m we define an estimator fz by the formula

fz := fz,Vk

with
k = arg min

1≤n≤m
(Ez(fz,Vn) + An ln m/m).

Theorem 4.3. Assume that L satisfies (4.1) and ρ is such that |y| ≤ M a.e. Then if for
some r ∈ (0, 1/2]

(4.5) d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

then we have

(4.6) Probz∈Zm{‖fρ − fz‖L2(ρX) ≤ C(D)A1/2(lnm/m)
r

1+2r }
≥ 1 − Cm−c(M)A, A ≥ A0(M,K).

The proof of this theorem is similar to the proof of Theorem 2.6 from [DKPT].

Proof. We will use the following result from [CS] (it is a direct corollary to Proposition 7
from [CS]).
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Lemma 4.1. Let H be a compact and convex subset of L∞(ρX). Assume that for all f ∈ H,
f : X → Y is such that |f(x) − y| ≤ M a.e. Then for all ε > 0 with probability at least

1 − N(H,
ε

24M
,L∞(ρX)) exp(− mε

288M2
)

one has for all f ∈ H

E(f) ≤ 2Ez(f) + 2ε − E(fH) + 2(E(fH) − Ez(fH)).

By Bernstein’s inequality (1.4) we have

(4.7) Probz∈Zm{ max
1≤n≤m

(E(fVn) − Ez(fVn)) ≤ A(lnm/m)1/2}

≥ 1 − 2m−c(M)A.

Applying Lemma 4.1 with H = Vn, ε = An ln m/m, f = fz,Vn and using that E(fVn) ≥ E(fρ)
we get for n ∈ [1,m], A ≥ A0(M,K)

E(fz,Vn) ≤ 2(Ez(fz,Vn) + An ln m/m) − E(fρ) + 2A(lnm/m)1/2

with probality at least 1 − Cm−c(M)A. Therefore, for these z

(4.8) E(fz) = E(fz,Vk
) ≤ min

n∈[1,m]
2(Ez(fz,Vn) + An ln m/m) − E(fρ) + 2A(ln m/m)1/2.

We estimate minn∈[1,m] 2(Ez(fz,Vn)+An ln m/m) by the value at n = n(r) := [(m/ ln m)
1

1+2r ]+
1. We have

(4.9) Ez(fz,Vn(r)) ≤ Ez(fVn(r)).

Similarly to (4.7) we get

(4.10) Ez(fVn(r)) ≤ E(fVn(r)) + A(lnm/m)1/2

with probability ≥ 1 − 2m−c(M)A. Next,

(4.11) E(fVn(r)) − E(fρ) = ‖fVn(r) − fρ‖2
L2(ρX)

= d(fρ, Ln(r))2 ≤ D2n(r)−2r ≤ D2(lnm/m)
2r

1+2r .

Combining the relations (4.8)–(4.11) we obtain

E(fz) − E(fρ) ≤ C(D)A(lnm/m)
2r

1+2r
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with probability at least 1 − Cm−c(M)A provided A ≥ A0(M,K).

We now proceed to the case where we impose weaker than (4.5) restrictions on the class
W . These new restrictions are in a style of nonlinear Kolmogorov widths used in [DKPT]
(see [T5]). Denote for a given a > 0 Nn := [nan]. Let Ln(a) be a collection of Nn n-
dimensional subspaces L1

n, . . . , LNn
n . Denote by L(a) the sequence {Ln(a)}∞n=1. Assume

that subspaces Lj
n have the following property: for any probability measure w on X one has

(4.12) ‖Pw
Lj

n
‖L∞(w)→L∞(w) ≤ K, j ∈ [1, Nn], n = 1, 2, . . . .

We note that as above

d(fρ, L
j
n)L2(ρX) = ‖fρ − P ρX

Lj
n

(fρ)‖L2(ρX)

and by (4.12) and ‖fρ‖L∞(ρX) ≤ M (we assume |y| ≤ M a.e.) we get

‖P ρX

Lj
n

(fρ)‖L∞(ρX) ≤ MK.

Denote V j
n := MKU(L∞(ρX)) ∩ Lj

n and

Un := ∪Nn
j=1V

j
n .

Consider
j(n) := arg min

1≤j≤Nn

d(fρ, L
j
n)L2(ρX).

Then
fUn = f

V
j(n)

n
= P

ρ(X)

L
j(n)
n

(fρ).

For a given data z = {(xi, yi)}m
i=1 and a number n we define

fz,n := fz,Un := arg min
f∈Un

Ez(f) = arg min
1≤j≤Nn

min
f∈V j

n

Ez(f).

Denote by Vn := V
j(z)
n a set such that

fz,Un = fz,Vn .

The following theorem is a nonlinear analog of Theorem 4.1.

Theorem 4.4. Let ρ be such that |y| ≤ M a.e. Assume that L(a) satisfies (4.12). For given
m, r > 0, A ≥ A0(M,K, r, a) there exists an estimator fz such that for any ρ satisfying

min
1≤j≤Nn

d(fρ, L
j
n)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

we have
Probz∈Zm{‖fρ − fz‖L2(ρX) ≤ C(D)A1/2(lnm/m)

r
1+2r }

≥ 1 − exp(−c(M)A(m(lnm)2r)
1

1+2r ).

The proof of this theorem is close to the proof of Theorem 4.1 and the proof of Theorem
2.4 from [DKPT]. We will not present it here. We only point out that we set

fz := fz,Un

with n := [(m/(A ln m))
1

1+2r ] + 1 and instead of Theorem 4.2 we use the following theorem
from [DKPT] (see Theorem D).
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Theorem 4.5. Let H be a compact subset of L∞(ρX). Assume that for all f ∈ H, f : X →
Y is such that |f(x) − y| ≤ M a.e. Then, for all ε > 0

Probz∈Zm{E(fz,H) − E(fH) ≤ ε} ≥ 1 − N(H, ε/(24M), L∞(ρX))2 exp
(
− mε

C(M,B)

)

under assumption E(fH) − E(fρ) ≤ Bε.

As an example of subspaces Lj
n we may take the following subspaces of L∞(w). Let

X be a compact subset of R
d. Let Pn denote the set of all partitions of X into n disjoint

measurable (with regard to w) subsets. Let pj ∈ Pn, j = 1, . . . , Nn. Define Lj
n as a subspace

of all functions that are piecewise constant on the partition pj . Then the property (4.1) is
satisfied with K = 1. Therefore, we can use the results of this section for such approximation
spaces.

5. Error estimates in the Lp norm

In this section we obtain error estimates in the Lp-norm, 1 ≤ p ≤ ∞. We assume that
ρX is the Lebesgue measure and |y| ≤ M a.e. We note that instead of assuming µ = 1
in the arguments that follow it is sufficient to assume that µ ≤ C with absolute constant
C. Then we obtain the same results for fµ instead of fρ. Let Ω be a bounded domain in
R

d. We assume for notational simplicity that the Lebesgue measure of Ω is 1 (otherwise
we renormalize the Lebesgue measure). Let Kn(x, u) denote a continuous kernel defined on
Ω × Ω with the following properties. Define

JKn(f) :=
∫

Ω

f(u)Kn(x, u)du.

Assume that the operator JKn is defined on the L∞(Ω) and rank(JKn) ≤ n. Assume in
addition that

(I) ‖JKn‖L∞→L∞ ≤ K1;

(II) ‖Kn‖∞ ≤ K2n;

and for any x ∈ Ω

(III)
∫

Ω

|Kn(x, u)|2du ≤ K3n.

We define an estimator for fρ by the formula:

(5.1) fz :=
1
m

m∑
i=1

yiKn(x, xi).
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Then for the random variable ξ(y, u) := yKn(x, u) we obtain

E(ξ) =
∫

Ω

fρ(u)Kn(x, u)dρX =
∫

Ω

fρ(u)Kn(x, u)du = JKn(fρ).

By property (III) we have for any x ∈ Ω

E(ξ2) ≤ M2K3n.

Denote K(n) the closure in L∞ of the range of the operator JKn . We note that for any u we
have Kn(·, u) ∈ K(n). We assume that for each n there exists a set of points ξ1, . . . , ξN(n) ∈ Ω
such that N(n) ≤ nK4 and for any f ∈ K(n)

(IV) ‖f‖∞ ≤ K5 max
i

|f(ξi)|.

By Bernstein’s inequality (1.4) for each ξl, l ∈ [1, N(n)] we have

Probz∈Zm{|JKn(fρ)(ξl) − fz(ξl)| ≥ ε} ≤ 2 exp
(
− mε2

C(M,K2,K3)n

)
.

Using (IV) we obtain

(5.2) Probz∈Zm{‖JKn(fρ) − fz‖∞ ≤ K5ε} ≥ 1 − N(n)2 exp
(
− mε2

C(M,K2,K3)n

)
.

We define the class W r
p (K, D) as the set of f that satisfy the estimate:

‖f − JKn(f)‖p ≤ Dn−r, n = 1, 2, . . . , 1 ≤ p ≤ ∞.

Assume that fρ ∈ W r
p (K, D). We specify ε = A(lnm/m)

r
1+2r , n = [ε−1/r] + 1. Then (5.2)

implies for A ≥ A0(M,K2,K3,K4)

Probz∈Zm{‖JKn(fρ) − fz‖∞ ≤ K5A(lnm/m)
r

1+2r } ≥ 1 − w(m,A)

and
Probz∈Zm{‖fρ − fz‖p ≤ (K5 + D)A(lnm/m)

r
1+2r } ≥ 1 − w(m,A)

with w(m,A) := exp(−c(M,K2,K3)A2+1/r lnm). We point out that we have obtained the
Lp estimates for 1 ≤ p ≤ ∞. We formulate the result proved above as a theorem.

Theorem 5.1. Assume fρ ∈ W r
p (K, D) with some 1 ≤ p ≤ ∞. Then the estimator fz

defined by (5.1) with n = [A−1/r(m/(lnm))
1

1+2r ] + 1 provides for A ≥ A0(M,K2,K3,K4)

Probz∈Zm{‖fρ − fz‖p ≤ (K5 + D)A(lnm/m)
r

1+2r } ≥ 1 − exp(−c(M,K2,K3)A2+1/r ln m).

We note that the estimator fz from Theorem 5.1 does not depend on p and depends on r
(the choice of n depends on r). We proceed to construction of an estimator that is universal
for r. We denote

Wp[K] := {W r
p (K, D)}.
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Theorem 5.2. For a given collection Wp[K] there exists an estimator fz such that if fρ ∈
W r

p (K, D) with some r ≤ R then for A ≥ A0(M,K2,K3,K4)

Probz∈Zm{‖fρ − fz‖p ≤ C(R)(K5 + D)A(lnm/m)
r

1+2r } ≥ 1 − m−c(M,K2,K3)A
2
.

Proof. We define

A0 := K1; As := K2s −K2s−1 , s = 1, 2, . . . ; As := JAs .

Therefore, for s = 1, 2, . . .

As := JK2s−K2s−1 = JK2s − JK2s−1 .

Using our assumption that fρ ∈ W r
p (K, D) we get for all s

(5.3) ‖As(fρ)‖p ≤ K2−rs

with K := (1 + 2R)D. We consider the following estimators

fs,z :=
1
m

m∑
i=1

yiAs(x, xi).

Similarly to (5.2) with ε = A((2s/m) ln m)1/2 we get for all s ∈ [0, log m]

(5.4) ‖As(fρ) − fs,z‖∞ ≤ K5A((2s/m) ln m)1/2

with probability at least 1 − m−c(M,K2,K3)A
2
, A ≥ A0(M,K2,K3,K4). We now consider

only those z that satisfy (5.4). We build an estimator fz on the base of the sequence
{‖fs,z‖p}[log m]

s=0 . First, if

(5.5) ‖fs,z‖p ≤ (K5A + K)((2s/m) ln m)1/2, s = 0, . . . , [log m],

then we set fz := 0. We have in this case

(5.6) ‖fρ‖p ≤
∞∑

s=0

‖As(fρ)‖p.

Therefore, for z satisfying (5.4) and (5.5) we get from (5.4)–(5.6), (5.3) that

‖fρ‖p ≤ C1(R)(K5 + D)A
∞∑

s=0

min(2s lnm/m)1/2, 2−rs) ≤ C2(R)(K5 + D)A(lnm/m)
r

1+2r .
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Second, if (5.5) is not satisfied then we let l ∈ [0, log m] be such that for s ∈ (l, log m]

(5.7) ‖fs,z‖p ≤ (K5A + K)((2s/m) ln m)1/2

and

(5.8) ‖fl,z‖p > (K5A + K)((2l/m) ln m)1/2.

We set n = 2l and

fz :=
1
m

m∑
i=1

yiKn(x, xi).

Then by (5.4) we get from (5.8)

‖Al(fρ)‖p ≥ K((2l/m) ln m)1/2.

Therefore, by (5.3) with s = l we obtain

2l(1+2r) ≤ m/ ln m.

Let l0 be such that
2(l0−1)(1+2r) ≤ m/ ln m < 2l0(1+2r).

It is clear from the above two relations that l ≤ l0. Then for z satisfying (5.4) and not
satisfying (5.5) we have

‖fρ − fz‖p ≤ ‖fρ − JK
2l0

(fρ)‖p +
l0∑

s=l+1

‖As(fρ)‖p +
l∑

s=0

‖As(fρ) − fs,z‖p

≤ D2−rl0 +
l0∑

s=l+1

(2K5A + K)((2s/m) ln m)1/2 +
l∑

s=0

K5A((2s/m) lnm)1/2

≤ C(R)(K5 + D)A(lnm/m)
r

1+2r .

Therefore, for z satisfying (5.4) we obtain

‖fρ − fz‖p ≤ C(R)(K5 + D)A(lnm/m)
r

1+2r .

This completes the proof of Theorem 5.2.
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