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Abstract

The function lattice, or generalized Boolean algebra, is the set of
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coordinates. We prove a Hilton—Milner type theorem for systems of
t-intersecting /-tuples.

*The work of the first author was partially supported by Hungarian NSF grants T37846,
T34702. The work of the second author was partially supported by the NSF grant CCR-
0097995. The work of the third author was partially supported by the NSF grants 007
2187 and 030 2307.



1 Introduction

Let t, ¢, and n; < ny < --- < ny be positive integers. Denote by Fy(ny, ..., ny)
the set of all /-tuples

The support of an ¢-tuple k is the set of the non-zero coordinates: supp(k) =
{i:k; #0}. We can define a partial ordering on Fy(n4,...,n,) by j < k if
supp(j) C supp(k) and for all i@ € supp(j) we have j; = k;. This par-
tially ordered set is called the function lattice (see for example [5]). An-
other frequently used name is generalized Boolean algebra, because the case
ny = ngy = 1, i.e., when all n; are equal to 1, is just the case of (characteristic
vectors of) set systems on an f-element underlying set.

We say that two (-tuples j and k are t-intersecting if there are at least
t different integers ¢ € supp(j) N supp(k) such that j; = k;, or, with other
words, if there is an /-tuple t with support of size t such that t < k and t < j.
Denote by my(ni, ..., ny) the maximum cardinality of ¢-intersecting ¢-tuples
in Fy(nq,...,ny) and by M;(nq, ...,n) the set of all t-intersecting families with
this cardinality. The problems to determine the value my(nq,...,n,) and to
describe the structures of the families in M;(ny,...,n,), have a very long
and notable history even in the case n, > 1, and this is the case we are
concentrating on in this note.

We start with the history of the case t = 1. C. Berge (1974, [4]) de-
termined my(ny,...,ny) and My(nq,...,ny) when all (-tuples have (-element
supports. Different proofs of Berge’s result were given by Hsieh (1975, [19]),
by Livingston (1979, [21]) in the case when n; = n,. The first result for set
systems with uniform support size different from ¢, but with n; = ny, is due
to Frankl (published in 1983, [9]). Moreover, Engel (1984, [10]) handled the
case with n; = ny, when the supports of the (-tuples are arbitrary. In fact,
Engel proved a Bollobds-type inequality (in the spirit of [8]) for the set of
intersecting (-tuples; a simpler proof of this last result is due to P. L. Erddés,
U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution
to the t = 1 case, for arbitrary n;’s and any uniform support size (2001, [6]),
using his general weighted intersection theorem. This case shows interest-
ing connections to the complete intersection theorem of R. Ahlswede and L.
Khachatrian ([2]).

For arbitrary values of ¢, the first result is due to D. Kleitman (1966 [20])
in the case when n; = ny = 2, and all supports are of size ¢. Then P. Frankl
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and Z. Fiiredi handled the case t > 15, all supports are of size ¢, and n; =
ne (1980, [14]), using Frankl’s version of the Erdés-Ko-Rado theorem (see
[11]). Later A. Moon generalized this result for cross t-intersecting families
(1982, [22]). The paper by Deza and Frankl (1983, [9]) also contains the
solution for the case when all supports are of the same size k and n; =
ng, for ¢ large enough as a function of £ and ¢. H-D. Gronau proved the
first result for t-intersecting families with ¢-element supports in the case of
non-equal n;’s (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]),
and independently P. Frankl and N. Tokushige (1998, [15]), solved the ¢-
intersecting problem for arbitrary ¢ for /-tuples with full support, applying
Ahlswede and Khachatrian’s seminal complete intersection theorem for set
systems (1997, [2]). Finally C. Bey (1999, [5]) determined all parameters
(, k,t,n, for which “fixing ¢ coordinates” yields the solution to the intersection
problem.

All these results can be summarized in the following structural way: un-
der some conditions for the parameter values, the (often unique) optimal
t-intersecting family consists of all /-tuples that are greater or equal than
a fixed (-tuple t with support size ¢. In the literature such set systems are
called trivially t-intersecting families. As it is well known in the theory of ¢-
intersecting set systems, there is a long-standing effort to solve the nontrivial
t-intersection problem: what is the size and the structure of the maximum
t-intersecting families where the total intersection of the sets has less then
t elements. The first such result is due to A. J. H. Hilton and E. C. Mil-
ner (1967, [18]). The complete solution is again due to R. Ahlswede and L.
Khachatrian (1996, [1]).

As far as these authors are aware, the only ¢-intersection result known
for the function lattice Fy(nq,...,ny) is due to C. Bey and K. Engel (2000,
[7]) [Example 10, 11 and Lemma 18]: this is the complete solution to the
non-trivial ¢-intersection problem in the case of equal n;’s.

The goal of this paper is to prove a more general non-trivial ¢-intersection
result for the subset of the function lattice Fy(nq, ..., ny) consisting of (-tuples
with a fixed size k of the support, for some parameter values t < k < £
and n; < ng < -+ < ny. The result is based on a Hilton—Milner type
theorem for poset series, proved by the authors (2000, [13]). The proof of
this latter uses the so-called kernel method, introduced by A. Hajnal and
B. Rothschild (1973, [17]), therefore all of our results are valid only from
a threshold for the parameters. We note that, perhaps surprisingly, the



application of [13] is not for the natural partial order of Fy(ny,...,ny). We
shall investigate families of intersecting chains in the natural partial order of
Fy(n1,...,ne) in a forthcoming paper. Of course, a direct application of the
kernel method may yield similar results, but citing [13] saves a lot of work.
We admit that the methods of [7] are likely to allow generalization to the
case of different n;’s.

In Section 2 we recall the necessary details from [13], while in Section 3
we reformulate the t-intersection problem of the function lattice and apply
for it the method described in Section 2.

2 Non-trivial {-intersection results for posets

A t-chain L in a poset P is a strict chain of elements £ = (z; < 29 < -+ <
x¢). For a given t-chain £ = (21 < z9 < -++ < x¢), let Tpy(x1, 29, ..., 24)
denote the set of k-chains in P which contain £ as a subset. Define Tp (21, 2,
ooy xy) = |Tpg(xr, g, ..., 2)|. Sometimes we write T" instead of Ty, when
it does not cause ambiguity. Also define ry(P, k) = maxTpy(z1, 22, ..., 24,
where the maximum is taken for ¢-chains z; < 9 < --- < 2, in P. It follows
from the definition that

ri(P k) > 141 (P k). (1)

For a t-chain X C P and y ¢ X, let T'(X,y) denote the number of k-
chains which contain X and y. For a ¢t-chain X and a k-chain £ in P, such
that |[Y UL| =k + 1, let y; € £\ X such that T(X,y}) minimize T(X,y)
for the elements y € £\ X, and set

(X, L)= Y T(Xy). (2)

yEL\X, y#y

Also define
M (P, k) = max 7(X, L), (3)
and
MZ(Pk) = max T(X,yz). (4)

7(X,L)=M, (P,k)

Now the following Hilton-Milner type theorem holds:



Theorem 1 For fited 1 < t < k, and a sequence of posets P,, let us be
gwen a maximum sized family F, of non-trivially t-intersecting k-chains in
P,. Assume further that

lim 7yi0(Py, k) /M (Py, k) = 0. (5)

Then, for n sufficiently large, F, has one of the following two descriptions:

(1) there exists at-chain X and a (k+1—t)-chain Y, such that XNY = 0;
and F,, is the following set of k-chains:

Fx,Y) = {L: XCLand LNY #D}U
U {£L: YCLand |[LNX|=t—1}, (6)

where the second set of chains is non-empty;
(11) there exists a (t42)-chain Z, and F, is the following set of k-chains:
F(Z)={L: |[LNZ|>1t+1}, (7)

and | (Vper, LN Z[ <t —1.

3 New results

Let t <k < {and n; <--- < mny be positive integers. We define two families
Fi(t, k;nq,...,ng) and Fo(t, k;nq, ..., ng) of non-trivially ¢-intersecting families
in Fy(nq, ..., ng) with support size k as follows.

(i) Let ji,72,...,Jk+1 be integers satisfying 1 < j; < n; fori € [1,k + 1].
We define Fi(t, k;nq,...,ng) as the set of (-tuples k = (kq, ..., k¢) with
support size k which belong to the set

{k: k; =j; for all i€ [1,¢] and for at least one i€ [t +1,k+ 1]} U
{k:k;=y;forall iec[t+1,k+1] and for t — 1 values i € [1,t]}. (8)

(ii) Let ji,J2,...,Jer2 be integers satisfying 1 < j; < n; for i € [1,t + 2].
We define Fy(t, k;nq,...,ng) as the set of -tuples k = (ky, ..., ky) with
support size k which belong to the set

{k : k; = j; for at least t + 1 values i € [1,t + 2]}. 9)



Note that |Fi(t, k;nq,...,ne)| and |Fa(t, k;nq, ..., ng)| do not depend on the
particular choices of the j;. Our goal is to give sufficient conditions for
the parameter values ¢, k, ¢, nq,...,ny, which ensure that either F; or F; is
of maximum size among the non-trivially ¢-intersecting families of /-tuples
with support size k.

Given ny < --- < ny, we define a partially ordered set (P(ni, ..., ng), <
as follows. The underlying set is P(nq,...,n) == {(4,j) : 1 <i < ¥, 1
j < TLZ'}, and (ilujl) =< (ig,jg) if and OIlly if i1 < iy. The map k
(k1 .oy ko) — {(i, ki) € P(nq,...,ng) : k; # 0} is obviously a bijection between
F¢(n1,...,ny) and the chains in the poset (P(nq,...,n¢), <), and ¢-tuples with
support size k are mapped to k-chains. Therefore, t-intersecting families of
(-tuples in Fy(nq,...,n,) with support size k correspond to t-intersecting k-
chains in (P(nq,...,ng), <). For a subset ) C P(ny,...,ny), we define the
support of Y as the set of first coordinates of the elements of )); namely,
supp(Y) = {i < £:3j < mn; (i,5) € Y}. We start with the determination
of the quantities 7,9, M., and M?* defined in Section 2. Note that for any
m-chain £ in P = (P(n4, ...,ng), <), we have

Tp (L) = > I (10)

AC[1,£]\supp(L): i€A
|A|l=k—m

~—

I IA

Proposition 2 Lett < k < (, let P = (P(n1,...,n¢), <) and let L be an
m-chain in P. Suppose that (i,k;) € L and j & supp(L) with j < i, and let
L* = (L\A{(4, ki)}) U{(4,kj)} for some kj < nj. Then Tp (L") > Tp (L),

with equality if and only if n; = nj = -+ = n,.

Proof. We obtain Tp j,(L*) from Tp ;(L) by replacing each occurrence of n;
by n; in the sum in (10). Hence the inequalities n; < njp < - < n; imply
both assertions of the proposition. O

Let oi(xy, 23, ..., 7,,) denote the i elementary symmetric polynomial in

variables 1, s, ..., T,,. We define og(z1, 2, ..., xp) = 1.

Lemma 3 Lett < k < { and let P = (P(n4,...,n),<). Then

’f’t_,_g(/P, k’) = Z an :O'k_t_g(nt+3,...,ng). (11)

AC[t+3,0):  i€A
|Al=k—t—2



Proof. Proposition 2 implies that for (¢ + 2)-chains £ in P, the quantity
Tp (L) is maximized when supp(L) = [1,¢ + 2]. O

Lemma 4 Lett < k < { and let P = (P(ny,...,ng),<). Then for any t-
chain X and k-chain L in P with |XUL| = k+1, we have M, (P, k) = 7(X, L)
if and only if the multiset relations {n; : i € supp(X)} = {n; : 1 <1 <t}
and {n; :i € supp(L)} 2 {n; : t+ 1 <i <k} hold.

Proof. We first note that the condition |X UL| = k+ 1 implies that X and £
have t — 1 common elements and |£\ X| = k—t+ 1. Moreover, since 7(X, L)
is the sum of only k — ¢ values T'(X,y) with y € £\ X, it is possible that for
a fixed t-chain X, 7(X, £) is maximized for some £ even though T'(X,y) = 0
for some y € L\ X.

For a fixed t-chain X, Proposition 2 implies that 7(X, £) is maximized
for a k-chain £ whose support contains the k — ¢t smallest elements of [1, £] \
supp(X). Moreover, another application of Proposition 2 shows that if X’
is obtained by replacing an element (i1, j;) € X with some (ig, jo) satisfying
ia < i1 and 49 the smallest number not in supp(X’) then 7(X’, L") > 7(X, L)
for an optimal £’ constructed in the way described in the previous sentence.
Hence M. (P,k) = 7(X, L) for X, £ with supp(X) = [1,¢] and supp(L) 2
[t + 1,k]. Finally, Proposition 2 also implies that if supp(X’) # [1,¢] or
supp(L') 2 [t + 1, k] then 7(X’, L) < M, (P, k), unless the condition about
the multiset of n,; values described in the statement of the lemma holds. O

Lemma 5 Lett < k < { and let P = (P(n4,...,n),<). Then

M:(Pv k) = E an :Uk—t—l(nt+17”'7n/k:17”'7n€>' (12)
AC[t+1,4\{k+1}: 1€A
|A|l=k—t—1

Proof. Let X be a t-chain and £ be a k-chain with |[X¥ U L] = k + 1 and
T(X,L) = M.(P,k). Then, by Lemma 4, we have the multiset relations
{ni:iesupp(X)} ={n;: 1 <i<t}and {n;:i€supp(L)} D{n;:t+1<
i < k}. Also, we have k < |[supp(X U L)| < k+ 1. If |[supp(X U L)| = k then
there exists y; = (i, k;) € £\ X with ¢ € supp(X) and so T'(X,y}) = 0. If
|supp(X U L)| = k + 1 then Proposition 2 implies that T'(X,y) is minimized
in £\ X for the y} = (i, k;) € £\ X with i = maxsupp(L\ X) and, in order to
maximize T'(X, y}), we have to choose max supp(L \ X') as small as possible.
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Combining these observations, we obtain that max7T(X,y}) is achieved in
the case supp(X) = [1, 1], supp(L\X) = [t+1, k+1], and supp(y}) = {k+1},
leading to (12). O
The following two lemmas will be useful at the comparison of r;, 5 and
M*.
Lemma 6 Let t, k, ¢ satisfy k > t+ 2 and ¢ > 2k —t — 1, and let P =
(P(n1,...;n0),<). Then
k—t—2
0—2k+t+2
Proof. On one hand, if A C [t + 1, /] satisfies |A| =k —t—2and k+1€ A

then 5
s
H n; < s€[k+2,0)\ A H n.
i€A (—k—=1)—(k=t=3) ieA\{k+1}

On the other hand, any (k — ¢ — 2)-element subset B of [t + 1,¢] \ {k + 1}

can be obtained at most k — ¢t — 2 ways by replacing £ + 1 by an element
j > k+2of B. Hence Lemma 3 implies

—

)Uk—t—Q(nt—i-h vy Mg 1y -ey n@)'

Tt+2(7), k?) S (1 +

rt+2(7)7 k) = Uk—t—Q(nt+37 ceey nf) S O—k’—t—Q(nt—i-la ceey /n'é) S

k—t—2 .
(14 e )2, )

O

Lemma 7 Let t k(¢ satisfy k >t +2 and let P = (P(ny,...,n¢),<). Then

(—k+1 -
m Uk—t—z(’flt.H,...,nk_i_l,...,ng), (13)

Proof. Using that any (k —t — 2)-element subset B of [t +1,¢]\ {k+ 1} can
be obtained (¢ —t—1) — (k—t —2) = { — k+ 1 ways by deleting an element
different from k£ + 1 from a (k —t — 1)-element subset of [t +1,¢] \ {k + 1},
we have

MZ(P,k) = nuta

—_—

(k —t— 1)0k—t—1(nt+17 ey Mgt 1, "'777'4) =

¢
E MOkt (Tt 1y ey Tsy wony Tog 1y <eey Tp) =

s=t+1
s#k+1

—_—

nt+1(€ —k + 1)Uk_t_2(nt+1, ceey Mt 1, ...,TL@).
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Hence Lemma 5 implies (13). O

Lemma 8 Lett < k < { and let P = (P(n1,....,n¢), <). If X is a t-chain
and Y is a k+1—t-chain with XNY = 0 then |F(X, V)| < |Fi(t, k;na, ..., ng)|
for the families of chains defined in (6) and (8), respectively.

Proof. First note that |[supp(X) N supp(Y)| < 1, because otherwise there
is no k-chain containing ) and ¢ — 1 elements of X’ as required in (6). If
|supp(X)Nsupp(Y)| = 1, say (4, f;) € X and (i, g;) € Y for some f; # g;, then
there exists exactly one k-chain in F(X,)) which contains (7, g;), namely,
(YUX)\{(4, fi)}. Hence, if we define Yy = (Y \ {(¢,9:)}) U{(Jj, 1)} for some
J & supp(X UY) then |F(X,Y)| < |F(X,V1)|, because F(X,)) contains
all but one chain from F(&X',)) and it contains ¢ chains not in F(X,)) (the
chains obtained by deleting an element of X' from X U )Y). Therefore, it is
enough to prove that |F(X,V)| < |Fi(t, k;nq,...,ng)| for chains XY with
supp(X) N supp(Y) = 0.

Suppose now that supp(X) Nsupp(Y) = 0. There are exactly ¢ chains
in F(X,)) containing ) and there are ¢ chains in Fi(t, k;nq,...,ny) with
support containing [t + 1, k + 1]; hence it is enough to show that for the set
of chains

F X,V ={L: XCLand LNY # D}

and
FT(@ k;nb "-anf) = {‘C € Fl(tak;nb "'anf) : supp(ﬁ) 2 [1at]}

we have |F*(X, )| < |Fi(t, kyna, ..., ng)|. If supp(&X) # [1,¢] then we define
a new set of chains by the following shifting operation. Let i; € [1,t] be
the smallest number not in supp(X’) and let iy € supp(X) with iy > i1, say
(9, k;,) € X. For a k-chain £ € F*(X,)), let

(L\ A2, kip) }) U {1, 1)} if i1 & supp(L),
f(ﬁ) = ('C \ {(ib kil)’ (i2> klz)}) U {(i1> 1)’ (iQ’ kn)}

if (i1, k) € L for some k;; < n;,.

(14)
Moreover, define X' = (&X' \ {(i2, ki,)}) U{(i1,1)} and
- {3’ if i1 ¢ supp(Y),
(y \ {(7:1, kn)}) U {(ig, k“)} if (il, k?“) c y for some kil S n“(w)



Then it is clear that f is an injection from F*(X,)) into F*(X’,;)’), and
so |FY(X, )| < |FH(X", Y] and |F(X,Y)| < |F(X',V')|. Repeating this
procedure, we arrive to some ¢-chain X" and (k + 1 — t)-chain )" such that
| F*(X, V)| < |F7(&X7, Y")] and supp(X”) = [1, ] and supp(X")Nsupp(Y”) =
(. It is enough to show that |F*(X", V") < |F;(t, k;na, ..., ng).

If supp(Y”) # [t+1, k+1] then let iy € [t+1, k+1] be the smallest number
not in supp()”) and let iy € supp()”) with iy > i1, say (io, ki) € V. By
renumbering the ioth coordinate, we may assume that k;, < n,;,. We apply
the following modification of the shifting operation described in the previous

paragraph. For a k-chain £ € F*(X",Y"), let
((L\A{(i2,52)}) U{(i, 52)}

if i, ¢ supp(L) and (ig, j2) € L with jo < nq,
(LA, 1)) U {2, 51)}
9(L) = 4 if iy ¢ supp(£) and (i1, 1) € L,
(‘C \ {(2.17‘71)7 (227]2)}) U {(2.17‘72)7 (2.27‘71)}
if (il,jl), (iQ,jg) & E and jg S ny,
\ L otherwise.

(16)
Moreover, define V" = (V" \ {(i2, kiy)}) U {(i1, ki,) }. Then g is an injection
fI'OHl f*(X”, yl/) il’ltO f*(X”/, :)}/l/)7 and SO ‘f*(X/l’ yl/)‘ S |.;E*(XW’ yl/l)|
and |F(X", V") < |F(X", Y")|. Repeating this procedure, we arrive to a
member of the family Fy (¢, k;ny, ..., ng). O

Lemma 9 Lett < k < { and let P = (P(ny,...,ne), <). If Z is a (t + 2)-
chain then |F(Z)| < |Fa(t, k;na, ...,ne)| for the families of chains defined in
(7) and (9), respectively.

Proof. Given F(Z), if supp(Z) # [1,t + 2] then we can apply the shifting
procedure described in (16), not decreasing the size of F(Z), and eventually
arriving to a set of chains in the family F» (¢, k;nq, ..., ny). O

Lemma 10 For F; and Fy from (8) and (9),

|Fil = op—t(Resty ooy ne) — op—e(nigr — 1, ooy pyr — 1, Mgy ooy mg) + 8
42

| Fo| = ZUk—t—1(n¢,nt+3, woyng) — (L D)og_r—o(nyr3, .oy 1g).
=1
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Proof. Explanation for |F;|. The second line of (8) yields the term ¢, and
the cardinality arising from the first line of (8) is obtained as a difference,
counting all functions k with k; = j; for all i € [1,¢], and subtracting the
number of functions k with k; = j; for all ¢ € [1,¢] that have no i € [t +
Explanation for |F|. Fix a (t 4+ 2)-chain Z with support [1,¢ + 2]. For
i € [1,t+2], the number of k-chains intersecting Z in coordinates 1,2, ..., i—
Li+1,...,t+ 218 og_4_1(ns, nyrs, ..., ng). Adding these expressions for all
i € [1,t + 2], the k-chains intersecting Z in exactly ¢ + 1 coordinates are
counted once, and the k-chains intersecting Z in t+2 coordinates are counted
t + 2 times. The negative term reduces the multiplicity of the latter ones to
one. 0

In order to apply Theorem 1, we have to find values of the parameters
t,k,f,nq,...,n, such that the hypothesis of the theorem is satisfied.

Theorem 11 Let t < k < { be fized. Then there exists a bound n(t,k, /)
such that if n > n(t, k, ) then for any non-trivially t-intersecting family F
of (-tuples with support k in Fy(n,...,n) we have

|F| < max{|Fi(t, k;n,....,n)|, |Fa(t, k;n, ...;n)| }.

Moreover, if k > 2t + 1 then for large enough n we have |Fi(t,k;n,...,n)| >
|Falt,kyn,...,n)| and if t +1 < k < 2t 4+ 1 then for large enough n we have
|F1(t7 kanvvn)‘ < ‘f2(t7k7n7 7n>|

Proof. Let P, = (P(n,...,n), <). By Lemmas 3 and 5, we have ry2(P,, k) =
(,42)n*1"2 and M7 (P, k) = (;~'~})n"~"~1. Hence

k—t—2 k—t—1

_reo(Payk) o k—t—1 1
B VTR Sy s il (17)
and so Theorem 1, together with Lemmas 8 and 9, implies that for large
enough n one of the maximum sized families of ¢-intersecting ¢-tuples with
support k in Fy(n,...,n) is Fy = Fi(t, k;n,...,n) or Fo = Fo(t, k;n,...,n).
Our final task is to compare |Fi(t, k;n, ...,n)| and |Fa(t, k;n, ..., n)|. From
Lemma 10 we have

L=t ., <~ (k+1—t\[l—k—1 .
\f1|_t+(k_t)nkt—z< Z, )(k_t_i)(n—l)nkt (18)
=0

11



and

l—t—1\ ,_,_ [—t—2\ .,
|| = (t+2)<k t_l)n’”1—(t+1)(k_t_2)n’”2. (19)

Suppose now that ¢t +2 < k. For fixed ¢, k, ¢, as n — oo, we expand (18) and
(19) as polynomials of n. There is nothing to do with (19), as it is already
written in polynomial form. In (18), the coefficient of n*~ in || is

k—t
I—t k+1—t\(l—k-1
(o) (T )0S ) =

the coefficient of n*~*=1 in || is
T .<k+1—t)(l—k—1)
2 i, )=
; 1 k—t—1
i=1
k—t
k—t\[l—Fk—1 [—t—1
(k+1—1) =(k+1—-t
Dkt (raJ(k—t—J (k + >(k—t—J’

k—t—2 :

and similarly the coefficient of n in |Fy] is

—Z() <k;+1—t) (lk—_k;:D __(k:+1—2t)(k:—t)<liitt:22)‘

We compare |F;| and |F,| for large n. The leading term in both is n*~t=1

with coefficients (k+1—¢)(;_'"") and (¢t+2)(/_'""). Therefore, if k+1—t >
t+2,ie k> 2t+ 1, then for large enough n we have |Fj| > |Fs| and if
k < 2t + 1 then for large enough n we have |Fi| < |F|. fk—t—1=1t+2,
i,e. k= 2t+ 1, then the main terms have equal coefficients. We compare
the coefficients of the next term, n*7'=2 = n’~! in |F}| and |F,|, which are

_ (2)(t+1) (l_t_z) and —(t + 1)(l o 2) respectively. We have |Fi| < |Fa|.

2 t—1
Theorem 12 Let t < k be fized. Then there exists a bound ((t, k) such that

if £ > ((t, k) then for any non-trivially t-intersecting family F of (-tuples
with support k in Fy(nq, ..., ng) we have

|F| < max{|Fi(t, k;nq,...,ne)|, | Falt, k;na,...ng)|

12



Proof. Let Py = (P(nq,...,ng),<). If k =t +1 then r,2(Pp, k) = 0 and
M*(Py, k) > 0. If k > t+ 2 then by Lemmas 6 and 7, for ¢ > 2k —t — 1 we
have

Ti2(Pe, k) k—t—2 1 k—t—1
Mi(Pe,k)_< £—2k:+t+2> s (— k41 (20)
and therefore
lim Tf+2(7)£7 k) —0.

t=o0 ME(Py, k)
So Theorem 1, together with Lemmas 8 and 9, implies that for large enough

¢ one of the maximum sized families of t-intersecting ¢-tuples with support
kin Fy(ny,...,ng) is F1 = Fi(t, k;nq, ...,ng) or Fo = Fo(t, k;ny, ..., ng). O

Theorem 13 Let t < k < [ be fixed, satisfying ¢ > 2k —t — 1. Then
there ezists a bound n(t,k,t) such that if ngw > n(t, k, ) then for any non-
trivially t-intersecting family F of €-tuples with support k in Fy(nq, ..., ng) we
have |F| < max{|Fi(t, k;nq, ...,ne)|, | Fa(t, k;na, ..., ne)| }-

Proof. Let Py, = (P(n1, ..., iy, .o, ), <). Ik = t+1 then ryo(Pp,, . k) =
0 and M;(Pn,,,, k) > 0. If £ > t + 2 then, analogously to (20) in the proof
of Theorem 12,

T2 (Pnt+1a k)
M: (Pnt+1 Y k)

IN

< k—t—2 ) 1 k—-t-—1

C—2k+t+2) e (—k+1 (21)

and therefore
1. T2 (Pnt+1 9 k)
im —
nep1—oo M (PntH? k)
So Theorem 1, together with Lemmas 8 and 9, implies that for large enough

n;+1 one of the maximum sized families of t-intersecting ¢-tuples with support
kin Fy(ny,...,ng) is Fy = Fi(t, k;nq, ...,ng) or Fo = Fa(t, k;ng, ..., ng). O
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