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CONVERGENCE OF V-CYCLE AND F-CYCLE MULTIGRID
METHODS FOR THE BIHARMONIC PROBLEM USING THE
HSIEH-CLOUGH-TOCHER ELEMENT

JIE ZHAO

ABSTRACT. Multigrid V-cycle and F-cycle algorithms for the biharmonic prob-
lem using the H-C-T element are studied in the paper. We show that the
contraction numbers can be uniformly improved by increasing the number of
smoothing steps.

1. INTRODUCTION

We consider the following variational problem for the biharmonic equation with
homogeneous Dirichlet boundary conditions: Find u € HZ(2) such that

(1.1) a(u,v) = F(v) Vv € H3(Q),

where 2 C R is a bounded polygonal domain,

2 2
a(u,v) /Du Dvdw_/zaxlax]&v@w]dx’

and F € H2(Q) = [HZ(Q)].

By the elliptic regularity of the biharmonic problem (cf. [15]) we know that
there exists o € (3, 1] such that the solution u of (1.1) belongs to H2+* () N HZ ()
whenever F' € H27%(Q) and

(1.2) l|ul| 2+ (@) < CallFllg—2+2()-

We will use the Hsieh-Clough-Tocher (H-C-T) macro element (cf. [13] and [14])
to obtain the numerical approximation to the solution of (1.1) and study the V-cycle
and F-cycle multigrid methods using the H-C-T elements.

W-cycle and variable V-cycle Multigrid methods for (1.1) using macro elements
were studied in [24], [3] and [8]. In this paper, we will use the additive theory
developed in [9] to study the V-cycle and F-cycle algorithm. The application of the
additive theory to multigrid methods for the biharmonic problem using other finite
elements can also be found in [25] and [26].

Let v m be the contraction number of the k-th level symmetric V-cycle algorithm
with m pre-smoothing and m post-smoothing steps. We will prove that there exists
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2 JIE ZHAO

a constant C, independent of k£ and m, such that
C
Ve,m < mol? for m > my,

where the positive integer my is also independent of k. A similar result also holds
for the F-cycle algorithm.

The rest of the paper is organized as follows. We describe the multigrid V-cycle
and F-cycle algorithms using the macro element in Section 2. In Section 3 we
discuss the properties of the H-C-T interpolation operators and intergrid transfer
operators. The convergence of the algorithms will be proved in Section 4 by the
additive theory. Numerical results are presented in Section 5.

2. V-CYCLE AND F-CYCLE ALGORITHMS USING THE HSIEH-CLOUGH-TOCHER
MACRO ELEMENT

The Hsieh-Clough-Tocher macro element is defined on a triangle. The shape
functions are those C'' functions on the triangle whose restrictions to each smaller
triangle formed by connecting the centroid and two vertices of the triangle are cubic
polynomials. The nodal variables include the evaluations of the shape functions at
the vertices of the triangle, the evaluations of the gradients at the vertices and of
the normal derivatives at the midpoints of the edges of the triangle (cf. Figure 1).

!

FIGURE 1. The H-C-T macro element

Let {Tx}r>1 be a family of triangulations of 2, where 7441 is obtained by con-
necting the midpoints of the edges of the triangles in 7. We denote the mesh size
of Tg by hy = max{diam T : T € T;}. Note that

(2.1) hi_1 = 2hg.

Let Vi be the Hsieh-Clough-Tocher macro element space associated with T.
Then a function v € Vj is a function in C1(Q), whose restriction to each T € Ty, is
a piecewise cubic polynomial, and whose nodal values along 92 are zero. Note that
Vi C HZ(). The Hsieh-Clough-Tocher macro element method for the problem
(1.1) is as follows. Find uy € Vi so that
(2.2) a(ug,v) = F(v) Yo € V.

Let u and uy be the solutions of (1.1) and (2.2) respectively. Then it is easy to see
that

(2.3) lu — ug)le = min [|u — v||q < ||Ju — Mgullq,
veEV)

where the energy norm || - ||, is defined by

(2.4) Jol2 = a(v,v) (= [olz) Vo€ Vi,
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and I : C1(2) N H3(Q) — V4 is the nodal interpolation operator from C*(Q) to
Vi.. Approximation theory (cf. [12] and [11]) shows that

(2.5) 1¢ = Wil za(0) + A2l — iClar () S b ¢ meva(a)

for all v € HZ(Q) N H* 2 (Q).
Here we use X <Y to denote that X < CY, where C is a positive constant, and
X ~Y means X <Y as well as Y < X. Combining (2.3) and (2.5) we have

(2.6) [ = uklla $ A [ullrzrao)-

We define the discrete inner product (-, -)x on Vi by

(2.7) (v1,v2) 1= hi Z n(p)vi(p)v2(p)

PEVE
Ov Ov
Hhiy Y Voi(p) - Voa(p) + hi Y o (me) 52 (me),
PEVk ecéy

where Vy, is the set of internal vertices of T, & is the set of internal edges of Ty,
me is the midpoint of the edge e and n(p) = & x the number of triangles sharing
the nodes p as a vertex. Note that

(2.8) (v, ) = ||v\|i2(m, Yv € V.
We can represent the bilinear form a(-,-) by the operator Ay : Vi, — Vj, defined
by
(Akvi,v2)k = a(vi,v2) Vvi,v2 € V.

The equation (2.2) can then be rewritten as
(2.9) Aguk = fr,
where fi € Vj is defined by (fx,v)r = ¢(v) for all v € V.

We define the coarse-to-fine intergrid transfer operator I ,’jfl : Vi1 — Vi to be
I |y, _,. The fine-to-coarse operator I,’:_l : Vi — Vi _1 is the transpose of 11’571
with respect to the discrete inner product, i.e.,

(IF o, w), 1 = (0, IF_jw)y Vv € Vi, w € Vi_y.

Now we are ready to describe the multigrid methods.

Symmetric V-cycle Multigrid Method (cf. [4], [7], [11], [16], [18], [22] and [23])
The symmetric V-cycle multigrid algorithm is an iterative solver for equations of the
form of (2.9). Given g € Vj, and initial guess z¢ € V4, the output MGy (k, g, z9,m)
of the algorithm is an approximate solution for the equation

(2.10) Apz =g,

where m is the number of pre-smoothing and post-smoothing steps.
For k = 1, we define
MGV(]-a g, 20, m) = Al_lg
For k > 2, we obtain MGy (k, g, zo,m) in three steps.

1. (Pre-Smoothing) For j =1,2,---,m, compute z; by

1
zZj =2zj-1+ A_k(g — Apzj_1),

where Ay is a constant dominating the spectral radius of Ag.
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2. (Coarse Grid Correction) Compute zy,+1 by
Zmi1 = 2m + IF_ 1 MGy(k — 1,177 (g — Apzm),0,m).

3. (Post-Smoothing) For j =m +2,---,2m + 1, compute z; by

1
zZj =2zj-1+ A_k(g — Aij,l).

Finally we set MGy (k, g, z0, m) to be zom41-

F-cycle Multigrid Method (cf. [20], [23], and [22]) The k-th level F-cycle algo-
rithm (associated with the symmetric V-cycle algorithm) produces an approximate
solution MGg(k, g, z9,m) for (2.10). For k = 1, we define

MG]:(]-a 9, 20, ’ITL) = Al_lg
For k > 2, we obtain MG £(k, g, z0,m) in three steps.
1. (Pre-Smoothing) For j =1,2,---,m, compute z; by

1
zZj =2j-1+ A_k(g — Aij,l).

2. (Coarse Grid Correction) Compute 2z, 1 and zm41 by
Zmyr = MGr(k — LIF (g — Agzm),0,m).
Zmal = Zm + IFTEMGy (k= 1,17 (g — Akzm), Z1,M).

3. (Post-Smoothing) For j =m +2,---,2m + 1, compute z; by

1
zj =zj_1+ rk(g — Apzj_1).

Finally we set MG x(k, g, 20, m) to be z2,41.

In these algorithms we use Richardson relaxation as the smoother for simplicity.
Other smoothers can also be used (cf. [1], [5] and [10]).

3. INTERPOLATION OPERATORS AND INTERGRID TRANSFER OPERATORS

In this section we discuss the the properties of interpolation operators and in-
tergrid transfer operators. We begin with an estimate which follows from (2.5) and
an interpolation of the operator Id — II; between the Sobolev spaces, where Id is
the identity operator on L((Q).

(3.1) ¢ = iClm2-a(0) S he®l¢lu2ta) V¢ € HY(Q) N HT(Q).
Lemma 3.1. Let ( € H3(Q) N H>T%(Q) and (i, € V. be related by
(3.2) a(¢,v) = a(lg,v) Yv € V.

Then we have

(3.3) 1€ = Cell 2 (@) S PEIC|H240(0)-
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Proof. Let F € H 2t%(Q) be arbitrary. Then there exists £ € HZ(Q) N H2T*(Q)
such that

(3.4) a(é,v) = F(v) Yo € H3(Q).
From the elliptic regularity estimate (1.2) we have
(3.5) 1€l 2 +e () S NE | m-2+a(0)-

Therefore since IIx¢ € Vi, and from (2.6), (3.2), (3.3), (3.4), (3.5) and Cauchy-
Schwarz inequality, we have

F(¢—¢) = a(&¢— k)
= a(§ — k&, ¢ — (k)
< =Tk a2 () 1€ — Clm2 ()
< W€ gere (o ¢l Hota(q)
S B F ||z -24e ()¢l m2+a(a)-
Then by a duality formula we have

F(¢ —
||C_CkHH2fa(Q) = sup (C Ck)

e — S ClE2raq)
FeH-2+2(Q) ||F||H72+Q(Q) = ()

O

Now we define the mesh-dependent norms (cf. [2]). For each v € V}, we define

(3.6) Jolls = V(43 %0, 0)1

From the definition and an inverse estimate we have

(3.7) 10l13 1 = (v, v)x Vv € Vi,
(3.8) lollze = [[vlla < B 0llza@) Vo € Vi
We can also easily see that

(3.9) lollsge S Ry *llvllee Vv € Vi,0<t<s<d,

(3.10) lollok ~ llvllzo@) Vo € Vi
Moreover, we have the following generalized Cauchy-Schwarz inequality.
a(v,w
(3.11) follses = sup 20
wevi\ {0} lwllz—t.x
The following lemma relates the mesh-dependent norms and the Sobolev norms.
Lemma 3.2. For s € [0,2] but s # %, 2 it holds that

272
(3.12) Il

s,k R ||v||Hs(Q) Yv € Vj.

Proof. Consider the identity operator Idy on Vi. From (3.7) and (3.8) we know
that it is a bounded operator from (Vg, || - |lo,x) into L2(Q2) and from (Vi,|| - [l2.x)
into H%({2). By interpolations of Sobolev spaces and Hilbert scales (cf. [21], [19]),
we have

(3.13) lellar=co) < Iolor Vo € Vi.
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On the other hand, let Qy : L2(2) — Vi be the Ly projection operator on Vj,
i.e., for each ¢ € Ly(Q), the function Q¢ € Vj, satisfies

(QrC, V) o) = (V) Ly0) Vv € Vi

It is known that (cf. [6])
(3.14) 1QkCllz.) S ¢z VC € La2(Q),
(3.15) |Q¢lm20) S [¢lr2@) V¢ € HE ().

In other words, the operator Q) is bounded from L2 (€2) into (Vi, || - [lo,x) and from
HZ(R) into (Vi, || - l|2,%)- By interpolations of Sobolev spaces and Hilbert scales, we
have

(3.16) NQkClse S Km0y V¢ € Hy(9),
for s #£ %, % But Qrv = v for all v € Vj,. Therefore
(317) ol S Iollze) Vo € Va.

O
Lemma 3.3. For (, € Vi, let ( € HE() be defined by
(3.18) a(C,6) = alGe Qud) Ve € HA(Q).
Then
(3.19) a(¢,v) = a(lk,v) Yv €V,
(3.20) IClaz ) S NCkll2,k,
(3.21) <l z24a @) S NCkll2+a,ks
(3.22) IMkClla < NSk 2,

Proof. The equality (3.19) follows from (3.18) and the fact that Qv = v for all
v € V.
From (2.4), (3.15), (3.18) and Cauchy-Schwarz inequality we have

¢y = a(¢,¢) = alCry QiC) < 1GkllallQuClla S NCkll2,k1¢ B2 (0
which implies (3.20).
From (3.1), (3.3) and an inverse estimate, we have
IMkClla < [Tk¢ = Crlla + [ICk la
S hye M€ = Crl 2o (@) + I<klla
< hy k¢ — Claz-a() + by, *ICla2-a (@) + [[Cklla
S 1Gella

which proves (3.22).
From (3.11) and (3.16) we have

a(Cr, Qr®) < ICkll2t 0kl Qrdllz—ar S NCkll2tarldlme-a@) Vo € HF ().

Therefore the right-hand side of (3.18) defines a linear functional F on HZ(Q2) which
actually belongs to H~27%(Q2) and

(3.23) [F Nl z-2+e(0) S NSk ll24a,n-
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The estimate (3.21) follows from (1.2) and (3.23). O

Lemma 3.4. Let s € [0,2]. It holds that

(3.24) MLy —qv — ’UHLZ(Q) + hZ|Hk,1U|Hs(Q) < hz|v|Hs(Q) Yo € Vi1 + Vi,
(3.25) ITv — U||L2(Q) + hZ|HkU|Hs(Q) < hZ|U|Hs(Q) Yo € Vi1 + V.

Ifroof. Let T € 7},1 be divided into 4 triangles T;, T, T3, and Ty in 7, and
T =T/hy_1. Then |T =~ 1. (cf. Figure 2).

FIGURE 2. A reference triangle T for Tr_1

For each v € Vi, define #(%) = v(hg_1%) for & € T. If w = Il _,v, then we define
ﬁk_lf) to be w.

Let V(T) be the H-C-T finite element space associated with Ty, T5, Ts and T},
without boundary restrictions. Note that V(f) is a finite dimensional linear space
and |0] 7y defines a norm on the quotient space V(T)/Py(T), where Py(T) is the

space of polynomials of degree less then or equal to 1 on T. On the other hand,
v — 18 — 0l L, (1)
defines a semi-norm on V(T')/P;(T). Therefore
(3-26) k18 = 8ll 1, 7y S 1952 -
A scaling argument on (3.26) yields
|Hk—1v = vllpyry S halvlmzery Vv € Vi, T € Tioa.
Therefore
(3.27) k10 — ]| Ly0) S hilvlaz) S hilvlae@) Yo € Vi
From (3.27) and an inverse estimate, we have
Tk —10]ge ) < M-10 = vl ge ) + [v]ge (@)
S by kv — vl L) + [vlEs (o)
S vlaeo)-

Therefore the estimate (3.24) holds for v € Vj_;. The argument above also
applies for the functions in a larger space Vi_1 + Vi. This finishes the proof of
(3.24). We can similarly prove (3.25). O
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Lemma 3.5. It holds that
(3.28) 10 = vlly@) S kR lollogar Vo€ W,
(3.29) IMkv = vl @) S hp * Mvllasanr—1 Yo € Via.

Proof. Let ;. € Vj, be arbitrary. We define ¢ € HZ(2) and (._1 € Vi_1 by (3.18)
and

(3.30) a(Ck—1,v) = a(C,v) Vv e Vi_1.
Then from (2.6), Lemma 3.1, Lemma 3.3 and (3.24) we have
Ik 1k — Ckllza() = Me—1(Ck — Ck—1) — (G — C—1) || 22 ()

< hilCr — Crmtlm2(0)
S Rk — Claz@) + ¢ = Gealmz @)
S e az ey S PR NGk 2 4+aks

which proves (3.28). The proof of (3.29) is similar. O

By an inverse estimate, we have the following corollary.

Corollary 3.6. It holds that

(3.31) 19 — vl gz-a() S AR ollz4ar Yo € Vi,

(3.32) kv — v|g2-ag) S AR I0ll24ak—1 Vv € Vi1

4. CONVERGENCE ANALYSIS
Let Eg 1, : Vi — V}, be the error propagation operator of the symmetric V-cycle
algorithm applied to the equation (2.10), i.e.,
Ek,m(z - ZO) =z - MGV(kvga ZOam)a

where z is the exact solution of (2.10). The following relations (cf. [4] and [18]) are
well-known:

(4.1) Egm = RP((Idy, — IF_(PFY) + IF By 1 PFYRE for k> 2,
(4.2) Ei,m =0,
where P,f 1.V, — Vj_; is defined by

a(PF Yo, w) = a(v, If_jw) Yo € Vi, w € Vi 1.

From (4.1) and (4.2) the following additive expression for E ,, can be derived
that is the starting point of the additive theory (cf. [9]):
k
m m j+1 pm j j—1\ pm
(4.3) Epm = Y RPIE_ - RY IR (Id; — ) I RS
j=2

J m k—1pm
P! R™ ... PFIRP.

Let I~Ek,m : Vi — Vi be the error propagation operator of the symmetric F-cycle
algorithm applied to the equation (2.10), i.e.,

IF:k,m (z — 29) =2 — MGx(k,g,20,m),
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where z is the exact solution of (2.10). The following relations are also well-known

(cf. [22]):
(4.4) [, =0
(4.5) By, = RP[(Idy, — If_ PFYY + I Bh— 1 B o PR k> 2.

An additive theory for the convergence analysis of V-cycle and F-cycle multigrid
algorithms is developed in [9] based on the expressions (4.3)—(4.5). It is shown there
that, to complete the convergence analysis, we only need to verify the following
assumptions.

Assumptions on Vi:

(4.6) (W, 00~ o2, Vo€ Vi
(4.7) [vlla S By 20l Loy Vo € Vi

Assumptions on I,ILI and P,f_lz

(4.8) e 1oll3 5 < (1+62)]lo]

k-1 + C10 2R o3 o k-1
Vv € Vi—1,6 € (0,1).

(4.9) 1219l < A+ O3 oo 1 + Co0 2R I0lI3

Yo e V1,0 € (0,1).
(4.10) 1P 0ll3 o1 < (L4 O 0ll3_ e + C30 2R VI3

Yo € Vi, 0 € (0,1).
Assumptions on If_ PF~' and PF11F_ -
(4.11) I(ZTde — Iy Py~ olla—an S B lvllz+an Vo € Vi
(4.12) I(Tdi 1 = Pi vl ap1 S BEllze1 Vo € Vi

The assumptions (4.6) and (4.7) are (3.10) and (3.8) respectively. We will prove
the rest of the assumptions in this section and complete the convergence analysis.
We first state an elementary inequality:

(4.13) (a+b)?<(1+6Ha®>+(1+607%)b* Va,be R0 € (0,1).

In the rest of the section, we use C for a mesh-independent constant. The values
of C' at different appearances are not necessarily identical.

Lemma 4.1. The estimate (4.8) holds. That is
(4.14) 25 vll3 s < (L4031 + CLO R ol 0 ko
for allv € Vj_1 and 6 € (0,1).

Proof. Let v € Vi, be arbitrary. Then from (3.29), (4.13) and an inverse estimate,
we have

178 1oll3 . = Tev 3o g
< ([l g2 () + Mrv = v| g2 (@)
< (L4 ) olir2 () + CO 2 Ik — vffpa ()
< (L4 8l oy + CO R Thew = 03,
< (L4 0ol 1 + OO ol s 1
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Lemma 4.2. It holds that

(4.15) IE_1oll3 s < (L+6%)0llg ey + CO2RE VA
for allv € Vj_1 and 6 € (0,1).

Proof. Let v € Vj,_1 be arbitrary and w = I¥ v = IIjv. Then,

w(p) = v(p) Vp € T,
Vuw(p) = Vu(p) Vp € Tk,
ow ov

%(me) = %(me) Ve € Ek,

where m, is the midpoint of e € &. Therefore from (2.7) and (3.7) we have

@16 ol =n Y n)w)?
PEVE_1
Ov 2
ik X VP S [Fhem]
PEVE-1 e€lk 1
and
Ov 2
@10 ol =1 Y ) + 1 Y (Vo) + ik 3 |5 0m)
PEVE PEVL ec&y

If p € Vi—1 \ Vk—1, then p is the midpoint of some edge e € E;_1, which is the
common edge of two triangles T, 7" € Vj_1. Therefore p is the common vertex of
6 triangles in 7, and n(p) = 1. (cf. Figure 3). The first part of (4.17) can be
expressed as

(4.18) S onere)?= D> v+ Y. nvp)

PEV PEVE_1 pevk\vk_1
P
T/
D
P2

FIGURE 3. A vertex p € Tg \ Tr—1

Suppose p; and p, are the endpoints of e (cf. Figure 3). Then from (4.13) we
have

v(p) = [v(p1) + (v(p) — v(p1))*
< (1+6%)v(p1)® + CO*[v(p) — v(p1)]*.
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By the Mean-Value Theorem and a standard inverse estimate we have

[w(p) — v(pV))* < lp — P2 PIIVlE (1) < Cloli(ry-
Then
v(p)? < (14 6%)v(p1)? + 0072|U|%I1(T)7
and similarly
v(p)? < (14 6%)v(p2)? + 0972\1)\%,1@,).
Therefore

1 _
(4.19) v(p)? < 5(1 +6%)[v(p1)? + v(p2)?] + CO?[|v]Fr1 () + [0l70 ()

Taking summation of the inequality above over all p € Vi, \ Vi1 gives

Y e <504 Y ISP 08 Y el

PEVE\Vi_1 PEVE_1 TETk_1
=3(1+6%) Y n(p)v(p)? + CO *vl} (g
PEVE-1

where |Sp| is the number of triangles sharing p as a node. From (4.18) we then have

(4.20) Y n@op)’ <AL+6%) Y n@)up)® + 007l q).

PEVE PEVE-1

Let T' € T and e be an edge of T. By a standard inverse estimate we have

ov 2 B
[8_n(m€)} SIVoll? L oy S Bi2lolhn -

Therefore
4 Ov ? 20,12
(421) hk: Z %(me) S Chk:‘v‘Hl(Q)
ecfy
Similarly
(4.22) i > IVu(p)? < ChEfvlf ).
PEV

From (2.1), (3.9), (3.12), (4.17), (4.20), (4.21) and (4.22) we have

lwlli e < h7 |41 +6%) > n(p)o(p)? + CO 2 vl3 o)
PEVE-1

<S(A+0OR, Y nm)wm) + COhEv]3 ),
PEVE-1
< (140 ollg oy + COR 0 s
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Lemma 4.3. The estimate (4.9) holds.

Proof. We use the approach in the proof of Lemma 6.4 in [9].
Let C, be a constant dominating the C’s in (4.14) and (4.15). We define

(4.23) (1,V2) .9 = (14 02) (v, 021 + Cub 203 (A7 01, 02)1 1

for all v1,ve € Vip_; and 6 € (0,1). Note that Ai_; is symmetric positive definite
with respect to the inner product (-,-),_; 4.
It follows from (4.14), (4.15) and (4.23) that

Iyl < (AR 1Uav>k_179 Vv € V-1,
”|Ik—1vmz,k < <Ak—1v,v>k_179 Vv € Vi—1,

By interpolation between Hilbert scales,

1—-a/2 — a
Ik ol o < (AT 0,0) = (4 )l o+ CORE ol .

Lemma 4.4. It holds that
(4.24) IT—10fl3 -1 < (14 6%)[0ll3 5 + CO 2R 0ll3405
for allv € Vi, and 0 € (0,1).

Proof. Let v € Vi, be arbitrary. From (3.8), an inverse estimate, (3.28) and (4.13)
we have

1 = M1l g

< (Il 2@y + Me—1v — v|r2(0))?

< (loll2,x + Chi?[Me—1v — v]| 1y ())?
(loll2.r + Chllvll2tak)?

(14 6)]lvll3 . + CO 2R loll31a k-

<
<
Lemma 4.5. It holds that
(4.25) T2l 1 < (14 6*)0l5 5 + COREll,
for allv € Vi, and 0 € (0,1).
Proof. Let v € V}, be arbitrary. From (2.7) we have

420 bl = g2 3 o2 41k Y V@R 4k Y |5 )|

TET, pEVT PEVE eEEy

where V; is the set of the vertices of the triangle T
Let w = II;_;v. Then the nodal values of w and v on 7;_; are the same.
Therefore
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(4.27) ol ey =i > > ol

TGTk 1 PEVT

ey S VP 4k, [%(mar.

PEVE-1 e€ly_1

Let T € T, be divided into four triangles T, 15, 13 and T4 in T, whose
vertices are labeled as in Figure 4. Then we have

D1

qi CI3
15 F T3
D2 D3

q2

FIGURE 4. A Triangle T € Ty _; divided into four triangles in 7y

3

42 (p) vaz +32 v(q;) 7”(%))]

pPEVT i=1
(4.28) <2 v’ +3 Z[(l +6%)0(q:)” + (1+67%)(v(pi) — v(a))”]
+92ZZ 24+CO” 22|v|H1

=1 PEVT

From (2.1) and (4.28) we have

4

4
(429) 1 Z 1+02 hzz Z v\p +09 QhQZ\v\fql(Ti).

pPEVT i=1 pEVr; i=1
Summing up over all T' € Tj_; gives

(4.30) hioi Y. D v

T€Tk-1 PEVT

<h2 1+02 Z Z +09 2h2 Z ‘U‘Hl(T)

TETr pEVT TETs

Similar to (4.21) and (4.22), we have

(4.31) heor > IVo@) P +hiy Y [;Z(me)] < Chilvli -

PEVE—_1 e€€k_1

It follows from (3.9), Lemma 3.2, (4.27), (4.30) and (4.31) that
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h? _
M- 1oll3 oy < gk(1+02) YD v +CO R Y ol
TeT, pEVT TETk

(L + 60l x + CO2hRNvIIT &
(L +0)v]I5 & + CO™ i vl -

IN A

O

Again, from Lemma 4.4 and Lemma 4.5, and interpolation between Hilbert
scales, we have the following Lemma.

Lemma 4.6. It holds that
(4.32) 1Tk 1030 k1 < (L4 *)I0ll3_ax + CO2RE 0I5 5
for allv € Vi, and 6 € (0,1).

Lemma 4.7. Let (, € V. Define ( € HZ(Q) and (1 € Vi1 by (3.18) and (3.30).
Then

(4.33) k=1 = P¢™ Cellz—ae—1 S B NGk ll2 a0 k-

Proof. Let w € Vi1 be arbitrary. Then from Lemma 3.3 we have
a(Ce-1 = By ey w) = a(Ge1,w) — a(B Gy w)

= a(¢, w) — a(Ck, Tw)
= a(Ca w) - a(ga ka)
= a((,w — xw).

A duality estimate for the bilinear form a(-,-) (cf. [8]) states that
(4.34)  a(u,v) < |ulgera)vlae-a) Yu € H*T(Q) N H(Q),v € HF(Q).
From (3.32), Lemma 3.3 and (4.34) we have
a((, w — xw) S [¢lmz+ao)|w — Irw|gz-o(q)
S R NGk Mz ok llwllz a1

Therefore
a(Gr-1 = B Gy w) S RG24 ak]
Since w € Vj,_; is arbitrary, it follows from (3.11) that

k-1 = Py ellz—ae—1 S AR NGk ll2a k-

|wll24ak-1-

Lemma 4.8. The estimate (4.10) holds. That is
(4.35) 125~ oll3 o kmy < (L4 0ll5_0 x + CO2RE 0l
for allv € Vi, and 0 € (0,1).
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Proof. Let () € Vi be arbitrary, and define ¢ € HZ(2) and (_1 € Vik_1 by (3.18)
and (3.30). From (4.13) and Lemma 4.7 we have
IPE Crll3—am1 < (NCe-1ll2—aye—1 + I1PF ™ Chm1 — Chllz—a,h—1)?
< (L4 0)Gk-1ll5-am—1+CO2NPE " Co1 = Gell5a e
< L+ OG-l k—1 + CO 2R Gkl 5 4 i

But
NSk -1l2 ok 1 < (k- 1Ckllz—am—1 + 1Gk—1 = M- 1Cill2-an-1)?
< (140 Mk—1Grll3 a1 + CO 2 NCk—1 — a1 Crll3_pps-

Moreover, let w = (1 — (¢ € Vk_1 + Vi. Then from Lemma 3.1, Lemma 3.2,
Lemma 3.3, and (3.24) we have

lISk—1 = M—1Gkll2—ak—1 = [Me-1w]l2—a k-1
~ |Hg_1w| o)
S |w|H2—a(Q)
= |Ch—1 — CklE2-2(02)
<|Ck—1 = Clm2-o(@) + [ = Cklr2-2(0)
< B¢l mzra () S Pl NSk llavank-

Putting these estimates together, and by Lemma 4.4 and an inverse estimate, we
have

1P Gll3—akm1 < (14 02 em1 Gell3—akmr + CO 2R NGk ]13 4k

(1402 Ckl3—a e + COT2RENCENS . + CO R NG N30,k
(1402 1Ck 15— + CO2RENICEN3,
The lemma follows since 6 € (0,1) is arbitrary. O
Lemma 4.9. The estimate (4.11) holds.

Proof. Let (i, € Vi be arbitrary. Define ¢ € HZ(2) and (x—1 € Vx—1 by (3.18) and
(3.30). Then from Lemma 3.1, Lemma 3.2, Lemma 3.3, (3.25) and Lemma 4.7,

<
<

Gk = TE -1 PE " Crllo—ank
~ |G~ Py~ Gl aea )
= Mk (Ce — PF 1) 2o (o)
S Gk — Pkl ge-ao
<Gk = Claz—a(@) + ¢ = Ce1lm2-a() + |C1 — P:71§k|H2—a(Q)
S BNk 2t ok

O

Before proving the last assumption, we note from (3.9), Lemma 3.2 and Lemma
4.8 that

(4.36) ‘P]filv|H2—a(Q) < ‘/U‘HZ—Q(Q) Yv € V.

Lemma 4.10. The estimate (4.12) holds.
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Proof. Let (x—1 € Vi.—1 and define ¢ € HZ(2) by
a(C, ¢) = a(Ck—1,Qr—19) Yo € Vi1,
a(Cr,v) = a((,v) Yo € V.

Then from Lemma 3.1, Lemma 3.2, Lemma 3.3, Corollary 3.6, Lemma 4.7 and
(4.36),

ISk = B 1 G allz k1
~ |Gt — Br T G|
= o1 — P{ MGt 2oy
<Gt = Pkl mz-ago) + 1P (G — TiCim1) | 2o (a)
S R (¢ vy + |G — MiCroi| g2 (n)
S W2k 1ll2 ok -1+ | = Ceoalmz-aqa) + 1 = Tilh-1|m2-a(o)
S BN Gk-1ll24b—1-
O

We have proved all of the assumptions. The following theorems are then estab-
lished.

Theorem 4.11. There exist a positive constant C and a positive integer myg, both
independent of k, such that for all m > mgy and z9 € Vg,

(437) HZ - MGV(k7gvz07m)Hll < Cm_a/2‘|z - Z(]Ha,

where z 1is the exact solution of (2.10).

Theorem 4.12. There exist a positive constant C and a positive integer myg, both

independent of k, such that for all m > mqg and zg € Vi,
(4.38) |z — MG£(k, g, 20,m)||la <Cm =2z = 20| |a,

where z is the exact solution of (2.10).

5. NUMERICAL RESULTS

In this section we present some numerical results to illustrate the theorems in
the previous section.

(a) Square domain (b) L-shaped domain
FI1GURE 5. The triangulation 7T for k = 2.

Our first experiment is done on the unit square domain (cf. Figure 5 (a)). A
family of triangulations {7 }x>1 for the domain is obtained by regular subdivision.
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On Figure 5, The second level triangulation 73 is shown. We compute the contrac-
tion numbers for V-cycle, F-cycle and W-cycle algorithms at different levels. The
results are shown in Table 1, 2 and 3.

Ymko | M=1 | m=4 | m=7 | m=10 | m=13 | m=16 | m=19 | m=22
k=3 0.96 | 0.88 | 0.82 | 0.78 0.74 0.71 0.67 0.66
k=4 0.95 | 0.88 | 0.82 | 0.78 0.74 0.71 0.68 0.66
k=5 0.95 | 0.88 | 0.82 | 0.77 0.74 0.71 0.68 0.65
k=6 0.95 | 0.88 |0.82 | 0.77 0.74 0.71 0.68 0.66
k=7 0.95 | 0.88 | 0.82 | 0.77 0.74 0.71 0.68 0.66
k=8 0.95 | 0.88 |0.82 | 0.77 0.74 0.71 0.68 0.66

TABLE 1. Contraction numbers for V-cycle algorithms on the unit square

Ym,k,f | m=1 | m=4 | m=7 | m=10 | m=13 | m=16 | m=19 | m=22
k=3 0.96 | 0.88 |0.82 | 0.76 0.73 0.70 0.68 0.65
k=4 0.96 | 0.88 |0.82 | 0.77 0.74 0.71 0.68 0.65
k=5 0.96 | 0.88 |0.81 | 0.77 0.74 0.71 0.68 0.65
k=6 0.96 | 088 |0.81 |0.77 0.74 0.70 0.68 0.65
k=7 0.96 | 0.88 |0.81 | 0.77 0.74 0.70 0.68 0.65
k=8 0.96 | 088 |0.81 |0.77 0.74 0.71 0.68 0.65

TABLE 2. Contraction numbers for F-cycle algorithms on the unit square

Ymkw | M=1 | m=4 | m=7 | m=10 | m=13 | m=16 | m=19 | m=22
k=3 0.95 [ 0.88 | 0.82 | 0.76 0.71 0.69 0.66 0.65
k=4 0.95 [ 0.88 | 0.81 |0.76 0.72 0.70 0.67 0.64
k=5 0.95 | 0.87 | 0.81 | 0.76 0.73 0.70 0.67 0.65
k=6 0.95 [ 0.87 | 0.80 |0.76 0.73 0.70 0.67 0.65
k=7 0.95 | 0.87 | 0.80 | 0.76 0.73 0.70 0.67 0.65
k=8 0.95 [ 0.87 | 0.80 |0.76 0.73 0.70 0.67 0.65

TABLE 3. Contraction numbers for W-cycle algorithms on the unit square

The results show that the algorithms converge for m as small as 1. In contrast
with [25], where V-cycle algorithm using the nonconforming Morley element needs
m greater than 50 for convergence, we can see the advantage of conforming methods.

On the other hand, we can also see from the tables that the convergence rates
of the three algorithms are almost the same. We do not observe the superior
performance of the F-cycle algorithm as we saw in [25].

Since the domain is convex, we have full elliptic regularity, i.e., the elliptic reg-
ularity index o = 1. According to Theorems 4.11 and 4.12, there exists a constant
C, independent of k and m, such that

ml/Q’Yk,m,v S C.
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Y2k | m=10 | m=20 | m=30 | m=40 | m=50 | m=60 | m=70 | m=80
2.42 2.97 3.24 3.28 3.40 3.35 3.49 3.44
2.45 3.02 3.29 3.27 3.29 3.27 3.39 3.29
2.45 3.01 3.26 3.26 3.31 3.30 3.21 3.13
2.44 3.00 3.25 3.25 3.31 3.26 3.15 3.09
2.45 3.00 3.25 3.25 3.31 3.24 3.14 3.06
2.44 3.01 3.24 3.24 3.31 3.23 3.13 3.05

3

W‘W‘W‘W‘W‘W‘
| | O O = W

TABLE 4. V-cycle results on the unit square

We can see these properties from Table 4. It turns out that the constant C' could
be just 4.

Next, we use an L-shaped domain (cf. Figure 5 (b)). For this domain, the index
of elliptic regularity is a. = 0.5444837368. (cf. [17]). The numerical results are
shown in Table 5 and Table 6. They are also consistent with the theoretical results.

/2y kw | m=10 | m=20 | m=30 | m=40 | m=50 | m=60 | m=70 | m=80
1.45 1.49 1.46 1.41 1.36 1.30 1.25 1.19
1.45 1.52 1.47 1.45 1.39 1.31 1.24 1.21
1.45 1.51 1.49 1.43 1.36 1.28 1.24 1.23
1.44 1.52 1.49 1.43 1.36 1.28 1.20 1.21
1.44 1.52 1.49 1.44 1.36 1.27 1.20 1.14
1.45 1.52 1.49 1.43 1.35 1.27 1.19 1.13

3

W‘W‘TW‘W‘W‘
||| O x| W

TABLE 5. V-cycle results on the L-shaped domain

m* /2y, k5 | m=10 | m=20 | m=30 | m=40 | m=50 | m=60 | m=70 | m=80
k=3 1.43 1.50 1.47 1.44 1.36 1.32 1.23 1.18
k=4 1.44 1.50 1.49 1.45 1.37 1.30 1.21 1.13
k=5 1.45 1.51 1.48 1.44 1.36 1.29 1.21 1.15
k=6 1.44 1.51 1.49 1.45 1.36 1.28 1.20 1.13
k=7 1.44 1.51 1.49 1.44 1.36 1.28 1.20 1.12
k=8 1.44 1.51 1.49 1.44 1.36 1.28 1.19 1.11

TABLE 6. F-cycle results on the L-shaped domain
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