
  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

  

  

  

  

  

  

IINNDDUUSSTTRRIIAALL  

  

MMAATTHHEEMMAATTIICCSS  

  

IINNSSTTIITTUUTTEE  

  
  

2004:08 
 

The Nonlinear Schrödinger 

Equation on the Half-Line  

  

  

  

  

  

  

  

  

  

  

  

  

IIMMII  

  

PPRREEPPRRIINNTT  SSEERRIIEESS  

  

    

  

A.S. Fokas, A.R. Its, and L.-Y. Sung  

  

  

  

  

  

  

  

  

  

  

CCOOLLLLEEGGEE  OOFF  AARRTTSS  AANNDD  SSCCIIEENNCCEESS    

  

UUNNIIVVEERRSSIITTYY  OOFF  SSOOUUTTHH  CCAARROOLLIINNAA  

 



The Nonlinear Schrödinger Equation on the Half-Line

A.S. Fokas
Department of Applied Mathematics

and Theoretical Physics
University of Cambridge
Cambridge, CB0WA, UK

A.R. Its
Department of Mathematical Sciences

Indiana University-Purdue University Indianapolis
Indianapolis, IN 46202-3216, USA

L.-Y. Sung
Department of Mathematics
University of South Carolina
Columbia, SC 29208, USA

Abstract
Assuming that the solution q(x, t) of the nonlinear Schrödinger equation on the half-

line exists, it has been shown that q(x, t) can be represented in terms of the solution
of a matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. The
jump matrix of this RH problem has explicit x, t dependence and it is defined in terms
of the scalar functions {a(k), b(k), A(k), B(k)} referred to as spectral functions. The
functions a(k) and b(k) are defined in terms of q0(x) = q(x, 0), while the functions
A(k) and B(k) are defined in terms of g0(t) = q(0, t) and g1(t) = qx(0, t). The spectral
functions are not independent but they satisfy an algebraic global relation. Here we
first prove that if there exist spectral functions satisfying this global relation, then the
function q(x, t) defined in terms of the above RH problem exists globally and solves the
nonlinear Schrödinger equation, and furthermore q(x, 0) = q0(x), q(0, t) = g0(t) and
qx(0, t) = g1(t). We then show that given appropriate initial and boundary conditions,
it is possible to construct such spectral functions through the solution of a nonlinear
Volterra integral equation whose solution exists globally. We also show that for a
particular class of boundary conditions it is possible to bypass this nonlinear equation
and to compute the spectral functions using only the algebraic manipulation of the
global relation; thus for this particular class of boundary conditions, which we call
linearizable, the problem on the half-line can be solved as effectively as the problem
on the line. An example of a linearizable boundary condition is qx(0, t) − ρ q(0, t) = 0
where ρ is a real constant.
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1 Introduction

A general method for solving boundary value problems for two dimensional linear and inte-
grable nonlinear PDE’s was announced in [1] and further developed in [2, 3]. For nonlinear
evolution equations on the half-line, the starting point of this method is the simultaneous
spectral analysis of the two eigenvalue equations defining the associated Lax pair. Under the
assumption of the existence of a solution q(x, t), this yields q(x, t) in terms of the solution of
a matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane, where k is the
spectral parameter of the two eigenvalue equations. The jump matrix of this RH problem
has explicit x, t dependence and it is uniquely defined in terms of some functions of k called
the spectral functions. These functions can be expressed in terms of the boundary values
of q and of its spatial derivatives. However, these boundary values are in general related
and only some of them can be prescribed as boundary conditions. The most difficult step
in the solution of boundary value problems is the determination of those spectral functions
which involve the unknown boundary values. This can be achieved using the fact that the
spectral functions satisfy in the complex k-plane a simple algebraic global relation. For linear
evolution equations this relation is linear and this step involves only algebraic manipulations
[4], however for nonlinear equations this relation is nonlinear.

In this paper we present the rigorous implementation of the method of [1]–[3] to the
nonlinear Schrödinger equation on the half-line. Furthermore, we identify a particular class
of boundary conditions for which the global relation can be analyzed using only algebraic
manipulations.

This paper is organized as follows: In § 2 we first review the general methodology in-
troduced in [1]–[3]. Namely we assume that there exists a solution q(x, t) with sufficient
smoothness and decay, and we indicate how this solution can be expressed through the so-
lution of a 2 × 2 matrix RH problem, which is uniquely characterized in terms of certain
spectral functions satisfying an appropriate global relation. In § 3 and § 4 we study rigor-
ously the RH problem: In § 3 we show that given initial data q(x, 0) = q0(x) and assuming
that there exists an admissible set of boundary values {g0(t), g1(t)}, it is possible to define
an equivalent class of spectral functions. A set of boundary values is called admissible iff it
gives rise to spectral functions satisfying the global relation obtained in § 2. In § 4 we define
q(x, t) in terms of the solution of a matrix 2×2 RH problem uniquely characterized in terms
of the spectral functions defined in § 3. We then show that q(x, t) satisfies the nonlinear
Schrödinger equation, and furthermore q(x, 0) = q0(x), q(0, t) = g0(t), qx(0, t) = g1(t). In § 5
we show that given appropriate boundary conditions, the admissible set of boundary values
can be uniquely constructed in terms of the given initial and boundary conditions through
the solution of a nonlinear Volterra integral equation which can be solved globally. In § 6 we
show that for a particular class of boundary conditions it is possible to bypass this nonlinear
equation. These boundary conditions are determined by analyzing the transformations in
the complex k-plane which leave the global relation invariant. In § 7 we discuss further these
results.
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2 The Exact 1-Form

The nonlinear Schrödinger equation

iqt + qxx − 2λ|q|2q = 0, λ = ±1, (2.1)

admits the Lax pair [5] formulation [6]

µx + ik[σ3, µ] = Q(x, t)µ, (2.2a)

µt + 2ik2[σ3, µ] = Q̃(x, t, k)µ, (2.2b)

where σ3 = diag(1,−1),

Q(x, t) =

[
0 q(x, t)

λq̄(x, t) 0

]
, Q̃(x, t, k) = 2kQ − iQxσ3 − iλ|q|2σ3. (2.3)

Let σ̂3 denote the commutator with respect to σ3, then (exp σ̂3)A can be computed easily:

σ̂3A = [σ3, A], eσ̂3A = eσ3Ae−σ3 , (2.4)

where A is a 2 × 2 matrix.
Equations (2.2a)–(2.2b) can be rewritten as

d
(
ei(kx+2k2t)σ̂3µ(x, t, k)

)
= W (x, t, k), (2.5)

where the exact 1-form W is defined by

W = ei(kx+2k2t)σ̂3(Qµdx + Q̃µdt). (2.6)

2.1 Bounded and Analytic Eigenfunctions

Let the equation (2.1) be valid for

0 < x < ∞, 0 < t < T,

where T ≤ ∞ is a given positive constant; unless otherwise specified, we suppose that
T < ∞. Assume that the function q(x, t) has sufficient smoothness and decay. A solution of
equation (2.5) is given by

µ∗(x, t, k) = I +

∫ (x,t)

(x∗,t∗)

e−i(kx+2k2t)σ̂3W (ξ, τ, k), (2.7)

where I is the 2× 2 identity matrix, (x∗, t∗) is an arbitrary point in the domain 0 < ξ < ∞,
0 < τ < T , and the integral is over a (piecewise) smooth curve from (x∗, t∗) to (x, t).
Since the 1-form W is exact, µ∗ is independent of the path of integration. The analyticity
properties of µ∗ with respect to k depend on the choice of (x∗, t∗). It was shown in [2] that
for a polygonal domain there exists a canonical way of choosing the points (x∗, t∗), namely
they are the corners of the associated polygon. Thus we define three different solutions µ1,
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Figure 2.1: The solutions µ1, µ2 and µ3 of (2.5)

µ2, µ3, corresponding to (0, T ), (0, 0), (∞, t), see Figure 2.1. Also we choose the particular
contours shown in Figure 2.1.

This choice implies the following inequalities on the contours,

µ1 : ξ − x ≤ 0, τ − t ≥ 0,

µ2 : ξ − x ≤ 0, τ − t ≤ 0,

µ3 : ξ − x ≥ 0.

The second column of the matrix equation (2.7) involves exp[i2(k(ξ−x)+2k2(τ−t))]. Using
the above inequalities it follows that this exponential is bounded in the following regions of
the complex k-plane:

µ1 : {Im k ≤ 0 ∩ Im k2 ≥ 0},
µ2 : {Im k ≤ 0 ∩ Im k2 ≤ 0},
µ3 : {Im k ≥ 0}.

Thus the second column vectors of µ1, µ2 and µ3 are bounded and analytic for arg k in
(π, 3π/2), (3π/2, 2π) and (0, π) respectively. We will denote these vectors with superscripts
(3), (4) and (12) to indicate that they are bounded and analytic in the third quadrant, fourth
quadrant and the upper half of the complex k-plane respectively. Similar conditions are valid
for the first column vectors, thus

µ1(x, t, k) = (µ(2)
1 , µ(3)

1 ), µ2(x, t, k) = (µ(1)
2 , µ(4)

2 ) and µ3(x, t, k) = (µ(34)
3 , µ(12)

3 ). (2.8)

We note that the functions µ1 and µ2 are entire functions of k. Equations (2.8) together
with the estimate

µj(x, t, k) = I + O

(
1

k

)
, k → ∞, j = 1, 2, 3, (2.9)
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imply that the functions µj are the fundamental eigenfunctions needed for the formulation
of a RH problem in the complex k-plane. The jump matrix of this RH problem is uniquely
defined in terms of the 2 × 2-matrix valued functions

s(k) = µ3(0, 0, k) and S(k) = [e2ik2T σ̂3µ2(0, T, k)]−1. (2.10)

This is a direct consequence of the fact that any two solutions of (2.7) are simply related,

µ3(x, t, k) = µ2(x, t, k)e−i(kx+2k2t))σ̂3µ3(0, 0, k), (2.11)

µ1(x, t, k) = µ2(x, t, k)e−i(kx+2k2t))σ̂3 [e2ik2T σ̂3µ2(0, T, k)]−1. (2.12)

The functions s(k) and S(k) follow from the evaluations at x = 0 and t = T respectively of
the function µ3(x, 0, k) and of µ2(0, t, k) which satisfy the following linear integral equations:

µ3(x, 0, k) = I +

∫ x

∞
eik(ξ−x)σ̂3(Qµ3)(ξ, 0, k) dξ, (2.13)

µ2(0, t, k) = I +

∫ t

0

e2ik2(τ−t)σ̂3(Q̃µ2)(0, τ, k) dτ. (2.14)

It is also worth noticing that the matrix valued function S(k) can be alternatively defined
by the equation,

S(k) = µ1(0, 0, k),

which is more convenient in the case when T = ∞.

2.2 The Spectral Functions

The fact that Q and Q̃ are traceless together with (2.9) imply detµj(x, t, k) = 1 for j = 1, 2, 3.
Thus

det s(k) = det S(k) = 1. (2.15)

From the symmetry properties of Q and Q̃ it follows that

(µ(x, t, k))11 = (µ(x, t, k̄)22, (µ(x, t, k))21 = λµ(x, t, k̄)12,

and thus

s11(k) = s22(k̄), s21(k) = λs12(k̄), S11(k) = S22(k̄), S21(k) = λS12(k̄).

We will use the following notation for s and S:

s(k) =

[
a(k̄) b(k)

λb(k̄) a(k)

]
, S(k) =

[
A(k̄) B(k)

λB(k̄) A(k)

]
. (2.16)

The definitions of µj(0, t, k), j = 1, 2, and of µ2(x, 0, k) imply that these functions have larger
domains of boundedness,

µ1(0, t, k) =
(
µ(24)

1 (0, t, k), µ(13)
1 (0, t, k)

)
, (2.17a)

µ2(0, t, k) =
(
µ(13)

2 (0, t, k), µ(24)
2 (0, t, k)

)
, (2.17b)

µ2(x, 0, k) =
(
µ(12)

2 (x, 0, k), µ(34)
2 (x, 0, k)

)
. (2.17c)

5



The definitions of s(k), S(k) and the notation (2.16) imply
[
b(k)

a(k)

]
= µ(12)

3 (0, 0, k),

[
−e−4ik2T B(k)

A(k̄)

]
= µ(24)

2 (0, T, k), (2.18)

where the vectors µ(12)
3 (x, 0, k) and µ(24)

2 (0, t, k) satisfy the following ODEs:

∂xµ
(12)
3 (x, 0, k)+2ik

[
1 0
0 0

]
µ(12)

3 (x, 0, k)

= Q(x, 0)µ(12)
3 (x, 0, k), 0 ≤ arg k ≤ π, 0 < x < ∞,

lim
x→∞

µ(12)
3 (x, 0, k) =

[
0
1

]
, (2.19)

and

∂tµ
(24)
2 (0, t, k)+4ik2

[
1 0
0 0

]
µ(24)

2 (0, t, k)

= Q̃(0, t, k)µ(24)
2 (0, t, k), arg k ∈ [π/2, π] ∪ [3π/2, 2π], 0 < t < T,

µ(24)
2 (0, 0, k) =

[
0
1

]
. (2.20)

The above definitions imply the following properties:

a(k), b(k)

a(k), b(k) are defined and analytic for arg k ∈ (0, π).

|a(k)|2 − λ|b(k)|2 = 1, k ∈ R.

a(k) = 1 + O( 1
k), b(k) = O( 1

k), k → ∞. (2.21)

A(k), B(k)

A(k), B(k) are entire functions bounded for arg k ∈ [0, π
2 ] ∪ [π, 3π

2 ]. If T = ∞, the functions

A(k) and B(k) are defined and analytic in the quadrants arg k ∈ (0, π
2 ) ∪ (π, 3π

2 ).

A(k)A(k̄) − λB(k)B(k̄) = 1, k ∈ C (k ∈ R ∪ iR, if T = ∞).

A(k) = 1 + O
(

1
k

)
+ O

(
e4ik2T

k

)
, B(k) = O

(
1
k

)
+ O

(
e4ik2T

k

)
, k → ∞. (2.22)

All of the above properties, except for the property that B(k) is bounded for arg k ∈
[0, π/2]∪[π, 3π/2], follow from the analyticity and boundedness of µ3(x, 0, k), µ2(0, t, k), from
the conditions of unit determinant, and from the large k asymptotics of these eigenfunctions.
Regarding B(k) we note that B(k) = B(T, k), where B(t, k) = − exp(4ik2t)

(
µ(24)

2 (0, t, k)
)
1
.

Equations (2.20) imply a linear Volterra integral equation for the vector exp(4ik2t)µ(24)
2 (0, t, k),

from which it immediately follows that B(t, k) is an entire function of k bounded for
arg k ∈ [0, π/2] ∪ [π, 3π/2].
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2.3 The RH Problem

Equations (2.11) and (2.12) can be rewritten in the form

M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ R ∪ iR, (2.23)

where the matrices M−, M+ and J are defined as follows

M+ =

(
µ(1)

2

a(k)
, µ(12)

3

)
, arg k ∈ [0, π

2 ]; M− =

(
µ(2)

1

d(k)
, µ(12)

3

)
, arg k ∈ [π2 , π];

M+ =

(
µ(34)

3 ,
µ(3)

1

d(k̄)

)
, arg k ∈ [π, 3π

2 ]; M− =

(
µ(34)

3 ,
µ(4)

2

a(k̄)

)
, arg k ∈ [3π2 , 2π];

(2.24)

d(k) = a(k)A(k̄) − λb(k)B(k̄); (2.25)

J(x, t, k) =






J4, arg k = 0

J1, arg k = π
2

J2 = J3J
−1
4 J1, arg k = π

J3, arg k = 3π
2 ;

(2.26)

with

J1 =

[
1 0

Γ(k)e2iθ 1

]
, J4 =

[
1 −γ(k)e−2iθ

λγ̄(k)e2iθ 1 − λ|γ(k)|2

]
, J3 =

[
1 −λΓ(k̄)e−2iθ

0 1

]
; (2.27)

θ(x, t, k) = kx + 2k2t; γ(k) =
b(k)

ā(k)
, k ∈ R; Γ(k) =

λB(k̄)

a(k)d(k)
, k ∈ R− ∪ iR+. (2.28)

The contour for this RH problem is depicted in Figure 2.2.

Remark 2.1. The function Γ(k) is a meromorphic function in the upper half-plane (in the
second quadrant if T = ∞).

The matrix M(x, t, k) defined by equations (2.24) is in general a meromorphic function
of k in C \ {R ∪ iR}. The possible poles of M are generated by the zeros of a(k), of d(k),
and by the complex conjugate of these zeros.

Assume that:

1. a(k) has n simple zeros {kj}n
1 , n = n1 + n2, where arg kj ∈ (0, π

2 ), j = 1, ..., n1;
arg kj ∈ (π2 , π), j = n1 + 1, ..., n1 + n2.

2. d(k) has Λ simple zeros {λj}Λ
1 , where arg λj ∈ (π2 , π), j = 1, ...,Λ.

3. None of the zeros of a(k) for arg k ∈ (π2 , π), coincides with a zero for d(k).
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Figure 2.2: The contour for the RH problem

In order to evaluate the associate residues we introduce the following notation:

[A]1 (resp. [A]2) denote the first (resp. second) column of A and ȧ(k) = da
dk .

The following formulae are valid:

Res
kj

[M(x, t, k)]1 = 1
ȧ(kj)b(kj)

e2iθ(kj)[M(x, t, kj ]2, j = 1, · · · , n1, (2.29a)

Res
k̄j

[M(x, t, k)]2 = λ
ȧ(kj)b(kj)

e−2iθ(k̄j)[M(x, t, k̄j)]1, j = 1, · · · , n1, (2.29b)

Res
λj

[M(x, t, k)]1 = λB(λ̄j )

a(λj )ḋ(λj )
e2iθ(λj)[M(x, t, λj)]2, j = 1, · · · ,Λ, (2.29c)

Res
λ̄j

[M(x, t, k)]2 = B(λ̄j)

a(λj)ḋ(λj)
e−2iθ(λ̄j)[M(x, t, λ̄j)]1, j = 1, · · · ,Λ, (2.29d)

where
θ(kj) = kjx + 2k2

j t. (2.30)

Remark 2.2. The column [µ3(x, 0, kj)]2 is a nontrivial vector solution of (2.2a). Therefore,
a(k) and b(k) can not have common zeros and hence b(kj) *= 0. Similar arguments together
with the third assumption above imply that B(λ̄j) *= 0.

In order to derive equation (2.29a) we note that the second column of equation (2.11) is

µ(12)
3 = aµ(4)

2 + bµ(1)
2 e−2iθ.

Recalling that µ2 is an entire function and evaluating this equation at k = kj , j = 1, ..., n1,
we find

µ(12)
3 (kj) = b(kj)e

−2iθ(kj)µ(1)
2 (kj), (2.31)

where for simplicity of notation we have suppressed the x, t dependence. Thus

Res
kj

[M ]1 =
µ(1)

2 (kj)

ȧ(kj)
=

e2iθ(kj )µ(12)
3 (kj)

ȧ(kj)b(kj)
,
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which is equation (2.29a), since µ(12)
3 (kj) = [M ]2(kj).

In order to derive equation (2.29c) we note that the first column of equation M− = M+J1,
yields

aµ(2)
1 = dµ(1)

2 + λB̄e2iθµ(12)
3 .

Evaluating this equation at k = λj (each term has an analytic continuation into the second
quadrant) and using

Res
λj

[M ]1 =
µ(2)

1 (λj)

ḋ(λj)
, [M ]2 = µ(12)

3 ,

we find equation (2.29c).

Remark 2.3. By extending q0(x) to the whole axis, q0(x) = 0, x < 0, we can identify the
set {kj}n

1 of zeros of a(k) as the discrete spectrum of the Dirac operator associated with the
nonlinear Schrödinger equation considered on the whole axis (cf. [7]). If λ = 1 this operator
is selfadjoint. This implies the emptiness of the set {kj}n

1 when λ = 1. However, we do not
have a similar argument for the function d(k). Therefore, in order to ensure the solvability of
the Riemann-Hilbert problem in the defocusing case we shall assume that d(k) has no zeros
if λ = 1, see § 4. The asymptotic results presented in appendix B suggest that the solvability
condition does not hold in the defocusing case if d(k) has zeros. Thus we conjecture that
solitons do not exist for λ = 1.

2.4 The Global Relation

We now show that the spectral functions are not independent but satisfy an important global
relation. Indeed, the integral of the 1-form W (x, t, k) around the boundary of the domain
{(ξ, τ) : 0 < ξ < ∞, 0 < τ < t} vanishes. Let W be defined by (2.6) with µ = µ3. Then

∫ 0

∞
eikξσ3(Qµ3)(ξ, 0, k) dξ +

∫ t

0

e2ik2τσ̂3(Q̃µ3)(0, τ, k) dτ

+ e2ik2tσ̂3

∫ ∞

0

eikξσ̂3(Qµ3)(ξ, t, k) dξ (2.32)

= lim
x→∞

eikxσ̂3

∫ t

0

e2ik2τσ̂3(Q̃µ3)(x, τ, k) dτ.

Using the definition of s(k) in (2.10) it follows from (2.13) that the first term of this equation
equals s(k) − I. Equation (2.11) evaluated at x = 0 gives

µ3(0, τ, k) = µ2(0, τ, k)e−2ik2τσ̂3s(k),

thus
e2ik2τσ̂3(Q̃µ3)(0, τ, k) = [e2ik2τσ̂3(Q̃µ2)(0, τ, k)]s(k);

this equation together with (2.14) imply that the second term of (2.32) equals

[e2ik2tσ̂3µ2(0, t, k) − I]s(k).

9



Hence assuming that q has sufficient decay as x → ∞ equation (2.32) becomes

−I + S(t, k)−1s(k) + e2ik2tσ̂3

∫ ∞

0

eikξσ̂3(Qµ3)(ξ, t, k) dξ = 0, (2.33)

where the first and second columns of this equation are valid for argk in the lower and the
upper half of the complex k-plane respectively and S(t, k) is defined by

S(t, k) = [e2ik2tσ̂3µ2(0, t, k)]−1.

Letting t = T and noting that S(k) = S(T, k), equation (2.33) becomes

−I + S(k)−1s(k) + e2ik2T σ̂3

∫ ∞

0

eikξσ̂3(Qµ3)(ξ, T, k) dξ = 0.

The (12) component of this equation is

B(k)a(k) − A(k)b(k) = e4ik2T c+(k) arg k ∈ [0, π],

c+(k) =

∫ ∞

0

eikξ(Qµ3)12(ξ, T, k) dk. (2.34)

3 The Spectral Functions

The analysis of § 2 motivates the following definitions for the spectral functions.

Definition 3.1. (The spectral functions a(k) and b(k)).

Given q0(x) ∈ S(R+), we define the map

S : {q0(x)} +→ {a(k), b(k)} (3.1)

as follows:
a(k) = ϕ2(0, k), b(k) = ϕ1(0, k), Im k ≥ 0, (3.2)

where the vector ϕ(x, k) = (ϕ1, ϕ2)t is the unique solution of

ϕ1x + 2ikϕ1 = q0(x)ϕ2, (3.3a)

ϕ2x = λq̄0(x)ϕ1, Im k ≥ 0, 0 < x < ∞, (3.3b)

lim
x→∞

ϕ = (0, 1)t. (3.3c)

The functions a and b are well defined. Indeed, equations (3.3) are equivalent to the
Volterra linear integral equation,

ϕ1(x, k) = −
∫ ∞

x

e−2ik(x−y)q0(y)ϕ2(y, k)dy, Im k ≥ 0, (3.4a)

ϕ2(x, k) = 1 − λ
∫ ∞

x

q̄0(y)ϕ1(y, k)dy, Im k ≥ 0. (3.4b)
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The spectral functions a(k) and b(k) have the following properties:

Properties of a(k) and b(k)

(i) a(k) and b(k) are analytic for Im k > 0 and continuous and bounded for Im k ≥ 0 .

(ii) a(k) = 1 + O( 1
k), b(k) = O( 1

k), k → ∞.

(iii) |a(k)|2 − λ|b(k)|2 = 1, k ∈ R.

(iv) The map Q : {a(k), b(k)} +→ {q0(k)}, inverse to S, is defined as follows:

q0(x) = 2i lim
k→∞

(kM (x)(x, k))12, (3.5)

where M (x)(x, k) is the unique solution of the following RH problem:

• M (x)(x, k) =




M (x)

− (x, k), Im k ≤ 0,

M (x)
+ (x, k), Im k ≥ 0,

(3.6a)

is a sectionally meromorphic function.

• M (x)
− (x, k) = M (x)

+ (x, k)J (x)(x, k), k ∈ R, (3.6b)

where

J (x)(x, k) =




1 − b(k)

ā(k)
e−2ikx

λb̄(k)

a(k)
e2ikx 1

|a|2



 . (3.6c)

• M (x)(x, k) = I + O(
1

k
), k → ∞. (3.6d)

• We assume that if λ = −1, a(k) has n simple zeros {kj}n
1 , n = n1 + n2, where

arg kj ∈ (0, π
2 ), j = 1, ..., n1; arg kj ∈ (π2 , π), j = n1 + 1, ..., n1 + n2.

• If λ = −1, the first column of M (x)
+ has simple poles at k = kj , j = 1, ..., n and

the second column of M (x)
− has simple poles at k = k̄j, where {kj}n

1 are the simple
zeros of a(k), Im k > 0. The associated residues are given by

Res
kj

[M (x)(x, k)]1 =
e2ikjx

ȧ(kj)b(kj)
[M (x)(x, kj)]2,

Res
k̄j

[M (x)(x, k)]2 =
λe−2ik̄jx

ȧ(kj)b(kj)
[M (x)(x, k̄j)]1. (3.6e)

(v) We have
S−1 = Q. (3.7)
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Proof. (i)–(iii) follow from the definition; the derivation of (iv), (v) is given in the Ap-
pendix A.

Remark 3.2. The properties of a(k) and b(k) imply that a(k) can be expressed in terms of
b(k). Indeed, if a(k) *= 0, for Im k ≥ 0, then

a(k) = exp

{
1

2πi

∫ ∞

−∞
ln(1 + λ|b(k′)|2) dk′

k′ − k

}
, Im k > 0.

Also, the upper-half plane analyticity of b(k) implies that

b(k) =

∫ ∞

0

b̂(s)eiksds,

where b̂(s) is a complex valued function of Schwartz type on R+ (if the same behavior is
assumed for q0(x)). Thus, if a(k) *= 0, the maps S and Q define the bijection

q0(x) ←→ b(k) . (3.8)

If λ = −1 and a(k) has zeros, the equation for a(k) must be replaced by

a(k) =
n∏

j=1

k − kj

k − k̄j
exp

{
1

2πi

∫ ∞

−∞
ln(1 + λ|b(k′)|2) dk′

k′ − k

}
, Im k > 0,

and a discrete component, {kj}, must be added to the right hand side of (3.8).

Definition 3.3. (The spectral functions A(k) and B(k))

Let

Q̃(t, k) = 2k

[
0 g0(t)

λg0(t) 0

]
− i

[
0 g1(t)

λg1(t) 0

]
σ3 − iλ|g0(t)|2σ3, λ = ±1. (3.9)

Let g0(t) and g1(t) be smooth functions. The map

S̃ : {g0(t), g1(t)} → {A(k), B(k)} (3.10)

is defined as follows: [
−e−4ik2T B(k)

A(k̄)

]

= Φ(T, k), k ∈ C, (3.11)

where the vector Φ(t, k) = (Φ1,Φ2)t is the unique solution of

Φ1t + 4ik2Φ1 = Q̃11Φ1 + Q̃12Φ2, (3.12a)

Φ2t = Q̃21Φ1 + Q̃22Φ2, 0 < t < T, k ∈ C, (3.12b)

Φ(0, k) = (0, 1)t. (3.12c)
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The functions A(k) and B(k) are well defined, since equations (3.12) are equivalent to
the linear Volterra integral equations

Φ1(t, k) =

∫ t

0

e−4ik2(t−τ)(Q̃11Φ1 + Q̃12Φ2)(τ, k)dτ, (3.13a)

Φ2(t, k) = 1 +

∫ t

0

(Q̃21Φ1 + Q̃22Φ2)(τ, k)dτ. (3.13b)

If T = ∞, we assume that the functions g0(t) and g1(t) belong to S(R+), and we use the
alternative, based on the solution µ1(0, t, k), definition of the spectral functions A(k) and
B(k). In other words, we put

[
B(k)

A(k)

]
= Φ̃(0, k), Im k2 ≥ 0,

where the vector Φ̃(t, k) = (Φ̃1, Φ̃2)t is the unique solution of

Φ̃1t + 4ik2Φ̃1 = Q̃11Φ̃1 + Q̃12Φ̃2,

Φ̃2t = Q̃21Φ̃1 + Q̃22Φ̃2, t > 0, Im k2 ≥ 0,

lim
t→∞

Φ̃(t, k) = (0, 1)t.

In the case T < ∞, this definition is equivalent to (3.11). Note also, that the functions
Φ̃1(t, k) and Φ̃2(t, k) satisfy the system of linear Volterra integral equations,

Φ̃1(t, k) = −
∫ ∞

t

e−4ik2(t−τ)(Q̃11Φ̃1 + Q̃12Φ̃2)(τ, k)dτ,

Φ̃2(t, k) = 1 −
∫ ∞

t

(Q̃21Φ̃1 + Q̃22Φ̃2)(τ, k)dτ.

Therefore, in the case T = ∞ the spectral functions A(k) and B(k) are well defined and
analytic for arg k ∈ [0, π

2 ] ∪ [π, 3π
2 ] only.

The spectral functions A(k) and B(k) have the following properties:

Properties of A(k) and B(k)

(i) A(k), B(k) are entire functions bounded for arg k ∈ [0, π
2 ] ∪ [π, 3π

2 ]. If T = ∞, the
functions A(k) and B(k) are defined only for k in these quadrants.

(ii) A(k) = 1 + O

(
1

k

)
+ O

(
e4ik2T

k

)
, B(k) = O

(
1

k

)
+ O

(
e4ik2T

k

)
, k → ∞.

(iii) A(k)A(k̄) − λB(k)B(k̄) = 1, k ∈ C (k ∈ R ∪ iR, if T = ∞).
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(iv) The map Q̃ : {A(k), B(k)} +→ {g0(t), g1(t)}, inverse to S̃, is defined as follows:

g0(t) = 2i lim
k→∞

(kM (t)(t, k))12,

g1(t) = lim
k→∞

[
4
(
k2M (t)(t, k)

)

12
+ 2ig0(t)k

(
M (t)(t, k)

)

22

]
, (3.14)

where M (t)(t, k) is the unique solution of the following RH problem:

• M (t)(t, k) =

[
M (t)

+ (t, k), arg k ∈ [0, π
2 ] ∪ [π, 3π

2 ]

M (t)
− (t, k), arg k ∈ [π2 , π] ∪ [3π2 , 2π],

(3.15a)

is a sectionally meromorphic function.

• M (t)
− (t, k) = M (t)

+ (t, k)J (t)(t, k), k ∈ R ∪ iR, (3.15b)

where

J (t)(t, k) =




1 −B(k)

A(k̄)
e−4ik2t

λB(k̄)
A(k) e4ik2t 1

A(k)A(k̄)



 . (3.15c)

• M (t)(t, k) = I + O

(
1

k

)
, k → ∞. (3.15d)

• We assume that A(k) has N simple zeros {Kj}N
1 , arg Kj ∈ (0, π

2 ) ∪ (π, 3π
2 ). The

first column of M (t)
+ (t, k) has simple poles at k = Kj, j = 1, ..., N , and the second

column of M (t)
− (t, k) has simple poles at k = K̄j, where {Kj}N are the simple

zeros of A(k), arg k ∈ (0, π
2 ) ∪ (π, 3π

2 ). The associated residues are given by

Res
Kj

[M (t)(t, k)]1 =
exp[4iK2

j t]

Ȧ(Kj)B(Kj)
[M (t)(t, Kj)]2, j = 1, · · · , N,

Res
K̄j

[M (t)(t, k)]2 =
λ exp[−4iK̄2

j t]

Ȧ(K̄j)B(K̄j)
[M (t)(t, K̄j)]1, j = 1, · · · , N. (3.15e)

(v) We have
S̃−1 = Q̃. (3.16)

Proof. (i)–(iii) follow from the definition; the derivation of (iv), (v) is given in the Ap-
pendix A.

Remark 3.4. The properties of A(k) and B(k) imply that A(k) can be expressed in terms
of B(k). Indeed, if A(k) *= 0, then

A(k) =
N∏

j=1

k − Kj

k − K̄j
exp

{
1

2iπ

∫

L
ln(1 + λB(k′)B(k̄′))

dk′

k′ − k

}
,
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for arg k ∈ (0, π
2 ) ∪ (π, 3π

2 ), where the contour L is the union of the real and the imaginary
axis with the orientation shown in Figure 2.2. Also,

B(±k) =

∫ ∞

0

B̂±(s)eik2sds, arg k ∈
[
0,
π

2

]
.

Thus, the maps S̃ and Q̃ define the bijection

{g0(t), g1(t)} ←→ {B(k), K1, ..., KN , N < ∞}. (3.17)

The global relation suggests the following notion of an admissible set of boundary values.

Definition 3.5. (An admissible set of functions)

Given q0(x) ∈ S(R+) define a(k) and b(k) according to Definition 3.1. Suppose that there
exist smooth functions g0(t) and g1(t), such that :

(i) The associated A(k), B(k) defined according to Definition 3.3 satisfy the relation

a(k)B(k) − b(k)A(k) = e4ik2T c+(k), arg k ∈ [0, π] , (3.18)

where c+(k) is analytic for Im k > 0 and continuous and bounded for Im k ≥ 0 and

c+(k) = O

(
1

k

)
, k → ∞.

(ii) The functions q(0, t) = g0(t), qx(0, t) = g1(t) and q(x, 0) = q0(x) are compatible with
the NLS equation at x = t = 0, i.e., they satisfy

g0(0) = q0(0), g1(0) = q′0(0), ig′
0(0) + q′′0(0) − 2λ(|q0|2q0)(0) = 0,

ig′
1(0) + q′′′0 (0) − 2λ(|q0|2q0)

′(0) = 0, . . .

(The exact number of conditions depends on the regularity of the solution that is to be con-
structed using g0 and g1.) Then we call {g0(t), g1(t)} an admissible set of functions with
respect to q0(x).

Remark 3.6. If T = ∞, then the functions g0(t) and g1(t) are assumed to belong in S(R+),
and the global relation (3.18) transforms into 1.

a(k)B(k) − b(k)A(k) = 0, arg k ∈
[
0,
π

2

]
. (3.19)

1We note that this condition is similar to the restrictions on the scattering data that appears in the
boundary problem for the elliptic version of the sine-Gordon equation [8]
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4 The Riemann-Hilbert Problem

Theorem 4.1. Let q0(x) ∈ S(R+). Suppose that the set of functions g0(t) and g1(t) are
admissible with respect to q0(x), see Definition 3.5. Define the spectral functions a(k), b(k),
A(k) and B(k), in terms of q0(x), g0(t), g1(t) according to Definitions 3.1 and 3.3. Assume
that:

(i) If λ = −1, a(k) has at most n simple zeros {kj}n
1 , n = n1 + n2, where arg kj ∈ (0, π

2 ),
j = 1, · · · , n1; arg kj ∈ (π2 , π), j = n1 + 1, · · · , n1 + n2.

(ii) If λ = −1, the function d(k) (cf. (2.25)) has at most Λ simple zeros {λj}Λ
1 , where

argλj ∈ (
π

2
, π), j = 1, ...,Λ.

If λ = 1, the function d(k) has no zeros in the second quadrant.

(iii) None of the zeros of a(k) for arg k ∈ (π2 , π), coincides with a zero of d(k).

Define M(x, t, k) as the solution of the following 2 × 2 matrix RH problem :

• M is sectionally meromorphic in k ∈ C \ {R ∪ iR}.

• The first column of M has simple poles at kj, j = 1, ..., n1 and λj, j = 1, ...Λ; the
second column of M has simple poles at kj, j = 1, ..., n1 and λj, j = 1, ...,Λ. The
associated residues satisfy the relations in (2.29).

• M satisfies the jump condition

M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ R ∪ iR, (4.1)

where M is M− for arg k ∈ [π2 , π] ∪ [3π2 , 2π], M is M+ for arg k ∈ [0, π
2 ] ∪ [π, 3π

2 ], and
J is defined in terms of a, b, A and B by equations (2.25)–(2.28), see Figure 2.2.

• At ∞ we have

M(x, t, k) = I + O

(
1

k

)
, k → ∞. (4.2)

Then M(x, t, k) exists and is unique.
Define q(x, t) in terms of M(x, t, k) by

q(x, t) = 2i lim
k→∞

(
kM(x, t, k)

)
12

. (4.3)

Then q(x, t) solves the NLS equation (2.1). Furthermore,

q(x, 0) = q0(x), q(0, t) = g0(t) and qx(0, t) = g1(t).
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Proof. If λ = 1 the function a(k) *= 0 for Im k > 0 (see Remark 2.3), and by assumption
d(k) *= 0 for arg k ∈ (π2 , π). In this case the unique solvability of the RH problem is a
consequence of the existence of a “vanishing lemma”, i.e. the RH obtained from the above
RH by replacing (4.2) with M = O( 1

k), k → ∞, has only the trivial solution. The vanishing
lemma can be established using the symmetry properties of J , see [9]. If λ = −1, a(k)
and d(k) can have zeros; this “singular” RH problem can be mapped to a “regular” RH
problem (i.e. to a RH problem for holomorphic functions) coupled with a system of algebraic
equations, see [9]. The unique solvability of the relevant algebraic equations and the proof
of the associated vanishing lemma are based on the symmetry properties of J , see [9].

Proof that q(x, t) solves the NLS.

It is straightforward to prove that if M solves the above RH problem and if q(x, t) is
defined by (4.4) then q(x, t) solves the NLS equation. This proof is based on ideas from the
dressing method, see [10].

Proof that q(x, 0) = q0(x).

Define M (x)(x, k) by:

M (x) = M(x, 0, k), arg k ∈ [0,
π

2
] ∪ [

3π

2
, 2π]; (4.4a)

M (x) = M(x, 0, k)J−1
1 (x, 0, k), arg k ∈ [

π

2
, π]; (4.4b)

M (x) = M(x, 0, k)J3(x, 0, k), arg k ∈ [π,
3π

2
]. (4.4c)

We first discuss the case that the sets {kj} and {λj} are empty. The function M (x) is
sectionally meromorphic in C \ R. Furthermore,

M (x)
− (x, k) = M (x)

+ (x, k)J (x)(x, k), k ∈ R,

M (x)(x, k) = I + O

(
1

k

)
, k → ∞,

where J (x)(x, t) is defined in (3.6c). Thus according to (3.5),

q0(x) = 2i lim
k→∞

k(M (x)(x, k))12. (4.5)

Comparing this equation with equation (4.3) evaluated at t = 0, we conclude that q0(x) =
q(x, 0).

We now discuss the case that the sets {kj} and {λj} are not empty. The first column of
M(x, t, k) has poles at {kj}n1

1 for arg k ∈ (0, π
2 ), and has poles at {λj}Λ

1 for arg k ∈ (π2 , π).
On the other hand the first column of M (x)(x, k) should have poles at {kj}n

1 , n = n1 + n2.
We will now show that the transformations defined by (4.4) map the former poles to the
latter ones. Since M (x) = M(x, 0, k) for arg k ∈ [0, π

2 ], M (x) has poles at {kj}n1
1 with the

correct residue condition. Letting M = (M1, M2), equation (4.4b) can be written as

M (x)(x, k) = (M1(x, 0, k) − Γ(k)e2ikxM2(x, 0, k), M2(x, 0, k)).
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The residue condition at λj implies that M (x) has no poles at λj; on the other hand this
equation shows that M (x) has poles at {kj}n

n1+1 with residues given by

Res
kj

[M (x)(x, k)]1 = −Res
kj

Γ(k)e2ikjx[M (x)(x, kj)]2, j = n1 + 1, · · · , n,

which using the definition of Γ(k) (and the equation d(kj) = −λb(kj)B(k̄j)) becomes the
residue condition of (3.6e). Similar considerations apply to k̄j and λ̄j.

Proof that q(0, t) = g0(t) and qx(0, t) = g1(t).

Let M (1)(x, t, k), · · · , M (4)(x, t, k) denote M(x, t, k) for arg k ∈ [0, π
2 ], · · · , [3π2 , 2π]. Recall

that M satisfies

M (2) = M (1)J1, M (2) = M (3)J2,

M (4) = M (1)J4, M (4) = M (3)J3, (J2 = J3J
−1
4 J1)

(4.6)

on the respective parts of the contour L = R ∪ iR (cf. Figure 2.2).
Let M (t)(t, k) be defined by

M (t)(t, k) = M(0, t, k)G(t, k), (4.7)

where G is given by G(1), · · · , G(4) for arg k ∈ [0, π
2 ], · · · , [3π2 , 2π]. Suppose we can find

matrices G(1) and G(2) holomorphic for Im k > 0 (and continuous for Im k ≥ 0), matrices
G(3) and G(4) holomorphic for Im k < 0 (and continuous for Im k ≤ 0), which tend to I as
k → ∞, and which satisfy

J1(0, t, k)G(2)(t, k) = G(1)(t, k)J (t)(t, k), k ∈ iR+, (4.8a)

J3(0, t, k)G(4)(t, k) = G(3)(t, k)J (t)(t, k), k ∈ iR−, (4.8b)

J4(0, t, k)G(4)(t, k) = G(1)(t, k)J (t)(t, k), k ∈ R+, (4.8c)

where J (t)(t, k) is the jump matrix in (3.15c). Then the equations in (4.8) yield

J2(0, t, k)G(2)(t, k) = G(3)(t, k)J (t)(t, k), k ∈ R−,

and equations (4.6) and (4.7) imply that M (t) satisfies the RH problem defined in (3.15). If
the sets {kj} and {λj} are empty, this immediately yields the desired result.

We will show that such G(j) matrices are:

G(1) =




a(k)
A(k) c+(k)e4ik2(T−t)

0 A(k)
a(k)



 , G(4) =





A(k̄)

a(k̄)
0

λc+(k̄)e−4ik2(T−t) a(k̄)

A(k̄)





G(2) =




d(k) −b(k)e−4ik2t

A(k̄)

0 1
d(k)



 , G(3) =




1

d(k̄)
0

−λb(k̄)
A(k) e4ik2t d(k̄)



 . (4.9)
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We first verify (4.8a): The (12) element is proportional to the global relation; the (21) and
(22) elements are satisfied identically. The (11) element is satisfied iff

d =
a

A
+
λB̄

A
c+e4ik2T . (4.10)

Using AĀ − λBB̄ = 1, we find

d =
a

A
AĀ − λbB̄ =

a

A
(1 + λBB̄) − λbB̄ =

a

A
+
λB̄

A
(aB − bA),

which equals the rhs of equation (4.10) in view of the global relation (3.18).
The equation (4.8b) follows from the first one and the symmetry relations,

G(4)(k) = σλG(1)(k̄)σλ, G(3)(k) = σλG(2)(k̄)σλ, J3(k) = σλJ
−1
1 (k̄)σλ,

where

σλ =






σ1 ≡
[
0 1
1 0

]
if λ = 1

σ2 ≡
[
0 −i
i 0

]
if λ = −1

.

The third equation (4.8c) can be verified in a way similar to (4.8a). In fact, in this case
one has to use all three basic algebraic identities which hold on the real axis, i.e. both
the determinant relations, |a|2 − λ|b|2 = 1 and |A|2 − λ|B|2 = 1, and the global relation,
a(k)B(k) − b(k)A(k) = c+(k)e4ik2T .

Remark 4.2. In the case T = ∞, the matrices G(j)(t, k) are defined and analytic only
in the respective quadrants of the complex plane k. Moreover, the global relation holds
only in the first quadrant (see (3.19)). Therefore, one can not use (4.8) to establish the
relation J4(0, t, k)G(2)(t, k) = G(3)(t, k)J (t)(t, k), k < 0. The latter, however, can be verified
independently, with the use of the determinant relations.

We now consider the case that the sets {kj} and {λj} are not empty.

(a) arg k ∈ (0, π
2 )

Let M = (M1, M2), then equations (4.7) and (4.9) imply

M (t)(t, k) =

(
a(k)

A(k)
M1(0, t, k), c+(k)e4ik2(T−t)M1(0, t, k) +

A(k)

a(k)
M2(0, t, k)

)
.

Suppose that k0 ∈ {kj}n1
1 and k0 /∈ {Kj}N1

1 , where {Kj}N1
1 denotes the set of zeros of

A(k) in the first quadrant. Then, M (t)(t, k) does not have a pole at k0. Indeed,

Res
k0

[M (t)(t, k)]2 = c+(k0)e
4ik2

0(T−t) Res
k0

M1(0, t, k) +
A(k0)

ȧ(k0)
M2(0, t, k0).

Using

Res
k0

M1(0, t, k) =
M2(0, t, k0)e4ik2

0t

ȧ(k0)b(k0)
,
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we find

Res
k0

[M (t)(t, k)]2 =
M2(0, t, k0)

ȧ(k0)b(k0)

(
c+(k0)e

4ik2
0T + b(k0)A(k0)

)
.

From the global relation, the term in the parentheses equals a(k0)B(k0), hence

Res
k0

[M (t)(t, k)]2 = 0.

Suppose that K0 ∈ {Kj}N1
1 and K0 /∈ {kj}n1

1 . Then, [M (t)(t, k)]1 has a pole at K0. In
order to compute the associated residues we note that

Res
K0

[M (t)(t, k)]1 =
a(K0)

Ȧ(K0)
M1(0, t, K0).

Using the definition of the second column of M (t) evaluated at k = K0

M1(0, t, K0) =
e4iK2

0 t[M (t)(t, K0)]2
c+(K0)e4iK2

0T
,

and the global relation evaluated at k = K0,

a(K0)B(K0) = c+(K0)e
4iK2

0T ,

we find

Res
K0

[M (t)(t, k)]1 =
e4iK2

0 t[M (t)(t, K0)]2

Ȧ(K0)B(K0)
,

which is the residue condition in (3.15e). (Note that since K0 is not a common zero for a(k)
and A(k), the inequality, c+(K0) *= 0, holds.)

Suppose now that k0 ≡ K0 is a common (simple) zero of the functions a(k) and A(k).
Then necessarily

c+(k0) = 0, (4.11)

and the second column of M (t)(t, k) does not have pole at k0. The first column has a pole
at k0 ≡ K0, and for the residue condition we have,

Res
K0

[M (t)(t, k)]1 =
ȧ(K0)

Ȧ(K0)
Res
K0

M1(0, t, k) =
e4iK2

0 t

Ȧ(K0)b(K0)
M2(0, t, K0). (4.12)

Using, as before, the definition of the second column of M (t) evaluated at k = K0 we obtain
the equation,

[M (t)(t, k)]2 = ċ+(K0)e
4iK2

0 (T−t) Res
K0

M1(0, t, k) +
Ȧ(K0)

ȧ(K0)
M2(0, t, K0)

= M2(0, t, K0)

(
Ȧ(K0)

ȧ(K0)
+

ċ+(K0)e4iK2
0T

ȧ(K0)b(K0)

)

= M2(0, t, K0)
B(K0)

b(K0)
, (4.13)

20



where in the last step we have used the equation

ċ+(K0)e
4iK2

0T = ȧ(K0)B(K0) − Ȧ(K0)b(K0),

which follows from the global relation and from equation (4.11). In virtue of (4.13), equation
(4.12) can be rewritten as

Res
K0

[M (t)(t, k)]1 =
e4iK2

0 t

Ȧ(K0)B(K0)
[M (t)(t, K0)]2,

which again reproduces the residue condition in (3.15e).
We note that the last arguments, further simplified by ċ+(K0)e4iK2

0T +→ 0, are precisely
the ones we need in the case T = ∞, when the global relation takes the form (3.19) so that
{kj}n1

1 = {Kj}N1
1 .

(b) arg k ∈ (π2 , π)

Equations (4.7) and (4.9) imply

M (t)(t, k) =

(

d(k)M1(0, t, k),− b(k)

A(k̄)
e−4ik2tM1(0, t, k) +

M2(0, t, k)

d(k)

)

.

Suppose that λ0 ∈ {λj}Λ
1 and λ0 /∈ {K̄j}N

N1+1, where {Kj}N
N1+1 denotes the set of zeros of

A(k) in the third quadrant. Then, M (t)(t, k) does not have a pole at λ0. Indeed,

Res
λ0

[M (t)(t, k)]2 =
−b(λ0)

A(λ̄0)
e−4iλ2

0t Res
λ0

M1(0, t, k) +
M2(0, t, λ0)

ḋ(λ0)
.

Using

Res
λ0

M1(0, t, k) =
λB(λ̄0)e4iλ2

0tM2(0, t, λ0)

a(λ0)ḋ(λ0)
, (4.14)

and taking into account that under the assumption on λ0,

d(λ0) = 0 =⇒ λB(λ̄0)

a(λ0)
=

A(λ̄0)

b(λ0)
,

it follows that Res
λj

[M (t)(t, k)]2 = 0.

Suppose that K0 ∈ {Kj}N
N1+1 and K̄0 /∈ {λj}Λ

1 . Then, [M (t)(t, k)]2 has a pole at K̄0. In
order to compute the associated residues we note that

Res
K̄0

[M (t)(t, k)]2 =
−b(K̄0)

Ȧ(K0)
e−4iK̄2

0 tM1(0, t, K̄0).

Using the definition of the first column of M (t) at k = K̄0 and recalling that d(K̄0) =
−λB(K0)b(K̄0) (and hence, in particular, B(K0)b(K̄0) *= 0), we find

[M (t)(t, K̄0)]1 = −λB(K0)b(K̄0)M1(0, t, K̄0).
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Thus

Res
K̄0

[M (t)(t, k)]2 =
λe−4iK̄2

0 t[M (t)(t, K̄0)]1

Ȧ(K0)B(K0)
,

which is the residue condition in (3.15e).

Suppose now that λ0 ≡ K̄0 is a common (simple) zero of the functions d(k) and A(k̄).
Then necessarily

b(λ0) = 0,

and for the residue of [M (t)(t, k)]2 at K̄0 we have,

Res
K̄0

[M (t)(t, k)]2 =
−ḃ(K̄0)

Ȧ(K0)
e−4iK̄2

0 t Res
K̄0

M1(0, t, k) +
M2(0, t, K̄0)

ḋ(K̄0)

=
1

Ȧ(K0)a(K̄0)
M2(0, t, K̄0), (4.15)

where we have used the residue condition (4.14) for M1(0, t, k) at λ0 ≡ K̄0 and the equation,

ḋ(K̄0) = Ȧ(K0)a(K̄0) − λB(K0)ḃ(K̄0).

Using the definition of the first column of M (t) at k = K̄0 and the residue equation (4.14)
one more time, we conclude that

M2(0, t, K̄0) = λ
a(K̄0)

B(K0)
e−4iK̄2

0 t[M (t)(t, K̄0)]1,

which together with (4.15) yield again the residue condition in (3.15e).
Similar considerations are valid for arg k ∈ [3π2 , 2π] and arg k ∈ [π, 3π

2 ]. Alternatively, one
can use the symmetry relations generated by the anti - involution k +→ k̄.

Let 0 < T∗ < T . Since the solution of the NLS equation for 0 < t < T∗ depend only on
the boundary data between 0 < t < T∗, the RH problems corresponding to T∗ and T must
be related. This is confirmed by the following proposition.

Proposition 4.3. Let A(T∗, k), B(T∗, k) be defined by (3.11) with T replaced by T∗ < T ,
J̃1(x, t, k) and J̃3(x, t, k) denote the jump matrices obtained from (2.27) by replacing A(k)
and B(k) with A(T∗, k) and B(T∗, k), and J̃2 = J̃3J

−1
4 J̃1. Let M̃(x, t, k) satisfy a RH problem

defined by (4.1) but with jump matrices J̃1, J̃2, J̃3 and J4. Then for 0 < t < T∗ the restrictions
of M(x, t, k) and M̃(x, t, k) to the four quadrants (cf. Figure 2.2) satisfy

M1 = M̃1, M4 = M̃4, M2 = M̃2J̃
−1
1 J1, M3 = M̃3J̃3J

−1
3 . (4.16)

Proof. Using equation (4.16) it is straightforward to verify that the jump condition for M ,
i.e., equation (4.1) yields similar jump condition for M̃ with J1, J2, J3 replaced by J̃1, J̃2 and
J̃3. Assuming the solitonless case it remains to show that the functions J̃−1

1 J1 and J̃3J
−1
3 are

analytic and bounded for arg k ∈ (π2 , π) and arg k ∈ (π, 3π
2 ), respectively, and that both tend
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to the identity matrix as k → ∞. We will show this fact for the function J̃3J
−1
3 , the proof

for J̃−1
1 J1 follows from symmetry considerations.

The diagonal elements of J̃3J
−1
3 are 1, its (21) element is 0, and its (12) element equals

λ(Γ(k̄) − Γ(T∗, k̄))e−2iθ =
B(k)A(T∗, k) − A(k)B(T∗, k)

d(k̄) d(T∗, k̄)
e−4ik2T∗e−2ikx+4ik2(T∗−t), (4.17)

where the rhs of this equation follows from the lhs using the definitions of Γ(k), of Γ(T∗, k),
and the notation

d(T∗, k) = a(k)A(T∗, k̄) − λb(k)B(T∗, k̄).

The definition of A(T∗, k) and B(T∗, k) implies that they have the same properties as A(k),

B(k), where T is replaced by T∗ in the second property. Thus since d(k̄) is bounded and

analytic for k ∈ D3 the same is true for d(T∗, k̄). Also, the definition of A(T∗, k) and B(T∗, k)
implies that

[
B(k)A(T∗, k) − B(T∗, k)A(k)

]
e−4ik2T∗

= Φ2(T, k̄)Φ1(T∗, k) − Φ1(T, k)Φ2(T∗, k̄)e4ik2(T−T∗). (4.18)

We will show that the r.h.s. of equation (4.18) is bounded and analytic for k ∈ D1 ∪ D3,
and that it goes to zero as k → ∞, k ∈ D1 ∪ D3. This result together with the fact that
exp[−2ikx + 4ik2(T∗ − t)] is bounded for k ∈ D3 imply that the r.h.s. of equation (4.17) is
bounded and analytic for k ∈ D3, and it goes to zero as k → ∞, k ∈ D3.

In order to prove that the r.h.s. of (4.18) is bounded and analytic for k ∈ D1 ∪ D3 we
introduce the notations

χ1(t, k) = Φ2(T, k̄)Φ1(t, k) − Φ1(T, k)Φ2(t, k̄)e4ik2(T−t),

χ2(t, k) = Φ2(T, k̄)Φ2(t, k) − λΦ1(T, k)Φ1(t, k̄)e4ik2(T−t). (4.19)

We will prove that the functions χ1 and χ2 satisfy the following system of linear integral
equations

χ1(t, k) = −
∫ T

t

[
Q̃11(τ, k)χ1(τ, k) + Q̃12(τ, k)χ2(τ, k)

]
e4ik2(τ−t) dτ,

χ2(t, k) = 1 −
∫ T

t

[
Q̃22(τ, k)χ2(τ, k) + Q̃21(τ, k)χ1(τ, k)

]
dτ, (4.20)

where Q̃ij denote, as usual, the entries of the matrix Q̃(t, k). Indeed, the symmetry properties
of Q̃(t, k) imply that if the vector Φ(t, k) with the two components Φ1 and Φ2 satisfies

equation (3.12), then the vector
(
λΦ2(t, k̄),Φ1(t, k̄)

)t
e−4ik2t also satisfies the same equation.

Hence the vector χ(t, k) with the two components χ1 and χ2 defined by equations (4.19)
satisfies equation (3.12). Furthermore,

χ1(T, k) = Φ2(k̄)Φ1(k) − Φ1(k)Φ2(k̄) = 0,
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χ2(T, k) = Φ2(k̄)Φ2(k) − λΦ1(k)Φ1(k̄) = 1.

The unique solution of equation (3.12) with the boundary condition {χ1(T, k) = 0, χ2(T, k) =
1} satisfies equations (4.20).

Equations (4.20) imply that χ1(t, k) is bounded and analytic for k ∈ D1 ∪ D3, and that
it goes to zero as k → ∞, k ∈ D1 ∪ D3 uniformly for all 0 < t < T . Since the r.h.s. of
equation (4.18) equals χ1(T∗, k), T∗ < T , it follows that the r.h.s. of equation (4.18) is also
bounded and analytic for k ∈ D1∪D3, and that it goes to zero as k → ∞, k ∈ D1∪D3.

5 Construction of Admissible Sets of Functions

For simplicity we consider the special case where q0 = 0 and a function g0 ∈ C∞([0, T ]) is
given such that

d'g0

dt'
(0) = 0 for + = 0, 1, 2, . . . . (5.1)

We will show that there exists a unique g1 ∈ C∞([0, T ]) such that {g0, q1} is an admissible
set of functions with respect to q0.

Since q0 = 0, we have a(k) = 1 and b(k) = 0 for all k ∈ C. It follows from (3.9)–(3.11)
that in this case the global relation (3.18) is reduced to

Φ1(T, k) = −c+(k), (5.2)

where the function Φ1 is determined by

Φ1,t + 4ik2Φ1 = −iλ|g0(t)|2Φ1 + (2kg0(t) + ig1(t))Φ2, (5.3a)

Φ2,t = λ(2kg0(t) − ig1(t))Φ1 + iλ|g0(t)|2Φ2, (5.3b)

Φ1(0, k) = 0, Φ2(0, k) = 1. (5.3c)

Substituting

Φ1 = exp
(
− iλ

∫ t

0

|g0(s)|2ds
)
Φ̃1 and Φ2 = exp

(
iλ

∫ t

0

|g0(s)|2ds
)
Φ̃2 (5.4)

into (5.3), we find

Φ̃1,t + 4ik2Φ̃1 = [2kf0(t) + if1(t)]Φ̃2, (5.5a)

Φ̃2,t = λ[2kf0(t) − if1(t)]Φ̃1, (5.5b)

Φ̃1(0, k) = 0, Φ̃2(0, k) = 1, (5.5c)

where

f0(t) = g0(t) exp
(
2iλ

∫ t

0

|g0(s)|2 ds
)
, (5.6a)

f1(t) = g1(t) exp
(
2iλ

∫ t

0

|g0(s)|2 ds
)
. (5.6b)
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We can rewrite (5.5) into a system of integral equations:

Φ̃1(t, k) =

∫ t

0

e−4ik2(t−t′)[2kf0(t
′) + if1(t

′)]Φ̃2(t
′, k) dt′, (5.7a)

Φ̃2(t, k) = 1 +

∫ t

0

λ[2kf0(t′) − if1(t′)]Φ̃1(t
′, k) dt′. (5.7b)

It follows easily from (5.7) that Φ̃1(t, k) (and hence Φ1(t, k)) is bounded and analytic for k
in the second quadrant and it decays at the order of (1/k) as k → ∞. Therefore the only
condition imposed by the global relation (5.2) is for k in the first quadrant.

Now we let
φ(t, k) = e4ik2tΦ̃1(t, k) and ψ(t, k) = e4ik2tΦ̃2(t, k), (5.8)

and transform (5.7) into

φ(t, k) =

∫ t

0

[2kf0(t
′) + if1(t

′)]ψ(t′, k) dt′, (5.9a)

ψ(t, k) = e4ik2t +

∫ t

0

e4ik2(t−t′)λ[2kf0(t′) − if1(t′)]φ(t
′, k) dt′. (5.9b)

From (5.2), (5.4) and (5.8), we can write the global relation as

φ(T, k) = e4ik2T c1(k). (5.10)

where c1(k) is bounded and analytic in the first quadrant, and it decays at the order of (1/k)
as k → ∞. So the analysis of the global relation involves exactly the equations (5.9) and
(5.10), where f0 ∈ C∞([0, T ]) (which vanishes to all orders at 0) is given and f1 (equivalently
g1) is the unknown to be constructed.

We define the Sobolev space

Hm
0∗ = {v ∈ Hm(0, T ) : v(0) = v′(0) = · · · = v(m−1)(0) = 0}

and assume at first that

g1 (equivalently f1) ∈ H1
0∗(0, T ) = {v ∈ H1(0, T ) : v(0) = 0}. (5.11)

Note that the Poincaré inequality

max
α≤t≤β

|g(t)| ≤ |g(a)| +
√

T‖g′‖L2(α,β) ∀ g ∈ H1(α, β) (5.12)

implies that
max
0≤t≤T

|g(t)| ≤
√

T‖g′‖L2(0,T ) ∀ g ∈ H1
0∗(0, T ). (5.13)

By eliminating φ from (5.9) we have

ψ = e4ik2t + F(k, g1)ψ, (5.14)
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where the operator F(k, g1) is given by

F(k, g1)ψ =

∫ t

0

e4ik2(t−t′)λ[2kf0(t′) − if1(t′)]

[∫ t′

0

[2kf0(s) + if1(s)]ψ(s, k) ds

]

dt′, (5.15)

and f1 is given by (5.6b).
Let Q = {k ∈ C : Re k > 0, Im k > 0} be the first quadrant of the complex plane and

R∗ = (−∞,−1) ∪ (1,∞). The proofs of the following lemmas on the solution of (5.14) can
be found in Appendix C.

Lemma 5.1. Under the condition (5.11), the integral equation (5.14) has a unique solution
in C([0, T ]) for each k ∈ Q̄ (the closure of Q), ψ(t, k) is bounded on [0, T ] × Q̄ and the
map k +→ ψ(·, k) is analytic in Q and continuous on Q̄. Moreover, the map g1 +→ ψ from
H1

0∗(0, T ) into C
(
[0, T ] × Q̄

)
is locally Lipschitz continuous.

Remark 5.2. More precisely, a map M from the normed linear space X to the normed
linear space Y is locally Lipschitz continuous if

‖M(x1) −M(x2)‖Y ≤ B
(
‖x1‖X , ‖x2‖X

)
‖x1 − x2‖X ∀x1, x2 ∈ X, (5.16)

where the function B(·, ·) : X × X −→ R+ is continuous.

Lemma 5.3. Under condition (5.11), we have the following asymptotic expansion for ψ :

ψ(t, k) = e4ik2t

(
χ0(t) +

χ1(t)

k
+
χ2(t)

k2
+
χ3(t)

k3
+
χ4(t)

k4

)
+ ψ4(t, k) (5.17)

for k ∈ Q̄ and |k| > 1, where

χ0 = e−iλ
∫ t
0 |g0(s)|2ds, χ1, χ2 ∈ H2(0, T ) ∩ H1

0∗(0, T ), χ3, χ4 ∈ H1
0∗(0, T ), (5.18)

ψ4(t, k) = O

(
1

k3

)
, (5.19)

and
the map t −→ ψ4(t,

√
ξ) belongs to C

(
[0, T ], L2(R∗, |ξ|3dξ)

)
. (5.20)

Here k =
√
ξ is the inverse of ξ = k2 for k ∈ Q̄.

We will denote by ψ̃4 the map in C
(
[0, T ], L2(R∗, |ξ|3dξ)

)
defined by

[ψ̃4(t)](ξ) = ψ4(t,
√
ξ). (5.21)

Given g1 ∈ H1
0∗(0, T ), we define the maps E1, E2 : H1

0∗(0, T ) −→ H2(0, T ) by

E1(g1) = χ1 and E2(g1) = χ2,

the maps E3, E4 : H1
0∗(0, T ) −→ H1(0, T ) by

E3(g1) = χ3 and E4(g1) = χ4,

and the map E : H1
0∗(0, T ) −→ C

(
[0, T ], L2(R∗, |ξ|3dξ)

)
by

E(g1) = ψ̃4,

where χj and ψ̃4 are the functions that appear in the asymptotic expansion (5.17) and (5.21).
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Lemma 5.4. The maps Ej (1 ≤ j ≤ 4) and E are locally Lipschitz continuous.

We now examine the global relation (5.10) and note immediately that it implies
∫

L
e−4ik2tφ(T, k)8k dk = 0 ∀ t < T , (5.22)

where L is the positively oriented boundary of Q and the integral is taken in the sense of
Cauchy principal value.

On the other hand from (5.9a) we have

φ(T, k) =

∫ T

0

[2kf0(t
′) + if1(t

′)]ψ(t′, k) dt′. (5.23)

The asymptotic expansion (5.17) and (5.23) imply that

φ(T, k) = 2k

∫ T

0

e4ik2t′f0(t
′)χ0(t

′) dt′ + R(T, k) , (5.24)

where the function R(T, k) is analytic in Q, continuous on Q̄ and decays at the order of 1/k2

as k → ∞. Let α0(T ) = f0(T )χ0(T ). We can rewrite (5.24) as

φ(T, k) − α0(T )

2i

e4ik2T

(k + i)
= 2k

∫ T

0

e4ik2t′f0(t
′)χ0(t

′) dt′ − α0(T )

2i

e4ik2T

(k + i)
+ R(T, k) ,

which shows that

the function ξ +→ φ(T,
√
ξ) − α0(T )

2i

e4iξT

(
√
ξ + i)

belongs to L2(R). (5.25)

Under condition (5.22), we have

∫

L
e−4ik2t

[
φ(T, k) − α0(T )

2i

e4ik2T

(k + i)

]
8k dk = 0 ∀ t < T .

Let

φ1(T, k) = e−4ik2T
[
φ(T, k) − α0(T )

2i

e4ik2T

(k + i)

]
.

Then (5.25) and the Paley-Wiener Theorem imply that the function ξ +→ φ1(T,
√
ξ) belongs

to the Hardy space H2(C+). Further regularization of φ(T, k) yields the global relation
(5.10).

In view of (5.24) and Jordan’s lemma, equation (5.22) holds automatically for −∞ < t ≤
0. Therefore, the global relation is equivalent to

∫

L
e−4ik2tφ(T, k)8k dk = 0 for 0 < t < T. (5.26)
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We now substitute (5.23) into (5.26) and use (5.6), (C.8) and the Fourier inversion formula
to obtain the following equation:

g1(t) =

(
4i

π

)
e−i*(t)

∫

L
e−4ik2tk

[∫ T

0

e2i*(t′)[2kg0(t
′) + ig1(t

′)][ψ(t′, k) − e4ik2t′χ0(t
′)] dt′

]
dk

+ g∗(t) for 0 < t < T, (5.27)

where

0(t) = λ

∫ t

0

|g0(s)|2ds, (5.28)

g∗(t) =

(
8i

π

)
e−i*(t)

∫

L
e−4ik2tk2

[∫ T

0

e4ik2t′ei*(t′)g0(t
′) dt′

]
dk. (5.29)

Note that g∗ ∈ H1
0∗(0, T ) and (5.27) is a nonlinear integral equation on H1

0∗(0, T ) for the
unknown g1 (since ψ(t, k) and χ0(t) also depend on g1). Below we will first show by a
contraction mapping argument that it has a unique solution in H1

0∗(0, T ) if T is sufficiently
small.

Let L0 be the part of L that is inside the unit circle, and L∞ be the part of L that is
outside. We define

L0(g1) =

(
4i

π

)
e−i*(t)

∫

L0

e−4ik2tk

[ ∫ T

0

e2i*(t′)[2kg0(t
′) + ig1(t

′)]

[ψ(t′, k) − e4ik2t′χ0(t
′)] dt′

]
dk, (5.30)

L∞(g1) =

(
4i

π

)
e−i*(t)

∫

L∞

e−4ik2tk

[ ∫ T

0

e2i*(t′)[2kg0(t
′) + ig1(t

′)]

[ψ(t′, k) − e4ik2t′χ0(t
′)] dt′

]
dk. (5.31)

The integral equation (5.27) can then be written concisely as

g1 = L0(g1) + L∞(g1) + g∗. (5.32)

Remark 5.5. In the following analysis of the nonlinear operators L0 and L∞, we present
estimates that are applicable in a more general setting (cf. (5.54) below). For example, we
do not take advantage of the fact that g0(0) = 0.

The estimate for the nonlinear map L0 is straightforward. From Lemma 5.1, (C.8), (5.13),
(5.28) and (5.30), we have

‖L0(g1)‖C1([0,T ]) ≤ T · B01(‖g1‖H1(0,T )), (5.33)

‖L0(g1) − L0(g2)‖C1([0,T ]) ≤ T · B02(‖g1‖H1(0,T ), ‖g2‖H1(0,T ))‖g1 − g2‖H1(0,T ), (5.34)

for all g1, g2 ∈ H1
0∗(0, T ), where B∗(·) (resp. B∗(·, ·)) from now on denote continuous functions

from R+ ∪ {0} (resp. (R+ ∪ {0}) × (R+ ∪ {0})) into R+.
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In order to estimate the nonlinear map L∞ we substitute the expansion (5.17) into (5.31)
and write

L∞ =
4∑

j=1

L∞,j, (5.35)

where

L∞,1(g1) =
8i

π
e−i*(t)

∫

L∞

e−4ik2tk

[ ∫ T

0

e2i*(t′)g0(t
′)

4∑

j=1

e4ik2t′ χj(t′)

kj−1
dt′

]
dk, (5.36)

L∞,2(g1) = −4

π
e−i*(t)

∫

L∞

e−4ik2tk

[ ∫ T

0

e2i*(t′)g1(t
′)

4∑

j=1

e4ik2t′ χj(t′)

kj
dt′

]
dk, (5.37)

L∞,3(g1) =
8i

π
e−i*(t)

∫

L∞

e−4ik2tk2

[ ∫ T

0

e2i*(t′)g0(t
′)ψ4(t

′, k) dt′
]
dk, (5.38)

L∞,4(g1) = −4

π
e−i*(t)

∫

L∞

e−4ik2tk

[ ∫ T

0

e2i*(t′)g1(t
′)ψ4(t

′, k) dt′
]
dk. (5.39)

Using integration by parts and Jordan’s lemma, We can rewrite (5.36) as

L∞,1(g1) =
2

π
e−i*(t)

∫

C1

e4ik2(T−t)e2i*(T )g0(T )
2∑

j=1

χj(T )

kj
dk

+
8i

π
e−i*(t)

∫

L∞

e−4ik2t

[ ∫ T

0

e2i*(t′)g0(t
′)

4∑

j=3

e4ik2t′ χj(t′)

kj−2
dt′

]
dk

− 2

π
e−i*(t)

∫

L∞

e−4ik2t

[ ∫ T

0

e4ik2t′
2∑

j=1

[e2i*g0χj ]
′(t′)k−j dt′

]
dk, (5.40)

where C1 is the part of the unit circle in the first quadrant connecting 1 to i. From the
Plancherel theorem, Lemma 5.4, (5.40) and the Poincaré inequality (5.12), we obtain the
following estimate for L∞,1:

‖L∞,1(g1)‖H1(0,T ) ≤ ‖g0‖H1(0,T )

4∑

j=1

‖χj‖H1(0,T ) ≤ B1,1

(
‖g1‖H1(0,T )

)
, (5.41)

‖L∞,1(g1) − L∞,1(g2)‖H1(0,T ) ≤ ‖g0‖H1(0,T )B1,2

(
‖g1‖L2(0,T ), ‖g2‖L2(0,T )

)

× ‖g1 − g2‖H1(0,T ), (5.42)

for all g1, g2 ∈ H1
0∗(0, T ).

We can similarly rewrite (5.37) using integration by parts and Jordan’s lemma to obtain

L∞,2(g1) =
i

π
e−i*(t)

∫ i

iR

e4ik2(T−t)e2i*(T )g1(T )
χ1(T )

k2
dk

+
i

π
e−i*(t)

∫ R

1

e4ik2(T−t)e2i*(T )g1(T )
χ1(T )

k2
dk
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+
i

π
e−i*(t)

∫

CR

e4ik2(T−t)e2i*(T )g1(T )
χ1(T )

k2
dk

− i

π
e−i*(t)

∫

L,|k|>R

e−4ik2t

[∫ T

0

e4ik2t′ [e2i*g1χ1]
′k−2 dt′

]
dk

− i

π
e−i*(t)

∫

L,1<|k|<R

e−4ik2t

[∫ T

0

e4ik2t′ [e2i*g1χ1]
′k−2 dt′

]
dk

− 4

π
e−i*(t)

∫

L∞

e−4ik2tk

[ ∫ T

0

e2i*(t′)g1(t
′)

4∑

j=2

e4ik2t′ χj(t′)

kj
dt′

]
dk, (5.43)

where CR is the part of the circle of radius R in the first quadrant connecting R to iR. From
(5.43) and Lemma 5.4 we find

‖L∞,2(g1)‖H1(0,T ) ≤ C

(
1

R
+ R

√
T

)
‖g1‖H1(0,T )

4∑

j=1

‖χj‖H1(0,T )

≤
(

1

R
+ R

√
T

)
B2,1

(
‖g1‖H1(0,T )

)
, (5.44)

‖L∞,2(g1) − L∞,2(g2)‖H1(0,T ) ≤
(

1

R
+ R

√
T

)
B2,2(‖g1‖H1(0,T ), ‖g2‖H1(0,T )

)

× ‖g1 − g2‖H1(0,T ), (5.45)

for all g1, g2 ∈ H1
0∗(0, T ), where we have used the Plancherel theorem, the Cauchy-Schwarz

inequality and the Poincaré inequality (5.12).
Using (5.38), the change of variable ξ = k2, the Plancherel theorem and Lemma 5.4, we

can derive the following estimates for L∞,3:

‖L∞,3(g1)‖H1(0,T ) ≤ CT‖g0‖C[0,T ] max
0≤t≤T

‖ψ4(t,
√
ξ)‖L2(R∗,|ξ|3dξ)

≤ TB3,1

(
‖g1‖H1(0,T )

)
, (5.46)

‖L∞,3(g1) − L∞,3(g2)‖H1(0,T ) ≤ TB3,2

(
‖g1‖H1(0,T ), ‖g2‖H1(0,T )

)
‖g1 − g2‖H1(0,T ), (5.47)

for all g1, g2 ∈ H1
0∗(0, T ).

Similarly, we have the following estimates for L∞,4:

‖L∞,4(g1)‖H1(0,T ) ≤ CT‖g1‖H1(0,T ) max
0≤t≤T

‖ψ4(t,
√
ξ)‖L2(R∗,|ξ|3dξ)

≤ TB4,1

(
‖g1‖H1(0,T )

)
, (5.48)

‖L∞,4(g1) − L∞,4(g2)‖H1(0,T ) ≤ TB4,2

(
‖g1‖H1(0,T ), ‖g2‖H1(0,T )

)
‖g1 − g2‖H1(0,T ), (5.49)

for all g1, g2 ∈ H1
0∗(0, T ).

It follows from (5.33)–(5.35), (5.41), (5.42) and (5.44)–(5.49) that L0(·) + L∞(·) is a
contraction map from H1

0∗(0, T∗) into itself, provided T > 0 is sufficiently small. We have
therefore established the following lemma on the existence and uniqueness of a local solution
for (5.32).
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Lemma 5.6. For T1 > 0 sufficiently small, there exists a unique solution of (5.27) (with
T = T1) in H1

0∗(0, T1).

We can apply the same technique to establish a unique solution of (5.27) in the space
H2

0∗(0, T2) for T2 > 0 sufficiently small. Furthermore, it can be checked that the magnitudes
of T2 and ‖g1‖H2(0,T2) are controlled by the magnitude of ‖g1‖H1(0,T1). Similarly, there is
a unique solution of (5.27) in the space H3

0∗(0, T3) for T3 > 0 sufficiently small, where the
magnitudes of T3 and ‖g1‖H3(0,T3) are controlled by ‖g1‖H2(0,T2), and so on.

Therefore, we have the following generalization of Lemma 5.6.

Lemma 5.7. Given any positive integer m, the integral equation (5.27) has a unique solution
in Hm

0∗(0, Tm), where Tm ≥ Bm,1

(
‖g1‖H1(0,T1)

)
, ‖g1‖Hm(0,Tm) ≤ Bm,2

(
‖g1‖H1(0,T1)

)
, and Bm,j :

R+ −→ R+ is a continuous function for j = 1, 2.

Next we consider the question of extending the solution g1 of (5.27) in Lemma 5.7.
From the results of § 4, we see that g0 = q(0, t) and g1 = qx(0, t), where q is a solution

of (2.1) with q0 = 0, and, for m sufficiently large, q has high order of regularity and decay.
Hence, the global relation is valid for any t ≤ Tm, i.e., we have

φ(t, k) = e4ik2tc+(t, k). (5.50)

where c+(t, ·) is analytic and bounded on the first quadrant and c+(t, k) = O(1/k) as k → ∞.
For t > Tm, we can therefore rewrite (5.9) as

φ(t, k) = e4ik2Tmc+(Tm, k) +

∫ t

Tm

[2kf0(t
′) + if1(t

′)]ψ(t′, k) dt′, (5.51a)

ψ(t, k) = e4ik2tc+
∗ (k) +

∫ t

Tm

e4ik2(t−t′)λ[2kf0(t′) − if1(t′)]φ(t
′, k) dt′, (5.51b)

where c+
∗ (k) is also analytic and bounded on the first quadrant. It is not difficult to see that

the solution of (5.51) obtained by the Neumann series has the property that

∫

L
e−4ik2sφ(t, k)8k dk = 0 for 0 < s < Tm < t. (5.52)

Therefore, for T > Tm, the global relation (5.26) is equivalent to

∫

L
e−4ik2tφ(T, k)8k dk = 0 for Tm < t < T. (5.53)

So the problem of extending the solution from (0, Tm) to (0, T ) is reduced to solving the
integral equation (5.27) for Tm < t < T , which can be written in the form
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g1(t) = G(t) +

(
8i

π

)
e−i*(t)

∫

L
e−4ik2t

[∫ T

Tm

e4ik2t′e2i*(t′)g0(t
′)
( 2∑

j=1

[χj(t
′) − χj(Tm)]k2−j

)
dt′

]
dk

+

(
8i

π

)
e−i*(t)

∫

L
e−4ik2tk2

[∫ T

Tm

e2i*(t′)g0(t
′)
[
ψ4(t

′, k) + e4ik2t′
4∑

j=3

χj(t′)

kj

]
dt′

]
dk

−
(

4

π

)
e−i*(t)

∫

L
e−4ik2t

[∫ T

Tm

e4ik2t′e2i*(t′)[g1(t
′)χ1(t

′) − g1(Tm)χ1(Tm)]
)

dt′
]
dk

−
(

4

π

)
e−i*(t)

∫

L
e−4ik2tk

[∫ T

Tm

e2i*(t′)g1(t
′)
(
ψ4(t

′, k) + e4ik2t′
4∑

j=2

χj(t′)

kj

)
dt′

]
dk, (5.54)

where

G(t) = g∗(t) +

(
8i

π

)
e−i*(t)

∫

L
e−4ik2t

[∫ T

0

e4ik2t′e2i*(t′)g0(t
′)
( 2∑

j=1

χ̃j(t
′)k2−j

)
dt′

]
dk

+

(
8i

π

)
e−i*(t)

∫

L
e−4ik2tk2

[∫ Tm

0

e2i*(t′)g0(t
′)
[
ψ4(t

′, k) + e4ik2t′
4∑

j=3

χj(t′)

kj

]
dt′

]
dk

−
(

4

π

)
e−i*(t)

∫

L
e−4ik2t

[∫ T

0

e4ik2t′e2i*(t′)g̃1(t
′)χ̃1(t

′) dt′
]
dk (5.55)

−
(

4

π

)
e−i*(t)

∫

L
e−4ik2tk

[∫ Tm

0

e2i*(t′)g1(t
′)
(
ψ4(t

′, k) + e4ik2t′
4∑

j=2

χj(t′)

kj

)
dt′

]
dk,

and χ̃1 (resp. χ̃2 and g̃1) are extensions of χ1 (resp. χ2 and g1) from (0, Tm) to (0, T ) that
takes the constant value χ1(Tm) (resp. χ2(Tm) and g1(Tm)) on (Tm, T ).

Let α = g1(Tm). Note that the function G is known and it belongs to the affine subspace
H1

α∗(Tm, T ) of H1(Tm, T ) defined by

H1
α∗(Tm, T ) = {v ∈ H1(Tm, T ) : v(Tm) = α}.

Equation (5.54) is an integral equation for g1 ∈ H1
α∗ and it can be analyzed in the same

way as (5.27). (cf. Remark 5.5). We can therefore extend the solution g1 from (0, Tm)
to (0, Tm + ∆T1) provided ∆T1 is small enough, where the magnitudes of ∆T1 > 0 and
‖g1‖H1(0,Tm+∆T1) are controlled by ‖g1‖H1(0,Tm). Similarly we can extend g1 to a solution in
Hm

0∗(0, Tm +∆m), where the magnitudes of ∆Tm and ‖g1‖Hm(0,Tm+∆m) are both controlled by
‖g1‖H1(0,Tm).

Hence the extension procedure can be repeated until a solution on Hm
0∗(0, T ) is reached

provided there is an a priori bound for ‖g1‖H1(0,T ). It turns out that in the case where λ = 1,
such an a priori bound exists for any given g0, and it also exists in the case where λ = −1
if ‖g0‖L2(0,T ) is sufficiently small (see Appendix D for details).

We have therefore established the following theorem.
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Theorem 5.8. Given any g0 ∈ C∞([0, T ]) such that g0 vanishes to all orders at t = 0,
there exists g1 ∈ C∞([0, T ]), also vanishing to all orders at t = 0, such that {g0, g1} form an
admissible pair for (2.1) with λ = 1 and initial value q0 = 0. This is also true for λ = −1 if
‖g0‖L2(0,T ) is sufficiently small.

6 Linearizable Boundary Conditions

It was shown in § 4 that q(x, t) can be expressed in terms of the solution of a 2 × 2 RH
problem, which is uniquely defined in terms of the spectral functions a(k), b(k), A(k), B(k).
The functions a(k) and b(k) are defined in terms of q0(x) through the solution of a linear
Volterra integral equation, see Definition 3.1. However, the functions A(k) and B(k) are
in general defined in terms of the initial and boundary conditions through the solution of
a nonlinear Volterra integral equation, see Definitions 3.1, 3.3 and § 5. In what follows we
present a general methodology which identifies a particular class of boundary value problems
for which it is possible to compute A(k) and B(k) using only the algebraic manipulation of
the global relation. We will refer to this class of boundary value problems as linearizable.

Recall that A(k) and B(k) are defined in terms of µ2(t, k). Let M(t, k) = µ2(t, k)e−2ik2tσ3 ,
i.e.,

M(t, k) =

[
M2(t, k̄) M1(t, k)

λM1(t, k̄) M2(t, k)

]
, M1 = Φ1e

2ik2t, M2 = Φ2e
2ik2t.

Then M(t, k) satisfies

Mt + 2ik2σ3M = Q̃(t, k)M, M(0, k) = I. (6.1)

The function M(t,−k) satisfies a similar equation where Q̃(t, k) is replaced by Q̃(t,−k).
Suppose that there exists a t-independent, nonsingular matrix N(k) such that

(
2ik2σ3 − Q̃(t,−k)

)
N(k) = N(k)

(
2ik2σ3 − Q̃(t, k)

)
. (6.2)

Then
M(t,−k) = N(k)M(t, k)N(k)−1. (6.3)

This equation evaluated at t = 0 defines a relation between the spectral functions at k and
the spectral functions at −k.

We note that a necessary condition for the existence of N(k) is that the determinant of
the matrix 2ik2σ3 − Q̃(t, k) depends on k in the form of k2. This condition implies

q(0, t)q̄x(0, t) − q̄(0, t)qx(0, t) = 0. (6.4)

If this condition is satisfied, equation (6.2) yield

(2kq − iqx)N3 = −λ(2kq̄ − iq̄x)N2, (6.5a)

(2kq + iqx)N1 + (2kq − iqx)N4 = −2(2ik2 + iλ|q|2)N2, (6.5b)

where we have used the notations

N1 = N11, N2 = N12, N3 = N21, N4 = N22. (6.6)
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We now discuss in detail three particular cases of (6.5).

(a) q(0, t) = 0

In this case Q̃(t, k) is a function of t and k2, thus there is no need to introduce N(k), i.e.
N(k) = I. Then the second column of equation (6.3) evaluated at t = T yields

A(k) = A(−k), B(k) = B(−k), k ∈ C. (6.7)

(b) qx(0, t) = 0

Equation (6.5) implies that N(k) does not depend on q(0, t) provided that N2 = N3 = 0
and N4 = −N1. Then the second column of equation (6.3) evaluated at t = T yields

A(k) = A(−k), B(k) = −B(−k), k ∈ C. (6.8)

(c) qx(0, t) − ρq(0, t) = 0, ρ positive constant

Equations (6.5) imply that N(k) does not depend separately on q(0, t) and on qx(0, t)
provided that N2 = N3 = 0 and

(2k − iρ)N4 + (2k + iρ)N1 = 0.

Then the second column of equation (6.3) evaluated at t = T yields

A(k) = A(−k), B(k) = −2k + iρ

2k − iρ
B(−k), k ∈ C. (6.9)

Using the transformations (6.7)–(6.9), together with the global relation it is possible to
express A(k) and B(k) in terms of a(k) and b(k).

For convenience we assume T = ∞. It can be shown that a similar analysis is valid if
T < ∞. If T = ∞, the global relation becomes

a(k)B(k) − b(k)A(k) = 0, arg k ∈ [0, π/2] . (6.10)

We note again that since T = ∞, A(k) and B(k) are not entire functions but are defined for

arg k ∈ [0, π/2] ∪ [π, 3π/2] .

(a) q(0, t) = 0

Letting k +→ −k in the definition of d(k̄) and using the symmetry relation (6.7) we find

A(k)a(−k̄) − λB(k)b(−k̄) = d(−k̄), arg k ∈ [0, π/2] . (6.11)

This equation and the global relation (6.10) are two algebraic equations for A(k) and B(k).
Their solution yields

A(k) =
a(k)d(−k̄)

∆0(k)
, B(k) =

b(k)d(−k̄)

∆0(k)
, arg k ∈ [0, π/2] , (6.12)
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where
∆0(k) := a(k)a(−k̄) − λb(k)b(−k̄). (6.13)

The function d(k̄) can be computed explicitly in terms of a(k) and b(k). However, it does not
affect the solution of the RH problem of Theorem 4.1. Indeed, this RH problem is defined
in terms of γ(k) = b(k)/ā(k), k ∈ R and of Γ(k) which involves a(k), b(k) and A(k)/B(k),

Γ(k) =
λ
(
B(k̄)/A(k̄)

)

a(k)
(
a(k) − λb(k)

(
B(k̄)/A(k̄)

)) =
λb(−k̄)

a(k)∆0(k)
, k ∈ R− ∪ iR+. (6.14)

The function ∆0(k) is an analytic function in the upper half k plane, and it satisfies the
symmetry equation,

∆0(k) = ∆0(−k̄). (6.15)

It can be shown that the zero set of ∆0(k) is the union

{λj}Λ
j=1 ∪ {−λ̄j}Λ

j=1. (6.16)

Indeed, the global relation (6.10) implies that the zero sets of the functions a(k) and A(k)
coincide in the first quadrant. It also implies that if the zeros of a(k) are simple the zeros
of A(k) have the same property. This and equation (6.11) imply that the zero sets of the

functions d(−k̄) and ∆0(k) coincide in the first quadrant as well. Equation (6.15) implies
that the zero set of ∆0(k) is the set given in (6.16).

Since the zeros λj of d(k) coincide with the second quadrant zeros of ∆0(k), equations
(6.12) and (6.7) imply the following modification of the residue conditions in (2.29):

Res
kj

[M(x, t, k)]1 =
1

ȧ(kj)b(kj)
e2iθ(kj)[M(x, t, kj ]2, j = 1, · · · , n1, (6.17a)

Res
k̄j

[M(x, t, k)]2 =
λ

ȧ(kj)b(kj)
e−2iθ(k̄j)[M(x, t, k̄j)]1, j = 1, · · · , n1, (6.17b)

Res
λj

[M(x, t, k)]1 =
λb(−λ̄j)

a(λj)∆̇0(λj)
e2iθ(λj)[M(x, t, λj)]2, j = 1, · · · ,Λ, (6.17c)

Res
λ̄j

[M(x, t, k)]2 =
b(−λ̄j)

a(λj)∆̇0(λj)
e−2iθ(λ̄j)[M(x, t, λ̄j)]1, j = 1, · · · ,Λ, (6.17d)

where
θ(kj) = kjx + 2k2

j t. (6.18)

(b) qx(0, t) = 0

Equations (6.12) are valid but ∆0(k) is replaced by

∆1(k) = a(k)a(−k̄) + λb(k)b(−k̄). (6.19)

The zeros λj are now the second quadrant zeros of ∆1(k), and equation (6.14) should be
replaced by

Γ(k) = − λb(−k̄)

a(k)∆1(k)
, k ∈ R− ∪ iR+. (6.20)
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The modified residue conditions are given by the equations

Res
kj

[M(x, t, k)]1 =
1

ȧ(kj)b(kj)
e2iθ(kj)[M(x, t, kj ]2, j = 1, · · · , n1, (6.21a)

Res
k̄j

[M(x, t, k)]2 =
λ

ȧ(kj)b(kj)
e−2iθ(k̄j)[M(x, t, k̄j)]1, j = 1, · · · , n1, (6.21b)

Res
λj

[M(x, t, k)]1 = − λb(−λ̄j)

a(λj)∆̇1(λj)
e2iθ(λj)[M(x, t, λj)]2, j = 1, · · · ,Λ, (6.21c)

Res
λ̄j

[M(x, t, k)]2 = − b(−λ̄j)

a(λj)∆̇1(λj)
e−2iθ(λ̄j)[M(x, t, λ̄j)]1, j = 1, · · · ,Λ. (6.21d)

(c) qx(0, t) − ρq(0, t) = 0, ρ constant

In this case, ∆0(k) is replaced by

∆ρ(k) = a(k)a(−k̄) + λ
2k − iρ

2k + iρ
b(k)b(−k̄). (6.22)

The zeros λj are now the second quadrant zeros of ∆ρ(k), and

Γ(k) = −
λ2k−iρ

2k+iρb(−k̄)

a(k)∆ρ(k)
, k ∈ R− ∪ iR+. (6.23)

The modified residue conditions are given by the equations

Res
kj

[M(x, t, k)]1 =
1

ȧ(kj)b(kj)
e2iθ(kj)[M(x, t, kj ]2, j = 1, · · · , n1, (6.24a)

Res
k̄j

[M(x, t, k)]2 =
λ

ȧ(kj)b(kj)
e−2iθ(k̄j)[M(x, t, k̄j)]1, j = 1, · · · , n1, (6.24b)

Res
λj

[M(x, t, k)]1 = −
λ2λj−iρ

2λj+iρb(−λ̄j)

a(λj)∆̇ρ(λj)
e2iθ(λj )[M(x, t, λj)]2, j = 1, · · · ,Λ, (6.24c)

Res
λ̄j

[M(x, t, k)]2 = −
2λ̄j+iρ
2λ̄j−iρ

b(−λ̄j)

a(λj)∆̇ρ(λj)
e−2iθ(λ̄j )[M(x, t, λ̄j)]1, j = 1, · · · ,Λ. (6.24d)

Theorem 4.1 and the above results imply the following.

Theorem 6.1. Let q(x, t) satisfy the NLS equation (2.1), the initial condition

q(x, 0) = q0 ∈ S(R+), 0 < x < ∞,

and any of the following boundary conditions

(a) q(0, t) = 0, t > 0,

(b) qx(0, t) = 0, t > 0,

or

(c) qx(0, t) − ρq(0, t) = 0, ρ > 0, t > 0.
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Assume that the initial and boundary conditions are compatible at x = t = 0. Furthermore,
assume if λ = −1:

(i) a(k), which is defined in Definition 3.1, has a finite number of simple zeros for Im
k > 0.

(ii) ∆0(k) in case (a), or ∆1(k) in case (b), or ∆ρ(k) in case (c), have a finite number of
simple zeros in the second quadrant which do not coincide with the possible zeros of
a(k) (∆0, ∆1, ∆ρ are defined in equations (6.13), (6.19), (6.22)).

The solution q(x, t) can be constructed through equation (4.3), where M satisfies the RH
problem defined in Theorem 4.1, with Γ(k) given by equation (6.14) in case (a), by equation
(6.20) in case (b), and by equation (6.23) in case (c). The relevant residue conditions are
given by equation (6.17) in case (a), by equation (6.21) in case (b), and by equation (6.24)
in case (c).

Remark 6.2. Linearizable boundary value problems have been studied via techniques based
on an appropriate continuation of the boundary problem to the problem on the line in
[11]–[16]. The solutions are given via the Riemann-Hilbert problems corresponding to the
extended initial value problems. These continuations are described by explicit conditions on
the scattering data associated with the initial value problem on the line (see [11], [13]–[16]).
In the case of the first two boundary problems studied here, these conditions can be easily
translated to the even or odd continuation of the initial data q0(x) (see [11]). For the third
boundary problem, the spectral data can also be computed in terms of the initial data q0(x),
x > 0, see [17]. We emphasize that the method of continuing the problem to the full line can
not be implemented for odd order problems, such as the KdV and the modified KdV. On the
other hand the method developed here works for such integrable PDEs [18]. Theorem 6.1
presents the solution of the third boundary problem with the same level of efficiency as the
one for the full axis problem. Indeed, the relevant Riemann-Hilbert problem is formulated in
terms of the spectral data , a(k), b(k), which are calculated directly via the given initial data
q0(x), x > 0. The only difference, which does not affect the effectiveness of the solution, is
that the Riemann-Hilbert problem is now formulated on a cross and not on the real line. It
also worth noticing that in this case (as well as in the other linearizable cases) the Riemann-
Hilbert problem can be deformed back to the real line and then in fact coincides with the
Riemann-Hilbert problem of [17] (see [19]).

Remark 6.3. Linearizable boundary value problems have infinitely many conserved quan-
tities [20, 21].

7 Conclusions

We have introduced a rigorous methodology for solving boundary value problems for nonlin-
ear integrable evolution equations. This involves the following steps: (1) Assume that there
exists a smooth, global solution q(x, t), and perform the simultaneous spectral analysis of the
associated Lax pair. This yields a representation of q(x, t) in terms of the solution M(x, t, k)
of a matrix RH problem. This RH problem is uniquely defined in terms of certain spectral

37



functions a(k), b(k), A(k), B(k), which satisfy a simple global relation. (2) Motivated from
the results of (1), postulate the global relation and define the spectral functions: a(k), b(k)
are defined in terms of the initial conditions q0(x), and A(k), B(k) are defined in terms of an
admissible set of functions g0(t), g1(t), where a set is called admissible if A(k), B(k) satisfy
the postulated global relation. (3) Motivated from the results of (1), define M(x, t, k) as the
solution of a matrix RH problem, uniquely defined in terms of a(k), b(k), A(k), B(k). Prove
that this RH problem has a unique, global solution. Define q(x, t) in terms of M(x, t, k) and
prove that q(x, t) solves the nonlinear PDE, and it satisfies q(x, 0) = q0(x), q(0, t) = g0(t),
qx(0, t) = g1(t). (4) Investigate the existence of the admissible set. For example, show
that given q0(x) and g0(t), there exists a unique g1(t). This involves the investigation of a
nonlinear Volterra integral equation.

We have also introduced a methodology for analyzing a particular class of boundary
value problems, which we call linearizable. This class is distinctive in the sense that A(k),
B(k) can be computed directly in terms of a(k), b(k) using the algebraic manipulation of the
global relation, without the need to analyze the nonlinear Volterra integral equation. Thus
for linearizable boundary conditions, boundary value problems can be solved as effectively
as initial value problems.

We conclude with some remarks.

Remark 7.1. It was realized by the first author [22] that for the solution of initial boundary
value problems of integrable nonlinear evolution equations, one needs to perform, in addition
to the spectral analysis of the x part of the Lax pairs, the spectral analysis of its t-part.
For the NLS equation this was done in [9]. However, the importance of performing the
simultaneous spectral analysis, as well as the key role played by the global relation was not
understood at that time.

Remark 7.2. A rigorous characterization of the properties of the spectral functions associ-
ated with the NLS on the half-line is given in [7].

Remark 7.3. Under the assumption of existence of solutions, a rigorous determination of the
long time behavior of the solution of the NLS equation on the half-line is given in [9], using
the Deift-Zhou approach [23]. In particular, it is shown in [9] that the long time asymptotics
is dominated by the solitonic part of the solution. These results together with the results
presented here imply that for the linearizable class of boundary conditions, the long time
asymptotics is explicitly determined in terms of the initial and boundary conditions. The
asymptotic results are summarized in Appendix B (the poles generated by the zeros of a(k),
arg k ∈ (π2 , π) were missed in [9] but are included here).

Remark 7.4. In recent years there have been important developments in the analysis of
boundary value problems of nonlinear PDEs using PDE techniques [28], [29]. It is remarkable
that some of these techniques yield global results. It is satisfying that there exists now a
rigorous theory using the integrability machinery, so that it is possible to make comparisons
between these different approaches. Although at the moment the PDE results are proven
in less restrictive functional spaces, the advantage of our method is that it yields rigorous
asymptotic results. We reiterate that this is a consequence of our representation of the
solution in terms of the RH problem whose jump matrices depend on the x and t in a simple
oscillatory way which, in turn, allows to apply the Deift-Zhou method.
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Appendices

A The Inverse Problems

A.1 The x - inverse problem

Consider the functions q0(x), ϕ(x, k), a(k), b(k) introduced in Definition 3.1. Let the vector
function, ψ(x, k) = (ψ1, ψ2)t be defined as the unique solution of

ψ1,x = q0(x)ψ2,

ψ2,x − 2ikψ2 = λq̄0(x)ψ1, 0 < x < ∞, k ∈ C,

ψ(0, k) = (1, 0)t.

Note that the vector ψ satisfies the linear Volterra equations,

ψ1(x, k) = 1 +

∫ x

0

q0(y)ψ2(y, k)dy, k ∈ C, (A.1a)

ψ2(x, k) = λ

∫ x

0

e2ik(x−y)q̄0(y)ψ1(y, k)dy, k ∈ C. (A.1b)

Denote,

ϕ∗(x, k) ≡
(
ϕ̄2(x, k̄), λϕ̄1(x, k̄)

)t
and ψ∗(x, k) ≡

(
ψ̄2(x, k̄), λψ̄1(x, k̄)

)t
.

Define µ3(x, k) and µ2(x, k) by

µ3(x, k) =
(
ϕ∗(x, k), ϕ(x, k)

)
and µ2(x, k) =

(
ψ(x, k), λψ∗(x, k)

)
.

They satisfy the matrix equation,

µx + ik[σ3, µ] =

[
0 q0

λq̄0 0

]
µ. (A.2)

This in turn implies that the above vectors are simply related,
(
ϕ∗(x, k), ϕ(x, k)

)
=

(
ψ(x, k), λψ∗(x, k)

)
e−ikxσ̂3s(k)

=
(
ψ(x, k), λψ∗(x, k)

)[
ā(k) b(k)e−2ikx

λb̄(k)e2ikx a(k)

]
, k ∈ R. (A.3)
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Let

M (x)
− =

(
ϕ∗,

λψ∗

ā(k̄)

)
, Im k ≤ 0, (A.4a)

M (x)
+ =

(
ψ

a(k)
, ϕ

)
, Im k ≥ 0. (A.4b)

Equation (A.3) can be rewritten as

M (x)
− (x, k) = M (x)

+ (x, k)J (x)(x, k), k ∈ R, (A.5)

where J (x)(x, k) is the jump matrix defined by (3.6c). Furthermore, M (x) satisfies the RH
problem defined in (3.6). Indeed, we only need to prove the residue conditions at the possible
simple zeros, {kj}n

1 , of a(k). To this end we note that in virtue of (A.3) the equation,

ϕ = b(k)e−2ikxψ + a(k)λψ∗, (A.6)

holds. The function ψ, and hence the function ψ∗ are entire functions of k. Therefore, we
can evaluate (A.6) at k = kj. This yields the relation,

ϕ(x, kj) = ψ(x, kj)b(kj)e
−2ikjx,

or, taking into account the definition (A.4) of the function M (x)(x, k),

Reskj [M (x)(x, kj)]1 =
e2ikjx

ȧ(kj)b(kj)
[M (x)(x, kj)]2.

The residue condition at k = k̄j is derived similarly.
A substitution of the asymptotic expansion,

M (x)(x, k) = I +
m1(x)

k
+ O

(
1

k2

)
, k → ∞,

into equation (A.2) yields

q0(x) = 2i
(
m1(x)

)

12
= 2i lim

k→∞

(
kM (x)(x, k)

)

12
. (A.7)

Our next task is to show that this relation defines the map,

Q : {a(k), b(k)} +→ {q0(x)},

which is inverse to the spectral map,

S : {q0(x)} +→ {a(k), b(k)}.

In more detail this problem is formulated as follows. Given {a(k), b(k)}, construct the jump
matrix J (x)(x, k) according to equation (3.6c) and define the RH problem by (3.6). Let q0(x)
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be the function defined by (A.7) in terms of the solution M (x)(x, k) of this RH problem.
Denote by {a0(k), b0(k)} the spectral data corresponding to q0(x). We have to show that

a0(k) = a(k) and b0(k) = b(k). (A.8)

Using the standard arguments of the dressing method [10] it is straightforward to prove
that M (x)(x, k) satisfies equation (A.2) with the potential q0(x) defined by (A.7). This means
in particular that the matrix solution µ3(x, k), k ∈ R corresponding to the potential q0(x) is
given by the equation,

µ3(x, k) = M (x)
+ (x, k)e−ikxσ̂3C+(k), k ∈ R, (A.9)

for an appropriate matrix C+(k). This matrix does not depend on x and hence can be
evaluated by letting x → ∞ in (A.9).

It follows from the theory of the inverse scattering problem for the Dirac equation (A.2)
(see for e.g. [24]; or from the direct use of the nonlinear steepest descent method [23, 26])
that

M (x)
+ (x, k) =

[
1 0

−λb̄(k)
a(k) e2ikx 1

]
+ o(1), x → ∞, k ∈ R (A.10)

(under the usual assumptions on the Riemann-Hilbert data {a(k), b(k)}). Since µ3 → I as
x → ∞, it follows that

C+(k) =

[
1 0

λb̄(k)
a(k) 1

]
. (A.11)

Equations (A.9) and (A.11) imply that the scattering data,

s0(k) =

[
ā0(k) b0(k)

λb̄0(k) a0(k)

]
= µ3(0, k),

corresponding to the potential q0(x) defined in (A.8) are given by the equation,

s0(k) = M (x)
+ (0, k)

[
1 0

λb̄(k)
a(k) 1

]
.

If x = 0 (in fact, for all x ≤ 0) the above Riemann-Hilbert problem can be solved explicitly.
Indeed,

J (x)(0, k) =




1 − b(k)

ā(k)

λb̄(k)
a(k)

1
|a|2



 =




a(k) −b(k)

0 1
a(k)








ā(k) 0

λb̄(k) 1
ā(k)



 .

This implies,

M (x)
+ (0, k) =

[
1

a(k) b(k)

0 a(k)

]

(note that the residue conditions are satisfied), and hence

s0(k) =

[ 1
a(k) b(k)

0 a(k)

]


1 0

λb̄(k)
a(k) 1



 =

[
ā(k) b(k)

λb̄(k) a(k)

]
= s(k),

i.e. equation (A.8) follows.
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A.2 The t - inverse problem

Consider the functions g0(t), g1(t), Φ(x, k), A(k), B(k) introduced in Definition 3.3. Let the
vector function, Ψ(x, k) = (Ψ1,Ψ2)t be defined as the unique solution of

Ψ1t = Q̃11Ψ1 + Q̃12Ψ2,

Ψ2t − 4ik2Ψ2 = Q̃21Ψ1 + Q̃22Ψ2, 0 < t < T, k ∈ C,

Ψ(T, k) = (1, 0)t,

where (cf. (3.9))

Q̃(t, k) = 2k

[
0 g0(t)

λḡ0(t) 0

]
− i

[
0 g1(t)

λḡ1(t) 0

]
σ3 − iλ|g0(t)|2σ3, λ = ±1. (A.12)

Note that the vector Ψ satisfies the linear Volterra equations,

Ψ1(t, k) = 1 +

∫ t

T

(Q̃11Ψ1 + Q̃12Ψ2)(τ, k)dτ, (A.13a)

Ψ2(t, k) =

∫ t

T

e4ik2(t−τ)(Q̃21Ψ1 + Q̃22Ψ2)(τ, k)dτ. (A.13b)

Denote, as before,

Φ∗(t, k) =
(
Φ̄2(t, k̄), λΦ̄1(t, k̄)

)t
and Ψ∗(t, k) =

(
Ψ̄2(t, k̄), λΨ̄1(t, k̄)

)t
.

Define
µ1(t, k) =

(
Ψ(t, k), λΨ∗(t, k)

)
and µ2(t, k) =

(
Φ∗(t, k),Φ(t, k)

)
.

They satisfy the matrix equation,

µt + 2ik2[σ3, µ] = Q̃(t, k)µ. (A.14)

This in turn implies (cf. (2.12)) that

(
Φ∗(t, k),Φ(t, k)

)
=

(
Ψ(t, k), λΨ∗(t, k)

)
e−2ik2tσ̂3S(k)

=
(
Ψ(t, k), λΨ∗(t, k)

)[
Ā(k) B(k)e−4ik2t

λB̄(k)e4ik2t A(k)

]
, k ∈ R ∪ iR. (A.15)

Remark A.1. We recall that the function Φ(t, k), as a function of k, is analytic and bounded
in the second and fourth quadrants, while the function Ψ(t, k) is analytic for all k and
bounded in the first and third quadrants. Also, if T < ∞ all of the above functions are
entire functions of k. This means in particular that in this case equation (A.15) is valid for
all complex values of k.
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Let

M (t)
− =

(
Φ∗,

λΨ∗

A(k̄)

)
, arg k ∈ [π/2, π] ∪ [3π/2, 2π] , (A.16a)

M (t)
+ =

(
Ψ

A(k)
,Φ

)
, arg k ∈ [0, π/2] ∪ [π, 3π/2] . (A.16b)

Equation (A.15) can be rewritten as

M (t)
− (t, k) = M (t)

+ (t, k)J (t)(t, k), k ∈ R ∪ iR, (A.17)

where J (t)(t, k) is the jump matrix defined in (3.15c). Furthermore, M (t) satisfies the RH
problem defined in (3.15). Indeed, as in the x - case, we only need to prove the residue
conditions at the possible simple zeros, {Kj}N

1 , of A(k). The proof is the same as in the case
of the function M (x)(x, k).

The substitution of the asymptotic expansion,

M (t)(t, k) = I +
m1(t)

k
+

m2(t)

k2
+ O

(
1

k3

)
, k → ∞,

into equation (A.14) leads to the relations,

g0(t) = 2i
(
m1(t)

)

12
= 2i lim

k→∞

(
kM (t)(t, k)

)

12
, (A.18)

g1(t) = 4
(
m2(t)

)

12
+ 2ig0(t)

(
m1(t)

)

22

= lim
k→∞

{
4(k2M (t)(t, k))12 + 2ig0(t)k(M (t)(t, k))22

}
. (A.19)

We will show that these relations define the map,

Q̃ : {A(k), B(k)} +→ {g0(t), g1(t)},

which is inverse to the spectral map,

S̃ : {g0(t), g1(t)} +→ {A(k), B(k)}.

Similar to the x - case, we have to prove that

A0(k) = A(k) and B0(k) = B(k), (A.20)

where the left hand side is the spectral data corresponding to g0(t) and g1(t). We follow
precisely the same procedure as the one used for x-problem: Using arguments of the dressing
method [10] it follows that if M (t)(t, k) is the solution of the Riemann-Hilbert problem then
it satisfies equation (A.14) with potentials g0(t)and g1(t) defined by (A.18) and (A.19). This
means, in particular, that the matrix solution µ1(t, k), k ∈ C (we assume that T < ∞)
corresponding to the potentials g0(t) and g1(t) is given by the equation,

µ1(t, k) = M (t)
+ (t, k)e−2ik2tσ̂3D+(k), k ∈ C, (A.21)
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for an appropriate matrix D+(k). This matrix does not depend on t and hence can be
evaluated by letting t = T in (A.21).

Observe that for all t the jump matrix J (t)(t, k) can be factorized as

J (t)(t, k) =

[
1 0

λB̄(k̄)
A(k) e4ik2t 1

][
1 −B(k)

Ā(k̄)
e−4ik2t

0 1

]
. (A.22)

Recall that A(k) and B(k) are entire functions satisfying the asymptotic relations,

A(k) = 1 + O

(
1

k

)
+ O

(
e4ik2T

k

)
, B(k) = O

(
1

k

)
+ O

(
e4ik2T

k

)
, k → ∞.

Hence,

λB̄(k̄)

A(k)
e4ik2T → 0, k → ∞, arg k ∈ [0, π/2] ∪ [π, 3π/2] , (A.23)

and

B(k)

Ā(k̄)
e−4ik2T → 0, k → ∞, arg k ∈ [π/2, π] ∪ [3π/2, 2π] . (A.24)

Also, taking into account that

A(k)A(k̄) − λB(k)B(k̄) = 1, k ∈ C,

it follows that if Kj is a zero of A(k) then

Res
Kj

[
1

−λB̄(k̄)
A(k) e4ik2T

]

= −λB̄(K̄j)

Ȧ(Kj)
e4iK2

j T

[
0

1

]

=
1

Ȧ(Kj)B(Kj)
e4iK2

j T

[
0

1

]

.

Similarly, at k = K̄j ,

Res
K̄j

[
−B(k)

Ā(k̄)
e−4ik2T

1

]

=
1

Ȧ(Kj)B(Kj)
e−4iK̄2

j T

[
1

0

]

.

These equations, together with (A.22) and the estimates (A.23), (A.24) imply that for t = T
the RH problem defined in (3.15) can be solved explicitly:

M (t)
+ (T, k) =

[
1 0

−λB̄(k̄)
A(k) e4ik2T 1

]
. (A.25)

Thus

D+(k) =

[
1 0

λB̄(k̄)
A(k) 1

]
. (A.26)
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Remark A.2. In the case T = ∞, the factorization (A.22) does not provide the exact
solution for the t-RH problem. However, the methodology of the nonlinear steepest descent
method [23] can be applied. The factorization (A.22) can be used to deform the jump contour
L = R ∪ iR to the hyperbola (Re k)(Im k) = δ > 0 (cf. [25, 26]). Since Re( ik2) > 0 in the
first and third quadrants, the jump matrix of the deformed RH problem tends exponentially
fast to the identity matrix as t → ∞. The possible error terms coming from the zeros of
A(k) are exponentially small. This implied that instead of the exact equation (A.25), the
following asymptotic relation (cf. (A.10)) is valid,

M (t)
+ (t, k) =

[
1 0

−λB̄(k̄)
A(k) e4ik2t 1

]
+ o(1), t → ∞, k ∈ R ∪ iR. (A.27)

Indeed, the t-Riemann - Hilbert problem is a particular case of the oscillatory Riemann-
Hilbert problem corresponding to the NLS equation on the whole axis. The asymptotics
(A.27) is the leading term of the known asymptotics of the solution of the NLS Riemann-
Hilbert problem (see e.g. [25, 26] and the earlier works [27, 28])2. Equation (A.27) implies
that the formula (A.26) for the matrix D+(k) is valid for T = ∞ as well.

Equations (A.21) and (A.26) imply that the scattering data,

S0(k) =

[
Ā0(k̄) B0(k)

λB̄0(k̄) A0(k)

]

= µ1(0, k),

corresponding to the potentials g0(t) and g1(t) defined in (A.18) and (A.19), are given by
the equation,

S0(k) = M (t)
+ (0, k)

[
1 0

λB̄(k̄)
A(k) 1

]
.

If t = 0 (in fact, for all t ≤ 0) the factorization,



1 −B(k)

Ā(k̄)

λB̄(k̄)
A(k)

1
A(k)Ā(k̄)



 =




A(k) −B(k)

0 1
A(k)








Ā(k̄) 0

λB̄(k̄) 1
Ā(k̄)



 ,

yields a (unique) solution to the RH problem defined in (3.15). This implies,

M (t)
+ (0, k) =

[
1

A(k) B(k)

0 A(k)

]
,

and hence

S0(k) =

[ 1
A(k) B(k)

0 A(k)

]


1 0

λB̄(k̄)
A(k) 1



 =

[
Ā(k̄) B(k)

λB̄(k̄) A(k)

]
= S(k),

i.e. equation (A.20) follows.

2In general, the error term in (A.27) is not exponentially small; the deformation process includes a certain
rational approximation of the function B̄(k̄) which produces an additional error (cf. again [23, 26]).
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B Long Time Asymptotics

The formulation presented in this paper is very convenient for computing the long time
asymptotics of the solution q(x, t) in the case T = ∞. Indeed the function q(x, t) is given in
terms of the solution M(x, t, k) of the Riemann-Hilbert problem formulated in Theorem 4.1.
The corresponding jump matrix, J(x, t, k), depends on the parameters x, t according to the
explicit formula,

J(x, t, k) = e−ikxσ3−2ikt2σ3J(0, 0, k)eikxσ3+2ikt2σ3 ,

which is perfectly suited for the application of the nonlinear steepest descent method of [23]
(see also [25, 26] and earlier works [27, 28]). Moreover, a similar Riemann-Hilbert problem
has already been analyzed via the steepest descent method in [9]. In fact, there exists the
following correspondence between the Riemann-Hilbert problem considered here and the one
of [9]:

Ẑ [9]
p (x, t, k) = M(x, t, k),

b[9](k) = γ(k),

c[9](k) = Γ(k),

{k[9]
j }N [9]

j=1 = {λj}Λ
j=1.

Let
N = n1 + Λ ;

define cj, j = 1, · · · , N , by

cj =
λB(λj)

a(λj)ḋ(λj)
, j = 1, ...,Λ, cΛ+j =

1

ȧ(kj)b(kj)
, j = 1, ..., n1. (B.1)

Then,
{c[9]

j }N [9]

j=1 = {cj}Λ
j=1.

The zeros kj of the function a(k) (≡ s+[9]
2 (k)) were missed in [9] (see [7]). Nevertheless, if we

just make the extensions,

{c[9]
j }N [9]

j=1 +→ {cj}N
j=1, (B.2a)

{k[9]
j }N [9]

j=1 +→ {κj}N
j=1, (B.2b)

κj = λj , j = 1, ...,Λ, (B.2c)

κΛ+j = kj , j = 1, ..., n1, (B.2d)

then all the asymptotic considerations of the work [9] can be repeated word for word, and
we arrive at the following result.

Theorem B.1. Suppose that the conditions of Theorem 4.1 are satisfied. Then the solution
q(x, t) of the NLS equation on the half - line corresponding to the initial-boundary data q0(x),
g0(t) and g1(t) exhibits the following large t behavior.
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(i) If the set {κj}Λ
j=1 = {λj}Λ

j=1 is empty then the asymptotics has a quasilinear dispersive
character, i.e. it is described by the Zakharov - Manakov type formulae,

q(x, t) = t−1/2α
(
− x

4t

)
exp

{
ix2

4t
− 2iλα2

(
− x

4t

)
log t + iφ

(
− x

4t

)}
+ o(t−1/2), (B.3)

t → ∞,
x

4t
= O(1),

with the amplitude α and the phase φ given by the equations (cf. [29])

α2(k) = − λ

4π
log

(
1 − λ|γ(k) − λΓ(k)|2

)
, (B.4)

φ(k) = −6λα2(k) log 2 +
π(2 − λ)

4
+ arg

(
γ(k) − λΓ(k)

)
+ argΓ(2iλα2(k))

− 4λ

∫ k

−∞
log |µ − k|dα2(µ), (B.5)

where Γ(z) denotes Euler’s gamma-function.

(ii) If λ = −1 and the set {κj}Λ
j=1 = {λj}Λ

j=1 is not empty then solitons, which are moving
away from the boundary, are generated. This means that there are Λ directions on the
(x, t)-plane, namely

t → ∞, − x

4t
= ξj + O

(
1

t

)
, j ∈ {1, ...,Λ}, (B.6)

along which the asymptotics is given by the one-soliton formula,

q(x, t) = −
2ηj exp

(
− 2iξjx − 4i(ξ2

j − η2
j )t − iφj

)

cosh
(
2ηj(x + 4ξjt) −∆j

) + O(t−1/2), (B.7)

where
ηj = Im(κj), ξj = Re(κj),

and the parameters φj and ∆j are described by the following equations:

φj = −π
2

+ arg cj +
N∑

l=1, l '=j

(
1 − sign(ξl − ξj)

)
arg

(
λj − κl

λj − κ̄l

)

+
1

π

∫ −x/4t

−∞

log
(
1 − λ|γ(k) − λΓ(k)|2

)

(µ − ξj)2 + η2
j

(µ − ξj)dµ, (B.8)

∆j = − log 2ηj + log |cj| +
N∑

l=1, l '=j

(
1 − sign(ξl − ξj)

)
log

∣∣∣∣
λj − κl

λj − κ̄l

∣∣∣∣

− ηj

π

∫ −x/4t

−∞

log
(
1 − λ|γ(k) − λΓ(k)|2

)

(µ − ξj)2 + η2
j

dµ. (B.9)
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Away from the rays (B.6) the asymptotics has again dispersive character, and it can
be described by formulae (B.3)–(B.5), evaluated at λ = −1, and with the term,

φsolitons = 2
N∑

j=1

arg(κj − k) sign(ξj − k),

added to the right hand side of (B.5).

Remark B.2. The zeros kj, j = 1, ..., n1, of the function a(k) lying in the first quadrant,
although they participate in the residue conditions of the Riemann-Hilbert problem, they
do not generate solitons (there are exactly Λ but not N = n1 + Λ soliton rays indicated in
(B.6). They, however, do participate in formulae (B.8) and (B.9) describing the parameters
of the soliton (B.7) (the summations in the right hand sides of these formulae run from 1
to N = Λ+ n1). A qualitative explanation of the absence in the asymptotics of the solitons
corresponding to kj is quite simple: these solitons move to the left, and hence after a finite
time disappear from the first quadrant.

Remark B.3. In the cases of the linearizable boundary conditions all the parameters in the
above formulae can be expressed in terms of the spectral functions a(k) and b(k), i.e. in
terms of the initial data only. Indeed we have,

cj =
λb(−λ̄j)

a(λj)∆̇0(λj)
, j = 1, ...,Λ,

or

cj = − λb(−λ̄j)

a(λj)∆̇1(λj)
, j = 1, ...,Λ,

or

cj = −
λ2λj−iρ

2λj+iρb(−λ̄j)

a(λj)∆̇ρ(λj)
, j = 1, ...,Λ.

Also,

Γ(k) =
λb(−k̄)

a(k)∆0(k)
, k ∈ R− ∪ iR+,

or

Γ(k) = − λb(−k̄)

a(k)∆1(k)
, k ∈ R− ∪ iR+,

or

Γ(k) = −
λ2k−iρ

2k+iρb(−k̄)

a(k)∆ρ(k)
, k ∈ R− ∪ iR+.
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C Proofs of Lemmas 5.1, 5.3 and 5.4

Proof of Lemma 5.1

For |k| > 1, we can write

F(k, g1)ψ =
3∑

j=1

Fj(k, g1)ψ, (C.1)

where

F1(k, g1)(e
4ik2tχ) =

(
λ

i

)
e4ik2t

∫ t

0

|f0(t
′)|2χ(t′) dt′ +

(
λ

2k

)
e4ik2t

∫ t

0

f0(t′)f1(t
′)χ(t′) dt′

−
(
λ

2k

)
e4ik2t

∫ t

0

f1(t′)f0(t
′)χ(t′) dt′ −

(
iλ

4k2

)
e4ik2t

∫ t

0

|f1(t
′)|2χ(t′) dt′, (C.2a)

F2(k, g1)(e
4ik2tχ) = −

(
λ

i

)
f0(t)

∫ t

0

e4ik2t′f0(t
′)χ(t′) dt′ −

(
λ

2k

)
f0(t)

∫ t

0

e4ik2t′f1(t
′)χ(t′) dt′

+

(
λ

2k

)
f1(t)

∫ t

0

e4ik2t′f0(t
′)χ(t′) dt′ +

(
iλ

4k2

)
f1(t)

∫ t

0

e4ik2t′f1(t
′)χ(t′) dt′, (C.2b)

and

F3(k, g1)(e
4ik2tχ) =

(
λ

i

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2sf0(s)χ(s) ds

]
dt′

+

(
λ

2k

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2sf1(s)χ(s) ds

]
dt′

−
(
λ

2k

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2sf0(s)χ(s) ds

]
dt′

−
(

iλ

4k2

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2sf1(s)χ(s) ds

]

dt′. (C.2c)

Indeed, using (5.9), (5.11), (5.14), (5.15) and integration by parts, we find

ψ(t, k) = e4ik2t −
(
λ

2ik

)
f0(t)φ(t, k) +

(
λ

2ik

)∫ t

0

e4ik2(t−t′)[f ′
0(t

′)φ(t′, k) + f0(t′)φt(t
′, k)] dt′

− iλ

∫ t

0

e4ik2(t−t′)f1(t′)φ(t
′, k) dt′

= e4ik2t −
(
λ

2ik

)
f0(t)φ(t, k) +

(
λ

2ik

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)φ(t′, k) dt′

+

(
λ

2ik

)∫ t

0

e4ik2(t−t′)f0(t′)[2kf0(t
′) + if1(t

′)]ψ(t′, k) dt′ +

(
λ

4k2

)
f1(t)φ(t, k)

−
(
λ

4k2

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)φ(t′, k) dt′
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−
(
λ

4k2

)∫ t

0

e4ik2(t−t′)f1(t′)[2kf0(t
′) + if1(t

′)]ψ(t′, k) dt′ (C.3)

Using (5.9a) we can further eliminate φ(t, k) from (C.3):

ψ(t, k) = e4ik2t −
(
λ

2i

)
f0(t)

[∫ t

0

2f0(t
′)ψ(t′, k) dt′ +

i

k

∫ t

0

f1(t
′)ψ(t′, k) dt

]

+

(
λ

2i

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

2f0(s)ψ(s, k) ds +
i

k

∫ t′

0

f1(s)ψ(s, k) ds

]

dt′

+

(
λ

i

)∫ t

0

e4ik2(t−t′)|f0(t
′)|2ψ(t′, k) dt′

+

(
λ

2k

)∫ t

0

e4ik2(t−t′)f0(t′)f1(t
′)ψ(t′, k) dt′

+

(
λ

4k

)
f1(t)

[∫ t

0

2f0(t
′)ψ(t′, k) dt′ +

i

k

∫ t

0

f1(t
′)ψ(t′, k) dt

]

−
(
λ

4k

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

2f0(s)ψ(s, k) ds +
i

k

∫ t′

0

f1(s)ψ(s, k) ds

]

dt′

−
(
λ

2k

)∫ t

0

e4ik2(t−t′)f1(t′)f0(t
′)ψ(t′, k) dt′

−
(

iλ

4k2

)∫ t

0

e4ik2(t−t′)|f1(t
′)|2ψ(t′, k) dt′,

which is equivalent to (C.1) and (C.2).
Let v ∈ C([0, T ]). From (5.15), (C.1), (C.2) and the embedding H1(0, T ) ↪→ C([0, T ]),

we find

∣∣[F(k, g1)v
]
(t)

∣∣ ≤ B1

(
‖g1‖H1(0,T )

) ∫ t

0

∣∣K1(g1)(t
′)
∣∣ max

0≤s≤t
|v(s)| dt′ ∀ k ∈ Q, (C.4)

where B1(·) : R+ −→ R+ is continuous, K1(g1) ∈ L2(0, T ) and there exists a continuous
function B2(·) : R+ −→ R+ such that

‖K1(g1)‖L2(0,T ) ≤ B2

(
‖g1‖H1(0,T )

)
. (C.5)

It follows immediately from (C.4) that the Neumann series
∑∞

j=0

[
F(k, g1)

]j
is convergent

in the space of bounded operators on C([0, T ]), uniformly with respect to k ∈ Q. Therefore,
the operator I − F(k, g1) is invertible on C([0, T ]) and

the norm of
[
I − F(k, g1)

]−1
is uniformly bounded for k ∈ Q̄. (C.6)

Moreover, the map k +→
[
I − F(k, g1)

]−1
is analytic in Q and continuous on Q̄. These

properties of I − F(k, g1) imply the analytic properties of ψ(t, k).
Finally we observe that, from (5.6b), (5.15), (C.1) and (C.2), the dependence of the

operator F(k, g1) on g1 is locally Lipschitz continuous. The local Lipschitz continuity of the
map g1 +→ ψ then follows immediately.
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Proof of Lemma 5.3

The following calculations are based on (C.1), (C.2) and integration by parts.
We define χ0 to be the solution of

χ0(t) = 1 +

(
λ

i

)∫ t

0

|f0(t
′)|2χ0(t

′) dt′, (C.7)

i.e.,

χ0(t) = e−iλ
∫ t
0 |g0(s)|2 ds. (C.8)

Then we have

e4ik2t + F(k, g1)(e
4ik2tχ0) = e4ik2t

(
χ0(t) +

ω1(t)

k

)
+ R1(χ0)(t, k), (C.9)

where

ω1 = G1χ0, (C.10)

(
G1χ

)
(t) =

(
λ

2

)∫ t

0

[
f0(t′)f1(t

′) − f1(t′)f0(t
′)
]
χ(t′) dt′, (C.11)

and

R1(χ)(t, k) = −
(

iλ

4k2

)
e4ik2t

∫ t

0

|f1(t
′)|2χ(t′) dt′ +

3∑

j=2

Fj(k, g1)(e
4ik2tχ). (C.12)

Let χ1 be defined by the Volterra integral equation

χ1(t) = ω1(t) +

(
λ

i

)∫ t

0

|f0(t
′)|2χ1(t

′) dt′, (C.13)

then we have χ1(0) = 0 and

e4ik2t + F(k, g1)
(
e4ik2t

(
χ0 +

χ1

k

))

= e4ik2t

(
χ0(t) +

χ1(t)

k
+
ω2(t)

k2

)
+ R2(χ0) +

R1(χ1)

k
, (C.14)

where

ω2 = G2χ0 + G1χ1 (C.15)

(
G2χ

)
(t) = −

(
iλ

4

)∫ t

0

|f1(t
′)|2χ(t′) dt′ +

(
λ

4

)
|f0(t)|2χ(t)

−
(
λ

4

)∫ t

0

f ′
0(t

′)f0(t
′)χ(t′) dt′, (C.16)
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and

R2(χ)(t, k) = −
(
λ

4k2

)
f0(t)

∫ t

0

e4ik2t′ [f0χ]′(t′) dt′

−
(
λ

2k

)
f0(t)

∫ t

0

e4ik2t′f1(t
′)χ(t′) dt′ +

(
λ

2k

)
f1(t)

∫ t

0

e4ik2t′f0(t
′)χ(t′) dt′

+

(
iλ

4k2

)
f1(t)

∫ t

0

e4ik2t′f1(t
′)χ(t′) dt′

+

(
λ

4k2

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2s[f0χ]′(s) ds

]

dt′

+

(
λ

2k

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2sf1(s)χ(s) ds

]

dt′

−
(
λ

2k

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2sf0(s)χ(s) ds

]

dt′

−
(

iλ

4k2

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2sf1(s)χ(s) ds

]

dt′. (C.17)

The function χ2 is then defined by the Volterra integral equation

χ2(t) = ω2(t) +

(
λ

i

)∫ t

0

|f0(t
′)|2χ2(t

′) dt′, (C.18)

and we have χ2(0) = 0 and

e4ik2t + F(k, g1)

(
e4ik2t

2∑

'=0

χ'

k'

)

= e4ik2t

(
2∑

'=0

χ'(t)

k'
+
ω3(t)

k3

)
+ R3(χ0) +

R2(χ1)

k
+

R1(χ2)

k2
, (C.19)

where

ω3 = G3χ0 + G2χ1 + G1χ2 (C.20)

G3χ(t) = −
(
λ

8i

)
f0(t)f1(t)χ(t) +

(
λ

8i

)
f1(t)f0(t)χ(t)

+

(
λ

8i

)∫ t

0

f ′
0(t

′)f1(t
′)χ(t′) dt′ (C.21)

−
(
λ

8i

)∫ t

0

f ′
1(t

′)f0(t
′)χ(t′) dt′,
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and

R3(χ) = −
(
λ

4k2

)
f0(t)

∫ t

0

e4ik2t′ [f0χ]′(t′) dt′

+

(
λ

8ik3

)
f0(t)

∫ t

0

e4ik2t′ [f1χ]′(t′) dt′ −
(
λ

8ik3

)
f1(t)

∫ t

0

e4ik2t′ [f0χ]′(t′) dt′

+

(
iλ

4k2

)
f1(t)

∫ t

0

e4ik2t′f1(t
′)χ(t′) dt′

+

(
λ

4k2

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2s[f0χ]′(s) ds

]
dt′

−
(
λ

8ik3

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2s[f1χ]′(s) ds

]
dt′

+

(
λ

8ik3

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2s[f0χ]′(s) ds

]
dt′

−
(

iλ

4k2

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2sf1(s)χ(s) ds

]
dt′. (C.22)

Next we define χ3 by the Volterra integral equation

χ3(t) = ω3(t) +

(
λ

i

)∫ t

0

|f0(t
′)|2χ3(t

′) dt′. (C.23)

It follows that χ3(0) = 0 and

e4ik2t + F(k, g1)

(
e4ik2t

3∑

'=0

χ'

k'

)

= e4ik2t

(
3∑

'=0

χ'(t)

k'
+
ω4(t)

k4

)
+ R4(χ0) +

R3(χ1)

k
+

R2(χ2)

k2
+

R1(χ3)

k3
, (C.24)

where

ω4(t) = G4χ0 + G3χ1 + G2χ2 + G1χ3, (C.25)

(G4χ)(t) = −
(
λ

16i

)
f0(t)[f0χ]′(t) +

(
λ

16

)
|f1(t)|2χ(t)

+

(
λ

16i

)∫ t

0

f ′
0(t

′)[f0χ]′(t′) dt′ −
(
λ

16

)∫ t

0

f ′
1(t

′)f1(t
′)χ(t′) dt′, (C.26)

and

R4(χ)(t, k) =

(
λ

16ik4

)
f0(t)

∫ t

0

e4ik2t′ [f0χ]′′(t′) dt′

+

(
λ

8ik3

)
f0(t)

∫ t

0

e4ik2t′ [f1χ]′(t′) dt′ −
(
λ

8ik3

)
f1(t)

∫ t

0

e4ik2t′ [f0χ]′(t′) dt′
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−
(

λ

16k4

)
f1(t)

∫ t

0

e4ik2t′ [f1χ]′(t′) dt′

−
(

λ

16ik4

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2s[f0χ]′′(s) ds

]
dt′

−
(
λ

8ik3

)∫ t

0

e4ik2(t−t′)f ′
0(t

′)

[∫ t′

0

e4ik2s[f1χ]′(s) ds

]
dt′

+

(
λ

8ik3

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2s[f0χ]′(s) ds

]
dt′

+

(
λ

16k4

)∫ t

0

e4ik2(t−t′)f ′
1(t

′)

[∫ t′

0

e4ik2s[f1χ]′(s) ds

]
dt′. (C.27)

Finally, we define χ4 by the Volterra integral equation

χ4(t) = ω4(t) +

(
λ

i

)∫ t

0

|f0(t
′)|2χ4(t

′) dt′. (C.28)

Then we have χ4(0) = 0 and

e4ik2t + F(k, g1)

(
e4ik2t

4∑

'=0

χ'

k'

)

= e4ik2t

(
4∑

'=0

χ'(t)

k'

)
+ τ(t, k), (C.29)

where

τ(t, k) =
e4ik2t

k5
(G1χ4)(t) +

R1(χ4)

k4
+

R1(χ3)

k3
+

R2(χ2)

k2
+

R3(χ1)

k
+ R4(χ0). (C.30)

Using the assumptions on f0 and f1, (C.8), (C.10), (C.11), (C.13), (C.15), (C.16), (C.18),
(C.20), (C.21), (C.23), (C.25), (C.26) and (C.28), we can easily establish successively χ0 ∈
C∞([0, T ]), ω1 ∈ H2(0, T ), χ1 ∈ H2(0, T ), ω2 ∈ H2(0, T ), χ2 ∈ H2(0, T ), ω3 ∈ H1(0, T ),
χ3 ∈ H1(0, T ), ω4 ∈ H1(0, T ) and χ4 ∈ H1(0, T ).

Let

ψ4(t, k) = ψ(t, k) − e4ik2t
4∑

'=0

χ'(t)

k'
.

Combining (C.29) and (5.14), we find

τ + F(k, g1)ψ4 = ψ4. (C.31)

From (C.11), (C.12), (C.17), (C.22), (C.27) and (C.30), we immediately have

τ(t, k) = O

(
1

k3

)
. (C.32)
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The estimate (5.19) then follows from (C.6), (C.31) and (C.32).
Observe that

t +→ |ξ|3/2τ(t,
√
ξ) is a continuous map from [0, t] into L2(R∗), (C.33)

where R∗ = (−∞,−1) ∪ (1,∞). Indeed, the map

t +→ |ξ|3/2 e4iξt

ξ5/2

(
G1χ4

)
(t)

belongs to C
(
[0, T ], L2(R∗)

)
because G1χ4 ∈ C([0, T ]) (cf. (C.11)), and the map

t +→ |ξ|3/2
[R1(χ4)(t,

√
ξ)

ξ2
+

R1(χ3)(t,
√
ξ)

ξ3/2
+

R2(χ2)(t,
√
ξ)

ξ
+

R3(χ1)(t,
√
ξ)

ξ1/2
+R4(χ0)(t,

√
ξ)
]

belongs to C
(
[0, T ], L2(R∗)

)
because of the (negative) powers of k that appear in (C.12),

(C.17), (C.22) and (C.27), and because

t +→
∫ t

0

e4iξt′v(t′) dt′

defines a continuous map from [0, T ] into L2(R) for any v ∈ L2(0, T ).
For ξ ∈ R∗, we obtain from (C.31)

τ(t,
√
ξ) + F(

√
ξ, g1)ψ4(t,

√
ξ) = ψ4(t,

√
ξ) (C.34)

which in view of (C.33) can be considered as an integral equation on C
(
[0, T ], L2(R∗, |ξ|3dξ)

)
.

Using (C.1) and (C.2a)–(C.2c), we have the following analog of (C.4):
∥∥∥
[
F(

√
ξ, g1)v

]
(t)

∥∥∥
L2(R∗,|ξ|3dξ)

≤ B2

(
‖g1‖H1(0,T )

) ∫ t

0

∣∣K2(g1)(t
′)
∣∣ max

0≤s≤t
‖v(s)‖L2(R∗,|ξ|3dξ) dt′, (C.35)

where B2(·) : R+ −→ R+ is continuous and K2(g1) ∈ L2(0, T ) satisfy an estimate similar
to (C.5). It follows from (C.35) that the operator I − F(

√
ξ, g1) is invertible on the space

C
(
[0, T ], L2(R∗, |ξ|3dξ)

)
, and (5.20) follows.

Proof of Lemma 5.4

We use the standard notation L(X, Y ) to denote the space of bounded linear operators from
the normed linear space X to the normed linear space Y , which is simplified to L(X) in the
case Y = X.

The operators G1, . . . ,G4 defined by (C.11), (C.16), (C.21) and (C.26) depend on the
function g1. Henceforth we will denote them as G1(g1), . . . ,G4(g1).

It is easy to see from (C.11) that the map g1 +→ G1(g1) from H1(0, T ) into the space
L
(
H1(0, T ), H2(0, T )

)
is bounded and linear. It then follows from (C.10) and (C.13) that

E1 : H1
0∗(0, T ) −→ H2(0, T ) is also bounded and linear, and thus locally Lipschitz continuous.
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Similarly, we see from (C.16) that the map g1 +→ G2(g1) from H1(0, T ) into the space
L
(
H2(0, T ), H2(0, T )

)
is locally Lipschitz continuous, and then (C.15) and (C.18) imply that

E2 : H1
0∗(0, T ) −→ H2(0, T ) is also locally Lipschitz continuous.

From (C.21) we obtain the local Lipschitz continuity of the map g1 +→ G3(g1) from
H1(0, T ) into L

(
H1(0, T ), H1(0, T )

)
, and then the local Lipschitz continuity of the map

E3 : H1
0∗(0, T ) −→ H1(0, T ) follows from (C.20) and (C.23).

Finally, we see from (C.26) that the map g1 +→ G4(g1) from H1(0, T ) into the space
L
(
H2(0, T ), H1(0, T )

)
is locally Lipschitz continuous. Combining (C.25) and (C.28), we

then obtain the local Lipschitz continuity of E4 : H1
0∗(0, T ) −→ H1(0, T ).

To see the local Lipschitz continuity of the map E : H1
0∗(0, T ) −→ C

(
[0, T ], L2(R∗, |ξ|3dξ)

)
,

we first observe that

the map g1 +→ F(
√
ξ, g1) from H1

0∗(0, T ) into L
(
C
(
[0, T ], L2(R∗, |ξ|3dξ)

))

is locally Lipschitz continuous, (C.36)

by (C.2). Furthermore, the function τ(t,
√
ξ), which depends on g1, can be represented more

precisely as the continuous function t̃(g1) from [0, T ] into L2(R∗, |ξ|3dξ) given by the formula
[
t̃(g1)(t)

]
(ξ) = τ(t,

√
ξ),

and the integral equation (C.34) can be written as

t̃(g1) + F(
√
ξ, g1)ψ̃4 = ψ̃4. (C.37)

Since the map g1 +→ t̃(g1) from H1
0∗(0, T ) into C

(
[0, T ], L2(R∗, |ξ|3dξ))

)
is locally Lipschitz

continuous by (C.11), (C.12), (C.17), (C.22), (C.27) and (C.30), the local Lipschitz continuity
of E follows from (C.36) and (C.37).

D A Priori Bounds

A Priori Bound for ‖qx(0, ·)‖L2(0,T )

Let q be a smooth solution of (2.1) for 0 ≤ t ≤ T with sufficient decay as x → ∞ and let
q(x, 0) = 0. Multiplying (2.1) by q̄ and integrating over R+ we obtain

i(qt, q) + (qxx, q) − 2λ(|q|2q, q) = 0, (D.1)

where (u, v) =
∫∞
0 uv̄ dx. The imaginary part of (D.1) is equivalent to

d

dt
(q, q) − 2 Im [qx(0, t)q(0, t)] = 0 for 0 < t < T. (D.2)

Integration of (D.2) over (0, T ) yields the following estimate

‖q(·, t)‖2
L2(0,∞) ≤ 2‖qx(0, ·)‖L2(0,T )‖q(0, ·)‖L2(0,T ) for 0 ≤ t ≤ T. (D.3)

We now multiply (2.1) by q̄t and integrate the resulting equation over R+ to arrive at

i(qt, qt) + (qxx, qt) − 2λ(|q|2q, qt) = 0. (D.4)
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The real part of (D.4) gives

−2 Re [qx(0, t)qt(0, t)] −
d

dt
(qx, qx) − λ

d

dt
(|q|2, |q|2) = 0 for 0 < t < T. (D.5)

Integration of (D.5) over (0, T ) then yields

‖qx(·, t)‖2
L2(0,∞) + λ‖q(·, t)‖4

L4(0,∞) ≤ 2‖qx(0, ·)‖L2(0,T )‖qt(0, ·)‖L2(0,T ) (D.6)

for 0 ≤ t ≤ T .
Multiplying (2.1) by q̄x and integrating over R+ gives

i(qt, qx) + (qxx, qx) − 2λ(|q|2q, qx) = 0. (D.7)

The real part of (D.7) can be written as

i
d

dt
(q, qx) + iq(0, t)qt(0, t) − |qx(0, t)|2 + λ|q(0, t)|4 = 0 for 0 < t < T. (D.8)

Integration of (D.8) over (0, T ) then yields the following estimate:

‖qx(0, ·)‖2
L2(0,T ) ≤ ‖q(0, ·)‖4

L4(0,T ) + ‖q(0, ·)‖L2(0,T )‖qt(0, ·)‖L2(0,T )

+ ‖q(·, T )‖L2(0,∞)‖qx(·, T )‖L2(0,∞). (D.9)

In the case where λ = 1, it follows immediately from (D.3), (D.6) and (D.9) that

‖qx(0, ·)‖L2(0,T ) ≤ B1

(
‖q(0, ·)‖H1(0,T )

)
, (D.10)

where B,(·) is a (generic) continuous map from R+ ∪ {0} into R+ satisfying B,(0) = 0.
On the other hand, the Sobolev embedding H1(0,∞) ↪→ L4(0,∞) implies that

‖u‖4
L4(0,∞) ≤ ‖u‖3

L2(0,∞)‖ux‖L2(0,∞). (D.11)

Therefore, in the case where λ = −1, we conclude from (D.3), (D.6), (D.9) and (D.11) that
(D.10) remains valid provided ‖q(0, ·)‖L2(0,T ) is sufficiently small.

We note that the estimates (D.3), (D.6) and (D.10) (and (D.11) when λ = −1) also imply

max
0≤t≤T

‖q(·, t)‖H1(0,∞) ≤ B2

(
‖q(0, ·)‖H1(0,T )

)
. (D.12)

A Priori Bound for ‖qxt(0, ·)‖L2(0,T )

Let v = qt. The following equation for v is derived by differentiating (2.1) in t:

ivt + vxx − 4λ|q|2v − 2λq2v̄ = 0. (D.13)

Multiplying (D.13) by v̄ and integrating over R+ we find

i(vt, v) + (vxx, v) − 4λ(|q|2v, v) − 2λ(q2v̄, v) = 0 for 0 < t < T. (D.14)
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The imaginary part of (D.14) then gives

d

dt
(v, v) − 2 Im [vx(0, t)v(0, t)] − 4λ Im (q2v̄, v) = 0. (D.15)

Note that we have the Sobolev inequality

‖u‖2
L∞(0,∞) ≤ ‖u‖L2(0,∞)‖ux‖L2(0,∞). (D.16)

Integrating (D.15) in t, we obtain from (D.12) and (D.16) that

‖v(·, t)‖2
L2(0,∞) ≤ 2‖vx(0, ·)‖L2(0,T )‖qt(0, ·)‖L2(0,T )

+ B3

(
‖q(0, ·)‖H1(0,T )

) ∫ t

0

‖v(·, s)‖2
L2(0,∞)ds for 0 ≤ t ≤ T. (D.17)

Gronwall’s inequality and (D.17) imply the following estimate:

‖v(·, t)‖2
L2(0,∞) ≤ B4

(
‖q(0, ·)‖H1(0,T )

)
‖vx(0, ·)‖L2(0,T ) for 0 ≤ t ≤ T. (D.18)

We now multiply (D.13) by v̄t and integrate the resulting equation over R+ to obtain

i(vt, vt) + (vxx, vt) − 4λ(|q|2v, vt) − 2λ(q2v̄, vt) = 0. (D.19)

The real part of (D.19) yields the estimate

d

dt

[
(vx, vx) + 4λ(|q|2, |v|2) + 2λRe (q2, v2)

]

≤ 2|vx(0, t)vt(0, t)| + 12

∫ ∞

0

|q(x, t)| |v(x, t)|3 dx. (D.20)

We have, by (D.16),

∫ ∞

0

|q(x, t)| |v(x, t)|3 dx ≤ ‖v(·, t)‖2
L∞(0,∞)‖q(·, t)‖L2(0,∞)‖v(·, t)‖L2(0,∞)

≤ ‖q(·, t)‖L2(0,∞)‖v(·, t)‖2
L2(0,∞)‖vx(·, t)‖L2(0,∞). (D.21)

Integrating (D.20) we find, by (D.12), (D.16), (D.18) and (D.21),

‖vx(·, t)‖2
L2(0,∞) ≤ B5

(
‖q(0, ·)‖H2(0,T )

)[
‖vx(0, ·)‖L2(0,T ) + ‖vx(0, ·)‖2

L2(0,T )

]

+

∫ t

0

‖vx(·, t)‖2
L2(0,∞)ds. (D.22)

Gronwall’s inequality and (D.22) imply

‖vx(·, t)‖2
L2(0,∞) ≤ B6

(
‖q(0, ·)‖H2(0,T )

)[
‖vx(0, ·)‖L2(0,T ) + ‖vx(0, ·)‖2

L2(0,T )

]
(D.23)

for 0 ≤ t ≤ T .
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Finally we multiply (D.13) by v̄x and integrate over R+ to obtain

i(vt, vx) + (vxx, vx) − 4λ(|q|2v, vx) − 2λ(q2v̄, vx) = 0. (D.24)

Taking the real part of (D.24) we find the estimate

|vx(0, t)|2 ≤ 12

∫ ∞

0

|q(x, t)|2|v(x, t)| |vx(x, t)| dx + i
[
qt(0, t)qtt(0, t) +

d

dt
(v, vx)

]
. (D.25)

Integrating (D.25) over (0, T ) we have, by (D.18) and (D.23),

‖vx(0, ·)‖2
L2(0,T ) ≤ B7

(
‖q(0, ·)‖H2(0,T )

)[
‖vx(0, ·)‖L2(0,T ) + ‖vx(0, ·)‖3/2

L2(0,T )

]

+ ‖q(0, ·)‖2
H2(0,T ). (D.26)

It follows from (D.26) that

‖qxt(0, ·)‖L2(0,T ) = ‖vx(0, ·)‖L2(0,T ) ≤ B8

(
‖q(0, ·)‖H2(0,T )

)
, (D.27)

which holds for arbitrary q(0, t) when λ = 1 and for ‖q(0, ·)‖L2(0,T ) sufficiently small when
λ = −1.
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