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Abstract

Jin and Liu discovered an elegant formula for the number of rooted span-
ning forests in the complete bipartite graph Kg,,q,, with b; roots in the
first vertex class and b roots in the second vertex class. We give a sim-
ple proof to their formula, and a generalization for complete m-partite
graphs, using the multivariate Lagrange inverse.

Y. Jin and C. Liu [3] give a formula for f(m,[;n, k), the number of spanning
forests of the labelled complete bipartite graph K, ,, where in the forest every
tree is rooted, there are k roots in the first vertex class (among the n vertices)
and ! roots in the second vertex class (among the m vertices), and the trees in
the forest are not ordered. They discovered the elegant formula

F(malim, k) = (7) (Z) AR kI — 1), )

The goal of the present note is generalization of (1) from complete bipartite
to complete multipartite graphs, through a simple proof using the multivariate
Lagrange inverse.

Let f(a1,b1;...; @m, bm) denote the number of spanning forests of the labelled
complete multipartite graph Ky, q.,,....a,., Where in the forest every tree is rooted,
there are b; roots in the i*" vertex class for i = 1,2,...,m, and the trees in the
forest are not ordered. Let w;(ty,...,t,) denote the multivariate exponential
generating function (EGF) of the numbers f(a,0;...; a;, 1; ...; @, 0) (the num-
ber of rooted spanning trees of the complete multipartite graph K, q,,....a,,» if
the root has to be in the it" class), i.e.
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The key identity for our argument is
trelwrtwatotom)=wi — 0 for =12 ... m. (3)

The proof of formula (3) is based on the following combinatorial decomposition.
Given a rooted spanning tree of the complete multipartite graph Ka, a,,....a..»
where the root is in the it class, remove the root vertex from the tree to obtain
a spanning forest of K, ;... 4;-1,...,am» and mark the former neighbors of the
eliminated root vertex as roots in the forest. This decomposition establishes a
bijection between the following two sets:
the set of rooted spanning trees of the complete multipartite graph Ka, a,,....ap
where the Toot is in the ith vertex class,
and
the set of some ordered pairs, where the first entry of the ordered pair is one
of the vertices of the i*" vertex class, the second element of the ordered pair is
a rooted spanning forest of Ka, as,....ai—1,...am, Where the vertex from the first
entry is removed from the it" vertex class, and the trees of the forest are not
ordered.
Now tze(witwattwm)=wi js the EGF of the set of ordered pairs in question,
according to the Exponential Formula; and w; is the same EGF by the bijection.
Set ®; (w1, wa, ...y W) = ewitwat..twm)—wi

According to the multiplication rule of EGF’s, [],~, wzk is the multivariate
exponential generating function of the number of rooted spanning forests of
complete m-partite graphs, with b roots in the k** vertex class, where the
trees rooted in the same part are ordered; hence

al!ag!---a ! m
F(ar,b15 5 Qs bn) = W[t(flt? et ] T wi (4)
1by! -+ by a1

According to Part 1 of Theorem 1.2.9 (Multivariate Lagrange Formula) from
[2], (3) implies

rege o eop] [ wl = [A‘fl---AZr]{det 5y~ 2
k=1

% )\1{1 . )\I:;Ln H eai(w1+...+wm)faiwi }’ (6)

k=1
where ®; is a short-hand notation for ®;(Ay, ..., \;,). Observe that % . % =
(1—6;5)A;j, and the for the determinant in (5) we have the well-known evaluation

det

Gij — (1= 6ij)A; N1 1

:()\1+1)---()\m+1)<1— M )(7)

(see for example Exercise 225 in [1]). Now (7) is easily rewritten as

m

1-> (-1 > AiyAis e A (8)

j=2 1<y <ip < <i;<m



and (8) is rewritten as

DI Zl—zl—zz— )OOt A (9)

11=012=0

where (z); stands for the falling factorial, (z)o = 1 and (z); = z. Introducing
the notation A = a; +as + ...+ a,, and using (9), we find that (5) and (6) are
equal to
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X < (A—aj)l_lf(aj _bj)lj>- (11)

j=
Combining (10), (11), and (4), we obtain the main result:

Theorem 1

f(al,bl;.. am, <H (bk> )akbk1> (12)
X Z Z Z ].—ll—lz— =1 )<H(A—aj)1_lj(aj—bj)lj>. (13)

11=012=0 I, j=1

For the case m = 2, formula (12), (13) specializes to the formula of Jin and Liu
(1), and formula (12), (13) yields a closed formula for every fixed m. Note that
for the case m = 2 we do not even have to evaluate the determinant in general,
since for m = 2 simply
det

5ij — (1 — 5ij))\j =1- A1)
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