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THE VALLEYS OF SHADOW IN SCHRODINGER LANDSCAPE
K.I.OSKOLKOV

ABSTRACT. The probability density function |¢(f)|? is studied for the one-dimensional quan-
tum particle whose motion is defined by the Schrédinger equation
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with the periodic initial data f, f(x + 1) = f(x). For f of the type f.(z) := c(e)e™ “ ,E—a
small positive parameter, (x) — the distance from x to the nearest integer, Daniel Dix conducted
a numerical experiment of 3d-graphing the density |¢(fe;¢,z)|?. Visually, the graph resembles
a mountain landscape scarred by a peculiar discrete collection of deep rectilinear canyons, or
“the valleys of shadow”. We prove that this phenomenon is common for a wide set of families of
the initial data {f.} such that the initial densities {|f.|>} approximate, as € — 0, the periodic
Dirack’s delta-function: the Radon transformations of |¢(f.)|? are indeed small on a definite
collection of lines on the plane (¢, ). A complete description of such collections is established,
and applications to Helmholtz equation are discussed.
AMS 2000 Subject classification: 35Q40, 11F27
Keywords: Schrodinger equation, density function, Gauss’ sums, Talbot effect.

0.1. Free quantum particle with the periodic initial data. Assume that the motion of
the quantum particle is determined by the O-potential Schrodinger equation with the periodic
initial data condition:
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Via the Fourier method of separation of variables, the solution is given by
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Fig. 1 (Daniel Dix) depicts “one quarter” of the graph of the probability density function
|0(fe;t,2)|?, see also (10) below, of finding the particle at the location z, at the fixed moment
of time ¢. The initial data is the periodized (and L?*-normalized) Gauss bell function

fe(x) == c(e) Ze*@ (: c(e)ve Z em%e%i”‘”) , €=0.01.
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FIGURE 1. The valleys of shadow

Apparently, the graph features a rugged “mountain landscape” scarred by a series of rather
well-organized and deep rectilinear canyons, or “the valleys of shadow”!. It will be shown that
this feature is common for the densities |¢(f.)|? generated by v/0-families of initial data {f.}.
By the definition, such a family consists of the functions whose moduli squares approximate,

LEven though I walk through the valley of the shadow of death, I will fear no evil, for you are with me; your
rod and your staff, they comfort me. Psalm 23 of David.



as ¢ — 0, the periodic Dirack’s delta-function, i. e.

3) LI = / ()P de =1, / ()P (x) dz — g(0), &0

for every continuous function g(z) of period 1. We consider the limiting properties of the
densities [¢(f.)|? generated by v/0-families.

Related literature: P. R. Holland [14], Chapter 6, Section 6.5; D. Bohm [7], Chapter 10,
Section 10.10 (p. 207), W. Heisenberg[13].

0.2. “Schrodinger approximation” of the Helmholtz equation. We follow here some
lines of the paper [16], and the references therein.
Consider the boundary value problem posed for the Helmholtz equation:
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A — the wave length, a — the period of the optical image on the boundary, which is a flat screen,

z — the distance along the optical axis, i. e. in the direction perpendicular to the screen;
2 . . . .

zp == % — Talbot [20] distance; v := 2. Introduce the dimensionless variables
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Then, using the Fourier method of separation of variables, we obtain the exact solution:
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[16] suggests the following approximation of the exact solution of the Helmholtz equation by
that of Schrodinger equation. Both steps, especially the second of them, require a serious
mathematical scrutiny, currently unavailable.

1) For n > 1/v, the factors e?™#e¢ := e¢=2mmlC are exponentially small as n — oo, and the
appropriate terms of the series can be disregarded.

2) For n < 1/7, the exact values of y, can be replaced by just two terms of Taylor’s expansion
which generates an “ approximation” of the solution of the problem (4) by that of (1):
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Related literature: [16], [1] — [6], [8], [15], [19] — [21].



0.3. The valleys of shadow, and the Wigner function. Let us establish the following
(0V 1V 2)-alternative for the limits of Radon transformations of the densities:

1 0 (a)
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where an integer N and a real number ¢ are fixed, and {f.} is a v/0-family of the initial data for
the problem (1). Relations (6,(b),(c)) mean that the average densities [¢/(f.)[* are not small,
as € — 0, on the line Ly (&) :={(t,z) : Nt+ x =¢&}. Of a special interest are the lines where
(6,(a)) is true, i. e. the densities are small in the mean. These lines represent the “valleys of
the shadow”.

Theorem 1. Assume that {f.} is a \/d-family, N an integer, £ - a real number. Then (6,(b))
is true for each line Ly (§) such that 2§ is not an integer.

If all initial data {f.} are even functions, then (6,(a)) is true if and only if € =1/2 and N is
odd; (6,(c)) is true if and only if either £ =0, or £ =1/2 and N is even.

If all initial data {f.} are odd functions, then (6,(a)) is true if and only if either £ = 0, or
€ =1/2 and N is even; (6,(c)) is true if and only if £ = 1/2 and N is odd.

Proof. For a periodic f(z), and an integer NNV, let us introduce the Nth Wigner function:
We(5i9):= [ flerar€-ne ™ s, cek
cf. [14], Section 8.4.3 (p. 357).
Lemma 1. Let N be an integer, £ € R, and ¢(f;t,x) — the solution of (1). Then
(7) /01 [(f5t, =Nt + O dt = ||f|lz + Wx(f:6).

Indeed, we have

|w(f5 t; fl?) |2 — Z fnf;l 62”1((n2—m2)t+(n—m)x) )
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From here, the relation (6) follows by the Parseval’s identity

Awmﬂ@m:Zﬁ%
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and the following correspondence between functions and the Fourier coefficients:
{fn€27rin§} s {f(fL' + 5)}, {fon eZm’(an)f} s {f(f _ l,)BZWiNx} )

Now let us assume that {f.} is v/6-family. Then it is easy to see (by application of the Cauchy
inequality) that if 2€ is not an integer, then for each fixed integer N

1
Wi (o.6)] < / 6+ 2)fo( —2)|dz 0, =0,

and (6,b) follows from (7).
Therefore, it remains to consider the cases £ = 0 and £ = 1/2.We have

WN(f;O):/0 fl@)f*(—z) e N g,

Wn(f;1/2) = /0 f/242)f*(1/2 —a)e ™ N dy = (—1)N/0 F(@)f*(—) e 2N gy,

Therefore, if {f.} is a v/d-family, and all f. are even functions, then
lm Wy (f;0) =1, limWy(f.;1/2) = (-1)Y;
e—0 e—=0
on the contrary, if all f, are odd functions, then
lim Wy (f;0) = =1, HmWy(f.;1/2) = (=1)¥*,
e—0 e—=0

This and the application of (7) complete the proof of the theorem.
Let us briefly consider the following ergodic characteristic of the density [¢(f.)[* on a line
Ly (&) with a non integral, slope N:

g = lim 2 " N d
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We have
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Since N is non-integral, there are no “small denominators” in the double sum on the right.
Moreover, since

1 1 1 1
(n—m)(n+m—N) 2m-N <n—m_ n—l—m—N) ’
it is plausible that this sum can be estimated using the known property of the Hilbert matrix,

as follows
2ni(n—m)(n+m—N)T _ CHfHQ

A oae 1, .
fnf;l e2m(n—m)§ < 7
(m’n)éym#n (n—m)(n+m— N) (N)




so that if the slope N is non-integral we have Ex(f,£) = 1. On the other hand, for the lines
Ly (&) with the integral slope, the values of Ex(f, ) are given by the relations (6).

This type of characteristic seems to be promising also in the consideration of the valleys of
shadow for the solution ¢ of the Helmholtz equation (4), avoiding the mathematically dubious
“approximation” step (4):
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where
A(n,m,N) := pin, — fyy — (n — m)N .
The author intends to address the elaboration of this idea in the future.

0.4. Talbot effect, and the Gauss’ sums interpretation. Let us consider the formal series
Oo(t, z) := Z e2mi(n*t+na)
nez
as limit for e — 04, of
O.(t,x) = Z e G N )
nez

Obviously, Oy(t, z) represents the formal Green’s function of the problem (1), see (2), i. e.

b(fitya) = / O0(t,z — y)f (y) dy.

G.H. Hardy and J.E. Littlewood [12] (see also [11], pp. 67 — 112) thoroughly studied the
summability properties of ©q(t,z), and established that if t is an irrational number, then
O (t, z) is not summable by any of the Cesaro means.

On the other hand, if ¢ is a rational number, ¢ = ¢, (a,q) = 1, then the series ©y(¢,z) is

summable, say, by the (C,1)-means (and consequently, by the Gaussian method, because it is
stronger) to the linear combination of shifted Dirack’s periodic é-functions:

e () o (5) =20 (53¢ (+-3)
o o) xe )il
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where G (9 E) are the discrete Fourier transforms of the factors e «
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The complex numbers GG are the complete Gauss’ sums. Their moduli are determined by the
relations (see e.g. [18]), p. 183, formulas (1.3), and also [17])

. ol k 1 if ¢=1 (mod 2),
9) Vi aq)l LT g ¢=0 (mod?2), Q:=1,

\/§
<(l7 k)
q q

The relation (8) means, that for the rational moments of time parameter ¢t = 4> the solution
of the problem (1) is a g-term linear combination of the shifted initial data function f. This
implies that if the “original image” f is supported “in a narrow interval”, of the length [ << 1,
and g < % then the solution operator reproduces ¢ scaled non-overlapping copies of this image
on the period. This is presumably the essence of the Talbot self-imaging effect, cf.[20], [16], in
the classical and electromagnetic optics.

The following is the interpretation of the “valleys of the shadow” via the Gauss’ sums.
Every line Ly(1/2) = {(t,z) : Nt+x = 1/2}, with an odd slope N, avoids “hitting a delta-
function”, i. e. does not pass through any rational point on R? with a non-zero factor G in

8). In the other words, if a rational point (£, %), (a,q) = 1, belongs to such a line, then
a4

G(g,ﬁ> = 0.
q q

Indeed, assume that (¢,x) = <9 E) € Ly(1/2), and N =2m+ 1, m € Z. Then

q’ q

and one has
q

2

k=1

2
=1.

(@m+ 1t g = ZmFDatk 1
q 2

It follows that
2((2m+1)a+k) =q.
Clearly, this relation is not possible if ¢ is an odd number. On the other hand, if ¢ is even,
q = 2@, then we have
Cm+Da+k=Q,

and a is an odd number, because (a,2@Q)) = 1. Therefore, if @) is an even number, k£ has to be
odd, so that on this case a@) + k is odd. On the contrary, if () is odd, then then k has to be

even, so that the sum a@ + k is odd in this case, as well, and the equality G (%, %) = 0 follows
from (9).



0.5. The Gauss’ bell initial data. Let us consider the periodized Gauss bell function (known
also as the Jacobi’s elliptic theta-function)

p : 1 r(z—v)?
R D D DI
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as the initial data in the problem (1), and denote ¢ (V.,t, z) := O.(t,z). Note, that 9. is not
normalized in L?, but is such in L*:

1 1
1621 = / 19, (2)| dw = / D(2)dr = 1.
0 0

To obtain the L%-normalized data, as in (3), we take (in the sequel, a denotes strictly positive
absolute constants, whose numerical values can be different on different occasions)

fe(x) = c(e)0: (), cle) = (Z 62”5"2> = 192;%(0) = (26)1 + O (e7%), e—0.

ne”Z

The exact initial data functions 9., f. can be with a very high accuracy substituted by one
single term of the series

Ue(x) = \/ge_m:>2 +0 (6_%) , Je(x) = </ge_ﬂ:>2 +0 (e_%) , € —0,

where (x), as above, denotes the distance from x to the nearest integer.
Let us establish the following approximate representation of the density |¢(f.)|* as a sum of
Gauss-bell ridge functions:

ren? 7 (- 2 ren? 27 2)2 a
(10) WJ(fe;t; 3;’)|2 — Z P P (Z(n;:rw)) _9 Z G_Te_z (nt+:+1/2) L0 (6_?) .

nez n=1 mod 2

By (2) we have

|(9‘E (t, ZL') |2 _ Z efwa(mz—l—nQ)627ri((mfn)(m+n)t+(mfn)a: )

(m,n)€Z?

Let us introduce the new variables of summation m — n — m, m + n — n in the double sum
on the right. Then we obtain

2 _TE (21 n2 ;
|@£(t> ZL')| _ 2 : e 3 (m?+n )627rz(mnt+ma:)
(m,n)€Z?, m=n mod 2
2
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where

71'5777.2 - ]_ (2% 2 o
A(.’L’) = Z e~ 3 627717”93 — 1926(23';) — ge_% + O (6_?) ;

(z+2)

M
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B(z) := Z ez e = 5 <z9;(x) — e (z+ 5)) = Uy (20) — 0

1 7(2z)? 2 2n(at1/2)2 @
= —e 2 — —-e =+ O (efg) ,
V 2¢ €

and the approximate representation (10) follows.
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