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Abstract

The divergence set of the trigonometric series
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is studied, where {-} := % — frac(-), and frac(z) denotes the fractional part of the real
number z; d(n) := 4, 1 — the divisor function. The complete characterization of this
set is established in terms of the continued fractions.

2000 Mathematical Subject Classification: Primary 11L03

Keywords: divergence, convergence, continued fractions, Hecke’s series.

This article is a development of the recent works of the author [8] and M. Garaev [2],
concerning double trigonometric series with the polynomial phase. The reasons for the author’s
interest in the convergence problems for such series are explained in [8].

Our goal is to study the convergence and the divergence of the following three trigonometric
series

_ i {na} i d(n sin 2mna 27rmf; i i sin 2wmna
n Y
n=1

m=1 n=1

Here {-} := § — frac(-), and frac(z) denotes the fractional part of the real number z; d(n) :=
>_qn 1 — the divisor function.

It will be proved that for every real x these series are equiconvergent (divergent), and the
sums are the same, wherever they exist. In particular, we establish an exact description of the
set, where the series diverge. Naturally, this exceptional set turns out to be rather “thin”. To
describe it, one needs to address the arithmetical terms, namely, the continued fractions. We
emphasize that the material of this paper is rather coherent with some papers by G.H. Hardy*

LT have never done anything “useful”. No discovery of mine has made, or is likely to make, directly or
indirectly, for good or ill, the least difference to the amenity of the world. G.H. Hardy, Apology, see [3], p. 3.



and J.E. Littlewood on diophantine approximation, cf. [3]. In fact, S(z) coincides with the
Dirichlet’s series

= {nz} ,
= — t
H(s, x) ; et o + it,
at the point s = 1 . This series was introduced by E. Hecke [6]. As a function of the complex
variable s for fized x, H(s,z) was studied by Hecke in [6], and by G.H. Hardy and J.E.
Littlewood in [4], [5], see also [3], pp. 197 — 252.
That S and T coincide formally, follows by the application to the double series U of two

different summation procedures:

N 1 M sin 2rmnx sm27rmnx
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cnm<N

However, it is a priori not clear, whether these limits exist, and if they do exist, whether their
values are the same. This question is non-trivial, as it was confirmed by a result of M. Garaev
[2]. Garaev considered the sequence of the square partial sums of U

A s1n27rmnx
Unyy(@)i=>_> ———, N=12,...
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He established, that there exist x € R for which this sequence is divergent as N — oco. As an
example of such x, Garaev pointed out

1
1 Pj

where p; 1= 2, pjq1: _pJpJJrl j=1,2,....
We apply the summation of the series U over expanding families of coordinate-wise convex

domains:
ZZ sin 27Tmnf1/'

(m,n) €N

A domain €2 in the first quadrant Ri on the real plane R? is called coordinate-wise convex, iff
for every line, parallel to one of the coordinate axes, the intersection of €2 with this line is an
interval (possibly, empty or infinite). Let us denote U the class of all coordinate-wise convex
domains on Ri. Obviously, domains that are convex in the usual sense (such as squares,
rectangles, discs) are also coordinate-wise convex. Along with this, non-convex domains such
as hyperbolic crosses Yy := {(m,n) : 1 < mn < N}, are nevertheless coordinate-wise convex.



This type of summation of the multiple Fourier series was introduced by S.A. Telyakovskii
[10] in relation with the study of the multiplicative sin-polynomials

sin 2mrma)(sin 2nnx
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To approximate the full sum of a double series, a domain €2 has to include a “large” square
of the type [1, M] x [1, M]. Therefore, the following characteristic of (2 is significant in the
problem of convergence:

M(Q) ;== max{M : [1,M] x [1, M] C }.

Let us call a sequence of domains {§2,}°2, C U ezpanding, if M(S,) — oo, r — oo. If,
in addition to this property, the equation M(2,) = M has a solution r = r(M) for every
sufficiently large M € N, we will say that the sequence of domains is expanding and full.

For x € (0,1), consider its continued fraction and the sequence of the convergents, cf. [7],
Chapter 10, or [11], Chapter 1:

1 a; .
.’L’:—lz[kl,kg,...], j':[kl,kg,...,kj], j:1,2, (1)
I j
Lt kZ + .-
The natural numbers kq, ko, ... in this representation are known as partial quotients of x.

Denote ¢;(x) the denominators of the convergents of x, and consider the following series

et 1t

Jj=1 Jj=0

(if = is a rational number, x = ¢ where (a,q) = 1, then these series are finite sums, and

maxgj4+1 = q).
The following statement provides a complete description of the divergence set of the series
U in the light of the given definitions.

Theorem 1 A. If for a given x € R the series =(x) converges, then the limit

U(xz) = lim Ug, (x)
T—00
exists and its value is unique for all expanding sequences {€2.}°2, of coordinate-wise convex
domains.
B. If =(x) diverges, and the sequence of domains {2}, C U is expanding and full, then the
corresponding sequence of the partial sums {Uq, (x)}2°, is also divergent.



In particular, the sequences of the partial sums

M N sin 2rmnx NN sin 27rmnx
UDM,N(«T) = Z Z W; UDN,N(x) = Z Z
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are equiconvergent as M, N — oo for all real x. The limits of these sequences are the same,
wherever they exist, i. e. for x € R\ T, where T is the divergence set of the series =.

Remark 1. Recently, the author [8] studied a modification of the series U with “a somewhat

bigger denominator”
Z Z sin 2mrmnx
m2+n?

m=1 n=1

In contrast to U, the series V' converges for all real x, and its sum is everywhere bounded.
Denote 7' the divergence set of the series Y. Obviously, 7 C T'; as we already men-

tioned, the sets 7, 7' are rather “thin”. To quantify this property, let us apply two following

characteristics:

1) integral estimates of the remainder terms of the series Y:

- Ingy11(2) -
= 0y, pulx)i=—"75—"=, v,j=0,1,..;
> (@)= ="

2) estimates of the “logarithmic dimension” of the set 7.

In the next theorem Fj denotes the j-th Fibonacci number, i. e. Fy = F; := 1, Fj; =
F’j+F’jfl) ]:1727

Theorem 2 A) The function Y is exponentially integrable:
1
/ MO dr <00, 0< <1,
0

Moreover, if a sequence of positive numbers X\ satisfies the condition \; = o(F;/j), j — oo,

then )
/ (e)‘ij(‘”) — 1) de — 0.
0



B) Let a > 0 and € — an arbitrarily small positive number. Then there exist a family of intervals
T =1(a,e) = {I} such that®

1\ “ o
U ¥ (mm) <
IeZ(ae) IeZ(we)
Corollary. The Hausdorff dimension (cf. [1]) of the exceptional sets T, T' equals 0.

Remark 2. It can be proved, that in contrast to the sin-series U, the sum of its trigonometric
conjugate, i. e. the cos-series

i i cos 2mmnx i cos 2mna 2mn
= d(n

m=1 n=1 n=1

is not exponentially integrable for any positive A in the exponent. Therefore, the function U(x)
does not belong to the class BMO, i. e. does not possess the bounded mean oscillation, see e.
g. [9], Ch. 4.

Proof of the theorems. For a fixed bounded domain © € U, denote M := M(€2). Split the
corresponding sum U, along the diagonal m = n:

M T M My M
1 sin 2mrmnx 1 sin 2mrmnx sin 27rm T
Ulo) =) — > — ——+ Z Z D D
m n
m=1 n=m m=1

For m € N, the following well-known estimate is true

oftmy) o

where ||y|| denotes the distance from y € R to the nearest integer. Moreover, the following
“asymptotic formula” holds

1 <X sin2rny  signy 1 1 1
== - = 1, — <=
m(y) m e mn 2m +O(y) +0 <m fin < ’ M|y|>> FURS 2 (3)

1
Ry (y) := o Sup
ZM n—m

sin 2mny
™

In the estimate of the second remainder term we utilized the inequality n,, > M which follows
from the definition of M (Q).

2Here and in the sequel we use the notation || for the length of the interval I C R. Also, everywhere below
the constants in the symbol O are absolute.



Obviously, we have
M Mo, . M
1 sin 2rmnx
E — E — = E om(mz).
m ™
m=1 n=m m=1
Let g := 1, and subdivide the summation into the intervals of the form [g;, ¢;11), where g; are

the denominators of the continued fraction (1):

M

om(mzx) = i Z om(mz) + Z om(ma), J:=max{j: ¢; < M}.

m=1 J=0 me€[qj,q5+1) melqs,M]

The following properties of the partial quotients and the convergents are well known, cf.[7],
Chapter 10, or [11], Chapter 1:

v= 45, —— < |5 <

signé; = (—1)’;
qj 2¢¢j+1 4jqj+1 !

. : _1)
G+ = king + ¢ (a5,q) =1; Ll _ % 1) ; J=0,1,... (4)
dj+1 qj qdiqj+1
where ay := 0.
Fix an integer j > 0, and for brevity denote a; := a, ¢; :=q, kj;1 = K, ¢j11 1= Q, §; := 0.
Now we estimate the sum
A= Z om(mz) .

me(q,Q)
We split this sum as follows:

A=B+C, B:= Z om(mz), C:= Z O (M)
meB meC

where

= {mena. lmelz 1), c={meln@. <1},

Since (a, q) = 1, for each fixed k € N the set of numbers ma = (kg +1)a, [ =0,1,...,¢—1
represents all residues modq. Therefore,

-1

ma || [
> = = ] -otmen,
kg<m<(k+1)q q 0<i<q q
Moreover, if ¢ < m < @, then by (4) we also have
‘ ma m 1
me——| < — < -
q 9Q " ¢




and hence, using the estimate |o,,| < R,,, we obtain from (2):

o0

1
Bl < Y |Ru(ma)] <y > o
meB T metatridmezizg ™ 1M
~ qln(eq) _ In(eq)
<3 el ol 8

Turn to the estimate of the sum C. One can assume that ; = ¢ > 0 in (4). Then C is
contained in the union of the two following (finite) progressions

CCClLJCQ, Clz{m:kq,lngK}, ng{m:kq+l*,1§k§K}

where [* is the residue of the number —1 mod ¢, i. e. (cf. (4)) I* = gfrac (?) We have

lmaz|| = md, m € Cy; ||mz|| = é —md, m € Cy.

For the sum of o,,(mx) over the part of C; where ||mz|| > 1/m, and also the whole progression
Cy, we again apply the estimate |0,,| < R,, and (2):

D lowma)l+ Y |om (ma)|

meCsy meCy, ||mzl|>1/m

1 1 1
DD DT I ISP DTS e R SIT

meCi, [[mal|>1/m meCz, m<Q/2 meCz, Q/2<m<Q
1 q 11
< =t S5t — < -, 6
> matlmet X w < (6)
k>1/(qVd) k1 K/2<k<K

Now we consider the sum of o, (mx) over the part of the progression C; where ||mz|| < 1/m,
i. e. m = kq and k < 1/(¢V/8). On this part of C;, we use the “asymptotic formula” (3) for
0m- The summation of the first remainder term in this formula, with m = kq, y = ||mz|| =
kqs, 1 < k < 1/(¢V/6), results in the quantity

1
> lmal = Y k< pt (7)
meCy, [|mz||<1/m 1<k<1/(gV/9)

In dealing with the sum of the second remainder terms in (3), we can ignore the condition
|lmz|| < 1/m, but instead need to utilize the lower estimate § > 1/(2¢Q), cf. (4). Thereby, we



obtain for this sum the following estimate:

Zimin 1# <Zimin li
m "M||mz||) — kq " Mkqo

meCy k>1
! Q
- > —+ > k2 5 < <1+M>e. (8)
1§k§1/(Mq6) k>1/Mqgb

For the sum of the main terms in (3), making use of the two-sided estimate 1/(¢Q) > ¢ >
1/(2¢Q), ctf. (4), we have

L _ I Y Ly _Ine@ | ) (Ineq
2 2m 2 2kq_2ql <q\/5)+0<q> 4q +O<q>' ®)

meCy, ||lma||<1/m k<1/(gV'6)

Here we used the assumption that 6 = ¢; > 0. In a general case, according to (3) and (4), the
result has to be multiplied by signd; = (—1)’. Thus, summarizing the estimates (5) — (9), we
see that if M = M(Q2) € [gs,¢s+1) then

J

=L [ o () reo(s). o

= qj qj

with an absolute constant in the symbol O. In addition, for each fixed j the limit £7° of the
quantities £} as M = M(Q) — 0o® exists, and (cf. (3))

sin 2mrmnx sin2rm2x  (—1)Ing;y
S M _ 9 — — Jt
o5 = Jim €] 2 Z > o T

melgj, q]+1) melg;,qj+1)

3 e Zup|€M|<<Z qf<<1 (11)
J

J

Now we finish the proof of theorem 1. If the series Z(x) converges, i. e. x € (0,1)\ T,
then in particular, (Ings41)/q; — 0 as J — oo. Since M > ¢; we conclude with the help
of (10) and (11) that the sequence {Ug,(x)} has a limit whenever the sequence of domains
{Q,} € U is expanding. The relation (11) also implies the independence of this limit from the
latter sequence, and the claim A follows.

Let us assume that a sequence of domains {Q2,} € U is expanding and full. The latter
means, that for every sufficiently large J there exists r; such that M(,,) = ¢s41 — 1. Then
the corresponding “remainder term” in (10) tends to 0 for J — oc:

1 qj+1 ) < 1 )
O—1In =0(—].
<qJ M(QTJ) qJ

3This means, that the domain Q € U is expanding




Therefore, also keeping in mind (11), we infer that the relations (10) imply the equiconvergence
of the sequence of the partial sums of the series Z(x) and a subsequence of the sequence of the
sums {Uq, (v)}:

Us,, (z

l\Dl»—t

4 JlﬂQH a
Z R N e 50, J o
j=0

J=0

Consequently, if € T, i. e. the series =(z) diverges, so does the sequence {Uq, (z)}, which
completes the proof of the claim B.
Let us prove theorem 2. For a collection of natural numbers k = (ky,. .., k;j_1,k;) € N, let

(see (1) .
[kla---;kj—l] == qj—_l

and consider an interval w = w(k) with the end-points

i a
[kl, .. -;kj—lakj] = —J, [1{11, .. -;kj—lakj + 1] = —f . (12)
q; 4;

By the basic property of the continued fraction, see (4), we have

aj-1 G| 1
qdj—1 g q;qj—1 ’
and further,
: " a 4 1 4
() gj(2) =¢j w €w; (il) |w = |2 = 2= —, (ii)* |J wk)=1(0,1) (13)
4 g 4;9; ke
Consider the partitioning of w by the points
: iy .
M:[kl,___,kjil,kj,k]zw, =1,2,
Gj+1,k gk + qj—1

Aj+1,k+1
Qj+1,k+1

. . . . a;
Denote wy the sub-interval of w whose endpoints are two consecutive fractions q?j:’: and
J )
Then

) Ingj, In(gik + q;-
() () = i Inlak 4 g )

, X E Wg;
qj q;
() oy = |22 Bt i) (Ju—w. (14)
dj+1,k qj+1,k+1 qj+1,k9541,k+1

“Here and in the similar partitions below, we disregard all rational points



Let
Eo(2) i ={r: v ew, pjx) >z}, plw,z):=meas&,(2). (15)

Then using (14) and (13, ii) we conclude that

a; a;
Eu(z) C U Wr, pw,z) = Z lw| = Z J+LE @41kl

qj+1,k dj+1,k+1

k: g1 p>e%” k:qjqq p>eb” k:qjqq p>e%”
1

= equqj

= gje” " |w| < 2q;e” Y |w];  p(w,z) < min (1, 2¢e7%7) |w]. 16)

Since ¢; > F}; and
{z:2€(0,1), ;> 2 = | Eurw(?)

keEN
it follows that

p(w, z) < min (1, 2F}€7sz) |wl,

1tj(z) < min (1, 2Fje”"5%) Z lw(k)| = min (1, 2F;e"5%) . (17)
keN/

In particular, ¢; is exponentially integrable, and for A < F}

1 00 [ee]
/ i (@) o — _/ M d/lj (z) =1+ )\/ e /Lj(z) dz
0 0 0

. s , 1 In2F;
§1+)\/0 e min (1, 2Fje FJ):eA§J<1+Fj_)\), & = Fjj' (18)

For a fixed j, let us consider the sequence of functions
!
Tj,l:zzgpua l:]7]+17
v=j

On each interval w(k), k € N all functions ¢, with v < [ are constant, so that the sum Y,;; 4
is also constant. Thus, applying (18) and (16) and induction in [ with [ > j, for A < Fj we

obtain the estimate l
1
1
ATi0@) g < v 1 .
/0 e Tz < H e ( + )

v=j

Letting | — oo, from here we derive the claims A) of theorem 2.



To prove the claim B), for a given positive number € and j = 0,1,... let us consider the
sets

N

Fi(e) := {x: r € (0,1), pj(x) >z, z = %} , Fle):= U

Jj+1)2%

<.
|

=0
According to (15), (16), for each interval w = w(k), k € N/, the part £,(z;) of F;(e) is an

interval I = I;.(k) of the length
1 qj
1 Lo ).
1 4 (7 +1)%

and keeping in mind that a > 2, |w| > qj’z, we have

1\ ™ g\ T _etu+1) _eri+1)*™

g Fp?

Therefore,

076 = U B @ Y (ngg) fJi S ot = SV

keN keN keNs J

Consequently, the set F () is covered by the collection of intervals

(o) := {{Lc (k) }eers };oo ’

1\ “ G+ a
lIl—) < e T<<5a, a > 2.
> (w > U

IeI(oe) j=0

and

In the complement of the set F(¢) the series T converges:

1
x) = j; pi(x) > m < 00,

J

o0

VAN

which completes the proof of the claim B) of theorem 2.

Acknowledgements. In the initial phase, the research was supported by the National Science
Foundation Grant DMS-9706883.

The work on the material of this paper was started during the recent visit of the author to the
Erwin Schrédinger International Institute for Mathematical Physics, Vienna, Austria, in frames
of the International Workshop ”Combinatorial and Number Theoretic Methods in Harmonic
Analysis”, in February — March 2003. The author expresses his gratitude to the Institute for
the excellent working conditions.

The author is especially thankful to M. Garaev for many intensive and useful discussions, and
also to A. losevich, M. Lacey, M. Filaseta and O. Trifonov for the interest and comments.



References

1]

[10]

[11]

K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Edi-
tors: H.Bass, H. Halberstam, J.F.C. Kingman, J.E. Roseblade & C.T.C. Wall. Cambridge
University Press 1985. ISBN 0 521 33705.

M.Z. Garaev. On a multiple trigonometric series, Acta Arithmetica 102.2(2002), pp. 183
— 187.

Collected papers of G.H. Hardy, Including joint papers with J.E. Littlewood and others.
Edited by a Committee appointed by the London Mathematical Society. Oxford University
Press, Ely House, London W., 1966.

G.H. Hardy and J.E. Littlewood. Some problems of Diophantine approximation: The an-
alytic character of the sum of a Dirichlet’s series considered by Hecke. Abhandlungen aus
der Mathematischen Seminar der Hamburgischen Universitit, 3(1923), pp. 57 — 68.

G.H. Hardy and J.E. Littlewood. Some problems of Diophantine approximation: The ana-
lytic properties certain Dirichlet’s series associated with the distribution of numbers modu-
lus unity. Transactions of the Cambridge Philosophical Society, 22, no. 27(1923), pp. 519
— 534.

E.Hecke. Uber analytische Funktionen und die Verteilung von Zahlen mod. eins. Abhand-
lungen aus der Mathematischen Seminar der Hamburgischen Universitat, 1(1921), pp. 54
— 76.(Also in his: Mathematische Werke, herausgegeben im Auftrage der Akademie der
Wissenschaften zu Gottingen, Gottingen, Vandenhoeck&Ruprecht, 1959.)

Hua Loo Keng. Introduction to number theory. 1982, Springer Verlag Berlin Heidelberg
New York, ISBN 3-540-10818-1.

K.I. Oskolkov.Continued fractions and the convergence of a double trigonometric series,
Industrial Mathematics Institute preprint series, Department of Mathematics, University
of South Carolina 2003:03 (http://www.math.sc.edu/~imip).

E. M. Stein, with the assistance of T. S. Murphey. Harmonic Analysis: real-variable meth-
ods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, New
Jersey, 1993. ISBN 0-691-03216-5.

S. A. Telyakovskii. On estimates of the derivatives of multivariate trigonometric polynomi-
als, Siberean Mathematical Journal. 4(1963), pp. 1404 — 1411 (in Russian).

[.M. Vinogradov. Foundations of number theory, ” Nauka”, Moscow, 1981 (in Russian).



