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Abstract

A class of non-oscillatory numerical methods for solving nonlinear scalar con-
servation laws in one space dimension is considered. Non-oscillatory schemes are
based on minmod limiters and the standard second order representatives are the
staggered Nessyahu-Tadmor scheme and the usual TVD2 scheme. It is well known
that the Ly-error of monotone finite difference methods for the linear advection
equation is exactly 1/2 for initial data in W'(L,), 1 < p < oo. For a second or
higher order non-oscillatory schemes very little is known because they are nonlin-
ear even for the simple advection equation. In this paper, in the case of a linear
advection equation with monotone initial data, it is shown that the order of the
La-error for the standard second order minmod-type schemes is at least 5/8 in
contrast to the exact 1/2 order for any formal first order scheme.

1 Introduction

We are interested in the scalar hyperbolic conservation law

(1)

u + f(u), =0, (z,t) € Rx(0,00),
{ u(z,0) = u(z), z€eR,
where f is a given flux function. In recent years, there has been enormous activity in the
development of the mathematical theory and in the construction of numerical methods
for (1). Even though the existence-uniqueness theory of weak solutions is complete, there
are many numerically efficient methods for which the questions of convergence and error
estimates are still open. For example, there are many non-oscillatory schemes based on
the minmod limiters which are numerically robust, at least in many numerical tests, but
theoretical results about convergence and error estimates are still missing [1, 4, 5, 15].
In this paper, we consider a class of the so-called Godunov-type schemes for solv-
ing (1). There are two main steps in such schemes: evolution and projection. In the
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original Godunov scheme, the projection is onto piecewise constant functions — the cell
averages. In the general Godunov-type method, the projection is onto piecewise poly-
nomials. To determine the properties of these schemes it is necessary to study the
properties of the projection operator. We limit our attention to the case of piecewise
linear projection based on cell averages using minmod limiters for the slope reconstruc-
tion and we call such a scheme minmod-type. For example, the Nessyahu-Tadmor(NT)
scheme [13] is of minmod-type and it is based on staggered evolution, other examples
include the second order non-oscillatory central schemes with non-staggered grids given
in [6, 7], and the UNO and TVD2 schemes in [4]. Theoretical results about convergence
of such schemes to the entropy solution, or error estimates, are still missing. In most
cases, the authors give a variation bound for such a scheme which is enough to conclude
that the method converges to a weak solution, see [9]. In the case of linear flux, the
conservation law (1) is the usual linear advection equation. The theory of linear nu-
merical schemes for the linear advection equation was developed in [2]. It is shown that
if a linear finite difference scheme is of formal order p and Ls-stable, then the order of
convergence in Ly is exactly % for initial data in W#(Ls). The case 1 < p < o0, p # 2
was also considered but the theory is more complicated, see [2] for details. Hence, the
order of convergence increases with the formal order of the linear scheme. In the case
of BV(R) initial data, Tang and Teng show in [14] that all monotone schemes (a special
case of first order schemes used in conservation laws) are exactly 1/2 order accurate in
L,. Therefore, these schemes cannot be very accurate in computations. From numerical
point of view, the formal high order non-oscillatory schemes developed in [4, 5, 13, 7, 12]
are much better than any monotone scheme but theoretically there was no rigorous result
confirming the numerical evidence even in the case of a linear advection equation. The
reason is that most high order schemes used in conservation laws are based on minmod
limiters and are nonlinear even in the simplest case of linear advection. Therefore, the
results in [2] are not valid for any non-oscillatory scheme based on limiters. The only
known result was that a non-oscillatory total variation bounded scheme is at least 1/2
order accurate in L;. Recently, we showed in [10] that the standard second order schemes
(NT or TVD2) are at least 1/2 order accurate in Ly for any initial data in W'(Ly). In
both cases, the order of convergence proven for the second order schemes is the same as
the order for the first order (for example monotone) schemes. In general, it was not clear
how to prove better error estimates for second or higher order non-oscillatory or simply
nonlinear schemes even in the case of a scalar linear advection equation. The difficulty
in proving better estimates is that even though the minmod-type schemes are formally
second order they are known to preserve only first order smoothness of the initial data:
(i) the total variation for initial data in BV(R); (ii) a discrete Iy of the first derivative
for initial data in W1(Ly(R)) (see [10]). Hence, all existing error estimates were proven
in the same way as for monotone schemes because they also preserve the above func-
tionals. Here, we develop a new approach for proving better error estimates for second
order schemes in the case of the linear advection equation with initial data in W*(Ly).
Namely, we measure how well a scheme approximates a discrete (I3) norm of the first
derivative in time. In our earlier paper [10], we showed that some first (Godunov and
LxF) and second order (NT and TVD2) schemes diminish the the l; norm of the first



derivative in time and based on that we derived an error estimate with a rate 1/2 for
any initial data in W!(L,). Here, we prove that this decay for a second order scheme is
different (smaller) than the decay of any first order scheme in the case of a monotone
initial data. The new decay estimate allows us show that the error of the standard non-
oscillatory second order scheme is at least 5/8 for any monotone initial data in W*(Ls).
The restriction to monotone initial data is natural because the minmod-type schemes
reduce to a formal first order scheme at any local extremum. The paper is organized as
follows. In section 2, we describe the standard second order minmod-type schemes (NT
and TVD2) in the case of a linear advection equation and give a new decay estimate (see
Lemma 1) for a discrete norm of the first derivative of the numerical solution in time.
In Section 3, we present our main result: minmod-type schemes have better convergence
rate than first order schemes for monotone initial data. In the appendix, we give the
proof of Lemma 1.

2 Stability of non-oscillatory minmod-type schemes

In this section, we are concerned with non-oscillatory differencing approximations to the

linear advection equation

2) U + au, =0, (x,t) € R x (0, 00),
u(z,0) = u(z), z€e€R,

The prototypes of all high-order non-oscillatory schemes are the second order schemes
based on a piecewise linear spacial reconstruction. We restrict our attention to the
standard representatives: the usual TVD2 scheme, see for example [4], and the staggered
Nessyahu-Tadmor (NT) scheme [13]. In the case of a linear flux, f(u) = au, and uniform
space and time meshes, both schemes reduce to the same iterative relation between the
sequences of new and old cell averages (note that the NT scheme alternates between two
uniform grids). For simplicity, we only consider the case a > 0 with the other case being
analogous. Then, the relationship between new and old cell averages is

1
(3) wj = awjy + (1 — ajw; + ga(l — a) (m(d-1,6;) —m(;,641))
where m(a, b) stands for the minmod limiter
1
(4) m(a, b) = MinMod(a, b) := §(sgn(a) + sgn(b)) - min(|al, |b]),

and 0; := w; —wj_1, j € Z. Here we use {w;} for the averages of the numerical solution
v at the old time step t, = nAt and {w}} for the averages of the numerical solution v
at the new time step t,,41 = (n + 1)At. Let z; := jAzx, j € Z, and X := %. In the case
of the NT scheme (see [10]), we have that

1 [ , 1 [ein 1
v(z,t,)dr, wiy, = N /x v(x,tyyr)de, «:= 5 + \a,

w;

v

Zj-1/2



and the CFL condition reduces to Aa <
7 of [4]), we have that

1 Tit+1/2 1 Tit1/2
Az v(z, t,) dr, w;:= N v(x, thyr) de, «a:= Aa,
x x

Tj—1/2 Tj—1/2
and the CFL condition reduces to Aa < 1. Note that both CFL conditions imply the

same restriction on «
(5) 0<a<l.

and the sequences of cell averages of the numerical solution generated by the NT scheme
for one value of a are the same as the sequences of the TVD2 scheme with a different
a but the same initial data if they both result in the same value for a. Hence, the
numerical stability of each scheme is the same over the class of all linear flux functions
f(u) = au.

Let us denote the numerical solution of either scheme (NT or TVD2) at time step
t, with v", v" := v(-,,), and its cell averages with v7. Note that the cell averages of

%. In the case of the TVD2 scheme (see section

wj =

v° are equal to the cell averages of the initial condition u’: v) := w9, j € 7Z, and the
numerical solution v(-,,) is a linear function on each cell I; := (z;_1/2, ©;11/2)

1
(6) V", =)+ (:U—xj)ﬂm(vﬁl — i, v —vi ).

Note that in the NT case the above formula is valid only for even n because for odd n
we have a similar piecewise linear reconstruction but on the staggered grid, i.e., we have
a minmod-type reconstruction on I; := (zj,z;4+1), j € Z.

One can define a global numerical solution v corresponding to the initial data u° in
the following way. Let v(z,t) be a right-continuous function in ¢ such that, for each
n=20,...,N — 1, v is the solution of

(7) up +aul =0, (x,t) € R X (ty, tut1),
u(z,0) =ov™(z), zeR,

Note that v is uniquely determined by the functions {v"}.) ', where v" is the minmod
piecewise linear reconstruction defined in (6) from the cell averages of v(-,t,) with
v(-,07) := u%. In the TVD2 case, we have the same uniform grid for each step, and in
the NT case we alternate between two staggered uniform grids. In both cases, we end
up with the same type of iterative relation between the cell averages of the numerical
solution, see (3), just the value of « is different.

We now present a new stability property for a numerical solution which satisfies (3).
The new averages v"+1 = w’ can be written in terms of the old averages v} := w; and
the old jumps 07 := v} —v]_;, j € Z, in the following way

n n n 1 n n n n
(8) Yj = avi’y + (1 = a)v} + 504(1 — o) ( m(d;"y,67) — m(J; ,5]+1))

for n > 0. Using that, we derive the formula for the sequence of new jumps {5;?“} in
terms of the old ones {47 }

(9) 5;'l+1 = aa;b—l (1 _a) Bm( 7—2rY5— 1)+25m( 7—1 ]) Bm( ;‘la ;l+1)7

4



where § := 1a(1 — ).
In our previous paper [10], we proved that the the iterative formula (9) does not
increase the [y norm of the jumps of the numerical solution in time. That is,

(10) DO = (6

J J

for all n = 0,1,... The above stability result can be easily verified for any monotone
scheme because in that case the new cell averages are a convex combination of the old
ones. For a first order scheme (including all monotone schemes) the difference 3 (67)* —
> (0711 is of order Y. (87 — 87 ;)?. This reflects the diffusive nature of the first order
approximation. For the exact solution, there is no decay in time of any shift invariant
norm but for a first order numerical solution we expect, and it is easy to show that for
the Godunov and LxF schemes, the following numerical viscosity in the decay of the
first derivative [,-norm

=Y (5 =0 <Z(5y — 5;1)2> =0 <Z( Py — 207 + Ut y) ) .

J J J J

Here, we derive an improved stability estimate for the second order minmod-type schemes
given in (8). Namely, we give an exact estimate for the time decay of the discrete l;-norm
in the case of a monotone initial condition. We claim

Lemma 1. Let u® be any monotone function and {v"}, n = 0,1,..., be the sequence
approzimate solutions v™ defined by (8). Then, we have

(11) C’Z (A%57)* >Z (677 =D (ot >CZ (A%57)*

j
with C = 36 and ¢ = */4, where § = 3a(1 — a).

The proof of this lemma is given in the appendix. We want to point out the main

: . n\2 n+1\2
difference: for a first order scheme, we have a decay for > _;(07)* — >_,(7"")* of order
>, (0 —2vP+vj_;)?, and for a second order scheme we get Y (v}, ; —3v}+3v}_ —v} ,)?
by Lemma 1 We will use this decay estimate in the next section to derive our main

result.

3 Error estimates for second order schemes

In this section we present our main result. Namely, we will show that minmod-type
schemes have a better convergence rate than first order schemes for any monotone initial
condition u® € W'(Ly). Let us first recall some results for first order linear schemes (see
Theorem 4.2 and Theorem 4.4 in [2]).

Theorem 2. Let u® € W(Ly), u be the exact solution of (2), and v be a numerical
solution consistent with (2) and exactly first order accurate. If the space and time meshes

5



are h := Az and At with At/h = X\ = const, then there exists a constant C > 0 which
depends on the final time T' > 0 such that

lu( T) = v, )|z, < CR2 16wy

Moreover, the above estimate is optimal over the class W(Ly). That is, there exists a
constant ¢ > 0 such that

(12) sup{|[u(-, T) = v(-, T)llz, : u® € O, [[u’lwr(ry < 1} > eh!?,

where C™ is the set of all functions with Fourier transform in C§°(R).

The above result is also valid for any monotone scheme except in the trivial case of
pure translation which corresponds to o = 0 or @ = 1 here (see Remark 1 in [14] and
Section 3.3 in [2]) because the numerical solution in these two cases is the same as the
exact solution. Using the linearity of the problem and the numerical scheme, it is easy
to show

Corollary 3. The convergence rate for any linear exactly first order scheme is not
better than 1/2 for the class of all monotone initial conditions u® € W;. (Ly(R)) with
% € Ly(R). That is, an estimate of the type

[u(-,T) = v(, T)llz, < CRulwr(z,)

0

for all monotone u° is not possible for v > 1/2.

The seminorm |u°|y1(f,) is a natural replacement of the full norm in estimates for
equations with monotone initial conditions. It is also important to note that all results
above, including the lower bound (12), hold for initial conditions u° which have first
derivatives with compact support. That is, the error estimate and the lower bound in
Theorem 2 do not depend on the infinite space domain. In the case of the Godunov or
LxF schemes one can give an example of a monotone function with a derivative with
compact support (similar to the construction in [14]) which realizes the lower bound
(12). Hence, there are no “log” effects and the rate of convergence is exactly 1/2 for
these two schemes.

The following theorem is our main result. That is, the standard second order
minmod-type schemes, NT and TVD2, have a better rate of convergence than the rate
of any formal first order (including monotone) scheme.

Theorem 4. Let u® € W'(Ly) be monotone, u be the exact solution of (2), and v be the
numerical solution generated by a standard minmod-type scheme (NT or TVD2), see (6)
and (8). If the CFL condition 0 < a < 1 is satisfied, h := Az, t,, = nAt, 0 <n < N,
and T = NAt, we have

(13) (T, ) = o(T, )|z < CRB1ul (L),

where C' is a constant which depends only on the final time T and .



Proof. The error estimate is based on a refinement of the dual argument in [10] and the
new stability result Lemma 1. In the proof, C' will be an absolute constant that can be
different at different places. It is enough to prove the estimate for initial condition u°
which has a derivative with compact support. The general result follows by standard
arguments using the local dependence of the exact and the numerical solutions.

Let e(x,t) := u(x,t) — v(z,t) be the difference between the global numerical solution
v defined in (7) and the exact solution u, and E(z,t) := [°_e(s,t)ds. Note that
u® — % is zero for z € (—oo, M), for some M € R. Therefore F is well defined for all
(z,t) € Rx (0,7). We have that E also satisfies (2) for nAt <t < (n+1)At with initial
data [©_u(s,nAt) —v™(s)ds, n=10,1,...,N — 1. For a function g € L'(R), we define
a minus one norm in the following way

(14) ||g||71,2 = ||/ g(s) d8||L2(]R)-
It is easy to verify that for any 7 € R

(15) 1579l -12 = [lgll-1.2,

where S is the shift operator S-g(-) := g(- — 7).
Let us denote the piecewise linear minmod reconstruction (6) with P,. That gives
v" = Py, t,—) for n = 0,1,..., N, and u(-,t) = S;(u®) for any ¢ > 0. Recall that
T = NAt. Then, we have the representations u(7T,-) = (S,as)Nu® and v(T,-) = oV =
Py(SaniPr)Nu®. We have
le(T, =12 = [1(Sane)™ u” — Pu(SanePr) ¥ u’[| -1z,
and by the triangle inequality we obtain

(16) le(T,)ll-12 < [1(Saae)“u® = (SaaePn) u’||-12
+ 1Pa(Sane)Mu® — (SanePr)Nu’|| -1 2.

Using (15) in (16), we obtain
(17) (T, )12 < 11(Sane)¥ " u® = Pa(SaaePr)¥ 'l 21g + [0V = v(- tv—) | =1,2-

Let €™ be the difference between the exact and the numerical solution at time ¢,, = nAt.
That is, e, := ((Seae)™ — Pu(SanePn)") u®, n=10,1,...,N. Then (17) is equivalent to

(18) le¥ -2 < e Hlore + 1P ( tv =) = v( tv =)l -1,

and applying (18) forn = NN —1,...,1, we get

N
(19) lell-12 <) NP ta—) = v ta=)l -1
n=0



We now estimate the minus one norm of Pyv(-,t,—) — v(+,t,—) in terms of the usual
Ly norm. In order to simplify the notation, we will use v™~ := v(-,t,—). We have

e = [ ([ @6 - oyas)

(20) -3/ // ( / / (W — v (s) ds>2dx,

JEZ

where we use in (20) that v = P,v™~ is a conservative approximation of v", i.e.,
[Ft12(yn — y™T)(s)ds = 0 for all j € Z. Note that in the case of the NT scheme we

Tj—1/2
need to use conservation over the staggered intervals (z;,x;1), j € Z, for odd n. After
applying the Cauchy-Schwarz inequality in (20), we obtain

n n,— |2 ARG ¢ n n,— 2
=B < 3 [ e [ @) = (9 dsda
jez Y ®j—1/2 Tj_1/2
Tjt+1/2 Tjt1/2
< Y [ e [ ) o)
jez Y Ti-1/2 Zj1/2
h2 n mn,—
= EHU —vv |iz(R)'

Therefore, the error estimate (19) reduces to

|L2(®)-

N
h

21 eVl 1o < — vt — ™

@1 ¥ < 530

We now estimate the term ||v" —v™~||L, ). Because the minmod operator P, is non-
linear, we will use an intermediate approximation P, defined in the following way

~ r —T;
n,— . J n n
Py L =V; + (Uj+1 - vj)v

I h

for j € Z. 1t is a straightforward computation that

(22) ||Ph’Un’_ — ﬁhv"’_

L@ < ChY2| A%y,
Hence, we have the estimate

(23) ||lv™ — o™~

Lo < CRV2{ARI Y|y, + || P™ — o™~

|Z.®)-

]?h is a linear operator based on local averages. The local approximation properties of
P, were analyzed in [8]. Using that result, it is easy to show that

(24) 1Pog — gllzam) < CR|¢" |1y, for g € W2(La(R)),
(25) |Prgllz® < Cllgllr,m for g € La(R).



Then, by standard approximation theory arguments (see Chapter 7 in [3]), we derive

1Phg = gllzam) < Cwa(g, h) o)

for any g € Ly(R). Here wa(g,h)r,w is the second modulus of smoothness of g in L.
Using the above estimate with g := v™~, we obtain

(26) [Ph™™ = 0™ || ) < Cwn(v™7, B) @) = Cwa(v" ™, B) Ly my

because v~ = Sea 0" ! and the modulus of smoothness wy (v 1, h)p, (r) is shift invari-
ant. In general, it is not easy to compute ws(g, h)r,m®) for a general g but in the case of
the piecewise linear function v™ it is not hard to show that for any n = 0,1,..., N, we
have

(27) CLhY2I{A%] Y, < w2 (0", h) o) < Coh'2([{A0 }i,-

Finally, we use (27) and (26) in (23) and obtain
(28) lo" = 0™ ||y < CRY2 (IHA™] Yy + {A%0] Hl) -

We now go back and use (28) in the error estimate (19) to derive

(29) N1z < 0h3/22||m2 iy = Ch3/22||{w}||zz,

n=0

here we recall that 67 = v7 — o7 ;. Up to this point, our arguments are very similar to
the ones in our previous paper 10]. The only difference is that here, in the estimate for
the negative norm (29), we use |[{Ad7}[|;, instead of |[{d7 }||;, that was used in [10]. A
new idea here will be the use of the improved [, stabilty, Lemma 1, to derive a better
error estimate than before. Let us recall the lower bound in the statement of Lemma 1.
For any n =0,..., N — 1, we have

(30) @ =D = ey (A%,

J J J

‘3

—

with ¢ = 3%/4, where 8 = (1 — @). We sum (30) for n =0,..., N — 1 and obtain

(31) ZZ (A%7)” <Z§° =) (6)%.

n=0 7 i

Recall that the CFL condition is 0 < a < 1. In the trivial case (1 —a) = 0, not covered
by our theorem, we have a pure translation and the total error is equal to the error of
the first step, i.e., the order of the error is O(h). So, without loss of generality, we can
assume that 0 < a < 1. Then, we have that ¢ # 0 and we derive from (31) the following

(32) ZZ (A%57)* < CZ (69)2

n=0 j



where C is an absolute constant for any fixed 0 < o < 1 (C' =1 / c = 4373). Using
(32), we will now estimate Zn o I{Ad7 }];,. Because the support of = is finite and the
numerical solution has a finite domaln of dependence, we have that the set A, :=={j:

07 # 0} is finite for all n = 0,1,..., N. Using Abel’s transform and the finite support

of {07}, we obtain
> (Agy)? Z(sn 0y — 267 + 67 4).
J

Hence, we have

STA82 < S0 187,y — 207 + 67| < {07l [{A267 } -
J

J
Using that [[{07}[i, < [[{07}]li,, we derive
(33) 1{AS i < {822 1{A%02 2.

Therefore, we have the estimates

S IATH, < ||{50}||1/2Z||{A25n}“1/2

1/4
(34) < {2V + 1) (Z ||{A26;}||%2) ,

n=0

where we use Holder’s inequality to derive (34). We use our stability estimate (32) in
(34) and conclude

(35) Y AT < (N + DY -

From Lemma 4 in [10], we have that [[{67} ]|, < R'Y?|u®|yw1 1,y Hence,

N
(36) D OI{AG L < CNYRY 0w 1y my)

n=0
We use (36) in (29) and derive the final minus one norm error estimate
(37) V][ -1,2 < C(NRY R n, ) < O, m)

where in the last inequality C' depends on T' and «. Similar to [10], we will now in-
terpolate between the negative norm estimate (37) and the discrete W -stability of the
numerical scheme (10). Recall that e = u(-,T) — vV is not in W(L,(R)). Hence, we
approximate v with 9V € W1(Ly(R)), see the last displayed equation before (54) in
[10]. The function oV has the properties (see (54), (55), and (56) in [10])

(38) 15— oN||212 < CR* W’ lwaz,wy)

10



(39) ||’l~} — ’UN||L2(R) S Ch|u0|W1(L2(R)),

and
(40) 19]lw (zam) < [u|w (o))
Let € := u(T,-) — 9. Then

el 12 < e 12+ 17 — o™ 12
Using (37) and (38), we obtain
(41) €]l -1,2 < CRY*|ul w1y my)-
Let E’(:L') = ffoo é(s) ds. Then we have ||E’||L2 = ||é]|-1.2, ||E’||L2 = ||é||L,, and

1E e = 1€ 111s < [elwr(zamy) + [Blwrzam) < 210 lwi(nam)-

nl

Kolmogorov-Landau inequalities in L*(R) (page 156 in [3]) for the functions E(x), E,
and E” and the above estimate for ||E"||1, give

- ~ ~nl/2 1/2 ~111/2 1/2
lellz, = 11E'|z, < V2IEILNE"L < 201l 2aluli3 1 my)-

Using (41), we derive
(42) 18], < CP® s (1, (m) -

By the triangle inequality, we have
eIz, < llellz, + [lv™ = ollz,,
and using the estimates (42) and (39) we conclude
ez, < CRP 1l lw zacm)

where the constant C' depends only on 7" and «. ]

4 Appendix: Proof of Lemma 1

Let us recall the statement of the lemma. We claim, see (11), that
CY(A%,) 23 6 =D (@) =) (8%)",
J J J J

with C' = 33 and ¢ = 3%/4, where 8 = 1a(1 — a).

Let us introduce some notation. Let y; = min(d;,d;11), Ad; = 0; — 61, Ay; =
Yi—Yj—1, A?0; = 0;—20, 140,92, and A?y; = y; —2y; 1+y;_2. Recall that {§;}= € Iy,
and d; > 0 for all 5. It is enough to prove Lemma 1 only for 0 < oo < 1. We construct
the new sequence {0’} by using the rule

(43) 5; = (]_ — oz)5j —f— (X(Sj_l — BAQyj,

11



for each j. First we assume that {d;} has finite support. It is easy to see how to modify
the proof in case the support is not finite. Therefore we assume §; = 0 for 7 < 3 and for
j = M — 3 for some integer M. Then ¢’ =0 for j <3 and j > M — 2. Thus

(44) 8,31 — 0312 = 252 Z (57)?

We have

M
=1

M
D)= (1= a)b; + adj1)? = 28((1 — @)d; + ad;_1) A%y, + B2(A%y;)%) .
j=1 j

Note that since dg = 0; = 0 and dy;_1 = dpy = 0, we have

252 (1= @)§; +ad; 1)

M

= Z((l —(1-— a)2)532- —2a(1 — a)§;6; 1 — o? Z 532'71

j=1 Jj=1

= i(l —(1—a)*— 042)5]2- —2a(1 — )d;6;1

j=1
M M M
=28 (267 — 20;0,11) =28 (6; — 6;-1)° =28 _(AH;).
j=1 j=1 j=1
Therefore
M M
(45) D 8 —((1—a)d;+adi)* =28 (Ad)
j=1 j=1
Thus we get

M
B
(46) 262 Z =293 (@6 4 (1= )y + a0y-)A% - S(a%,)7)
Now we use A%y; = Ay; — Ay,-1, Ay; =0,6;, =0for j <1, > M —1, and Abel’s

transform to obtain
M M
D 6Ny = (65 — 641)Ay;,
j=1 j=1

and
M

253 1A% =Y (8521 — 6;)Ay;.

7=1

12



So, (46) becomes

S E-> )¢ - 28 (Z(MJ-)? —(1- )Y AdaAy,

j=1 j=1

7=1 7=1
M 3 M
—a ZA(SJA% —5 Z(A2yj)2>
j=1 j=1
= 26Q; + 5°Qq,
where
M M M M
Q1= (A5 —(1—a) Y Adi Ay —a ) AsAy; — B (A%;),
j=1 j=1 j=1 j=1
and
M M
Q2 =2) (A%;)* =) (A%;)%
j=1 j=1

To finish the proof, it is sufficient prove the following three Lemmas:

1
Lemma 2. @, = 5 E (1 — a)Ad; 1 + ald;))?
A§;<0,A8;-1>0

1
+3 > (L= a)As+alA§i) = > A§ASL

A6;>0,A6; 1<0 A6;>0,A6541<0

2

+<1_0‘—6> >+ (5-8) Y

Ad;j_1>0,A6;>0 Ad;_1<0,A6;<0

(A%5;)* > 0.

Lemma 3. Qo = 3 (A1) — (A5))-) + (A%)+ — (Ad;1)-))°

J

—2 " A§;AG; 1 (1 — sgn(Ad;A5; 1)) > 0.

J

Here sgn(z) is the usual sign function defined by sgn(z) =

uy = max(u,0), u_ = min(u,0).
M M
Lemma 4. 33 ) (A6;) > 26Q1 + °Q2 > ¢ > _(Ad;)”.
j=1 j=1

13
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The proof of Lemma 2. We consider that 3 denotes ij‘il Denote

A=Y Ay,

J

B =Y AjAy;.
J

Our aim is to rewrite

(47) Q=) (A§) —(1-a)A—aB -3 (A%;)
J J

in the form indicated in Lemma 2.

It is easy to check that
(48) Ay; = (Ad;)+ + (Adjy)-.

We can transform A as follows:

A=Y A8 ((A5) 4 + (Adj11) ) = Y A&a(A)s + > A&(AS) -

J
= Y (A& + Y AGAS

A6j<0 A6j20
(49) =) (A§)’+ ). A§ASL + D,
A5j<0 AajZO,A5j+1<0
where
D= Y A A
A6;>0,A6541>0
Further,
1
D=5 > (A5 +(8650) — (A%50)?)

A6;>0,A6541>0
1
=3 > ((A61)7 + (A) — (A%)%)
AS;_1>0,A6,>0
1 1 1
=3 Z (A%;)* + 5 Z (Ag;)* — 3 Z (A%5;)%.
AS;>0,A6;41>0 A6;>0,A6;_1>0 AS; 1>0,A6;>0

Also, note that

(50) dooo(A5)= D> (A5 - ) (Ag)?

A&jZO,A5j+1ZO Als]'ZO A5j20,A6j+1<0
and
2 __ 2 2
(51) > Ag)P= ) (A5 - ) (Ad;)
A6;>0,A8; 1>0 A6;>0 A§;>0,A8; 1<0

14



By (49), (50), and (51) we get

A=Y (a5 -3

(52) RS

AS; 1>0,A8;>0

A(Sj 20,A(5j+1 <0

Be -5 Y @y

AS;>0,A8; 1<0

> AGAS

A(;j 20,A5j+1 <0

Transform B in the same way as A:

(53) B= Y A&+ )

A6j20 AajZO,A5j+1<0

B- Y

A§;<0,A6541<0

AG;AS;41 + E,

where

AG;AS; 1.

The quantity E can also be rewritten in the same way as D:
! AJ;)? ! AG;)? L A?5;)?
E=3 >« i)+ >« i)~ 5 > (%)
A6;<0,Ad541<0 Ad;1<0,Ad;<0 Ad;1<0,A6;<0
Combining this equality with (53) we get

B=Y a5y -1 Y @ag-r Y (A

J A6j<0,A§j+1ZO A6j<0,A6j,120

(54) Loy s B

2
Ad;_1<0,A;<0 A§;>0,A6541<0

By (52) and (54),

AS; NS 41.

J

(55) (&:§]A@f—ﬂ—aM—aB—ﬁz]A%V222&

51:]_;06 Z

AJj 20,A6j+1<0

Ss=5 >

A6;<0,A8541>0

S5 = —

s=(5"8) ¥

AS; 1>0,A8;>0

11—«
S =— > (A,

AS;>0,A8; 1<0

o
Si=7 > (A,

A6;<0,A8; 1>0

AS; A1,

A6;>0,A6541<0

A% Si=(5-8) D (&%)

Ad; 1<0,A6;<0



Ss=—B Y, (A%’ andSy=-5 > (A%;)%
A8;_1>0,A8;<0 A8;_1<0,A8;>0

To get an upper bound for @; note that |S;| < %Zj(A%j)z for j = 1,2,3,4,5.
Therefore, Q1 < (3—28) Y. ].(A2(5j)2. (Estimating the relevant quantities more carefully
one can replace the constant 3 in the last inequality by g)

Also, from the definition of Qs, Q2 < 237.(A%);)?. Combining the upper bounds for
@1 and @5 we get the upper bound in Lemma 1.

Next, note that

siesitsi= Y (5007 G0 - sk ).

2
A&j <0,A5]'_1ZO

Also

’ l—«

T(Aéj,l)z + §(A5j)2 — B(A%;)

2:1—a

(0]
(AG;_1)* + §(A5j)2

(1= a)a(A5; — A5, 1) = %((1 —Q)AS, 1+ alAd)))’.

Summing the last inequality over all j with Ad;_; > 0, Ad; < 0, we get

1
(56) S1+ 84+ Sg = 3 Z (1= a)Ad; 1 + ald)))?.

A&j <0,A5]'_1 >0

Similarly,

Setsisi= Y (FFRA0)+ 5800 - 8%,

A§;>0,A6;_1<0
As before,

E (A 4 S(85,1)? - BAM) = (1 - a)Ad 1 +aAd)

Summing the last inequality over all j with Ad; > 0, Ad;_1 < 0, we get
1
(57) Sp+ 53+ 5 = 5 Y (1= a)Ad; + ald;)).
A6;>0,A8;_1<0

This completes the proof of Lemma 2.
The proof of Lemma 3.
By (48) we have Ay; = (Ad;)4 + (Adj11) . We also have A%§; = Ad; — Ad; 1.
Thus, we need to rewrite the quantity

Q=2 (A8 — A5 1)" = (A1) — (A%) ) = ((Ad)5 — (Ad; 1))
J J
in the form indicated in Lemma 3.

16



Now, use that for any real numbers x and y, (z —y)? = 222 + 2y* — (z +y)?. We get

> (AGj)- = (AF)-) = ((Ad))+ — (Adj—1)1))”

J

=2 (Z((Aajﬂ) +Z ((Ad;)+ — (Adj-1)+ )>

Z (Adj41)- — (Ag;)- + (A5j>+—(A6j_1>+>2

:2(2((A5-) (AG; 4) +Z ((AG;) 1 — (AS; 1) )>
(58) Z (Adj11)- — (A)- + (Ad;)+ — (Adj1)4)”

(in the last equality we have used that the sequence {Ad;} has finite support.)
Now, we claim that for any real numbers z and y

(59) (z —y)® + zy(1l — sgn(zy)) = (z— —y-)* + (x4 —y3)°.

Well, if x = 0, both sides of (59) equal y%. Similarly, if y = 0, both sides of (59)
equal z2.
If sgn(zy) = —1, then the LHS of (59) is (x — y)? + 2zy and the RHS is 22 + y2.
Finally, if sgn(zy) = 1, then both the LHS and the RHS of (59) equal (z — y)*.
We have shown that (59) holds in all cases.

By using (59) with z = Ad;, y = Ad;_1, and summing over j we get

D (AS)- — (Ag;—1) +Z ((A8)4 — (AS;_1)4)

J

(60) = (A8 — AG1)*+ ) AGAS; 1 (1 - sgn(A§;A8 ).
j j
Combining (58) and (60) completes the proof of Lemma 3.
The proof of Lemma 4.
We proved the upper bound of Lemma 4 earlier, so we concentrate on the lower
bound.
Denote the five sums appearing in Lemma 2 by 3q,---, Y5, and the two sums ap-
pearing in Lemma 3 by Yg, and 7. Also, let
'A-H- = {j . A(SJ Z O,A(Sj_l Z 0},
A+_ = {j : A(SJ > O,A(Sj_l < 0},
.A7+ = {j : A5] < 0,A5j,1 > 0}, and
«477 = {j : Aéj < O,Aéjfl < 0}

17



2

Since 1_Ta — B = (-2 ~ & and S—B= o 5 B e get Xy > % Z (A%5;)?, and

2

JEA+

52
X5 > 7 ; (A25j)2.
JEA__
Next, we need to divide both A, _ and A_, to a “good” part and a “bad” part.

Define

C={ie A 1|1 = a)Adj 1 + ald;| > gmax((1 - a)|Ad;4], a|AG;])},
Ai, = {] € A+, : |(]. — @)Aéjfl + @A5j| < l X((]_ — Oé)|A5j,1|,Oé|A5j|)},
_+ = {] S A_+ . |(1 - Oé)Aéj + aA5j_1| > 5 ma ((1 - Oé)|A5j|,Oé|A5j_1|)},
Ab_+ = {] c A_+ . |(1 - Oé)Aéj + aA5j_1| <3 max((l - Oé)|A5j|,Oé|A5j_1|)}.

Now, when j € A% _, |(1 — a)Ad;j_1 + aA5 | > I max((1 — a)|A5j_1|,a|A5j|) >

2
B max(|Ad;_1]|,|Ad;]) > §|A25 |. Therefore, ¥, > — Z (A%§;)%. Exactly in the same

JEAg
way, we get Xp > Ca Z (A%5;)2.
8 !
JeA? |
Next use that
1 1 x
(61) If |z +y| < 5max(|m|, ly|), then 3 <7< 2.
Y

Indeed, by symmetry it is sufficient to consider the case |y| > |z|. In this case

yl = lol < Jo+yl < dmax(lal,lyl) = 3yl and we get Hy| < Jal, so 1 < |2] <2,

completing the proof of (61).

Next, let j € A, . By, (61) 3 < 2052 < 2. So,
(JAY] + A1) |AG] |Adj—1| _ 2(1—a) 2 1-25
= +2+ < +2+ = .
|A;|[Ad;1] | A1 |Ad| a l-a B
We get
(62) (A%6;)% < (JAg] +]Ad;])* < 1l

Exactly in the same way, one can show that (62) holds when j € A" ,. Also, note
that A% NA*, =0 and if j € A5 U A® | then sgn(A§;Ad;_1) = —1. We get,

Y7 >4p Z (A%5;)% + Z (A%§5;)? | . Combining the lower bounds for ¥4, X5, s,
JEAY _ jeAr |

Y1, and 37 we get the lower bound in Lemma 4 (note that all ¥’s are non-negative).

This completes the proof of Lemma 4 and of Lemma 1.
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