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Farey tree and the convergence of a double trigonometric
series

K.I.Oskolkov

The goal of this paper is to study the convergence of the double trigonometric series

_sp sin mnax
m%)l n%l m2 + n2
We prove that this series converges for all real =, and that S(z) is bounded as a function of x.
The proof will use some elementary arithmetical considerations, namely, the approximation of
z/(2m) by the rational numbers in the Farey tree.
The interest to this series was motivated by the recent results of M.Z. Garaev [3], the
author’s [5], as well as an earlier result of G.I. Arkhipov and the author [1]. In [3], the sequence

of partial sums
l N sinmnz
z):=3D > Y ——, N=3DL2,...
m=3D1n=3D1

was considered. Garaev proved that there exist real numbers x for which the sequence hy(z)
diverges as N — oc.

Garaev’s investigation was motivated by the convergence result [1] for sequences of discrete
Hilbert transforms with the polynomial phase p(+)

—3DZ

1<|n|<N n=3D1

— ezp( n)

If p = 3Dp(-) is an algebraic polynomial with the real coefficients then the sequence Hy(p)
converges as N — oco. Moreover, for every fixed r € N

sup sup |Hy(p)| < oo (1)
pePT™ NeN

where P" denotes the set of all uni-variate algebraic polynomials of degree r with the real
coefficients. The proof of this statement in [1] was based on the Arkhipov’s version [2] circular
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method of Hardy — Littlewood — Vinogradov [11]. Independently and somewhat later than in
[1], (1) was established by E.M. Stein and S. Wainger [8], see also [9], Ch. 8, Section 5.

The latter result has found applications in several fields, such as the spectral problems of the
classical theory of trigonometric series, the study of solutions of time-dependent Schrodinger
type equations with the periodic initial data, and the variational properties of the incomplete
Gauss’ sums. A survey can be found in [6], see also [7].

The recent paper [5] considers an extension of [1] for the multiple sums with the additive
polynomial multi-phase. For r € N and d = 3D2,3,..., denote P"¢ the set of d-element
collections = 3D(py, ..., pa) of algebraic polynomials, where p; € P" ; P>¢:=3D (], P"%
er :=3D(0,...,0, If, 0,...,0), k=3D1,...,d — the standard basis in R?;
for = n = 3D(ny,...,nk,...,ng) € N., m = 3D(my,...,mg,...,mg) = nN?, denote n; :=
3Dn — nyey, and Oy, — the parallelepiped {n: n € N¢ n, < my, k=3D1,...,d};
for a d-indexed sequence f(-) : N — C, and m € N¢| e P> let

ip1(n1) _ eipl(:*nl) eipd("d) _ eipl(*nd)

Hu(f:9):=3D Y f(n)°

n n
I‘IEDm 1 d

Further, a sequence f(-) : N¢ — C is called coordinate-wise slow (notation: f € S89) if f is
bounded and satisfies the Littlewood — Paley condition (see [12], Ch. 15) uniformly on all lines,
parallel to coordinate axes:

Ifllse = 3D sup max | [f(m)|+sup >, |f(me+mew) = flme + (m+ ey | < oo

me(n,2n)
The following are three typical examples of coordinate-wise slow sequences.
1) f(-) — the characteristic function of a coordinate-wise convex domain D C R%. The latter
means (see [10]) that the intersection of D with any line parallel to one of the coordinate axes
consists of a single interval, possibly, empty.
2) for d = 3D2, f(m,n):=3Dmn(m?*+n*)~".
3) f(-) — the Riemann’s (-multiplier, i. e. f(ny,...,nq) := 3Dni" ... pld = 3Deilttnnitttalnna)
where t;,. .., t4 are fixed real numbers (parameters).

The main result of [5] is the global boundedness and the convergence of the sequence
Hy(f;p). If f: N¢— C is a coordinate-wise slow sequence, then for every fixed r

sup sup |Hw(f;p)| < oo,

meNd pepr.d

and the limit

minmy—o00



exists for every fixed collection of polynomials p € P4,
Here we prove the following theorem.

Theorem 1 Assume that a bivariate sequence f : N* — C is coordinate-wise slow. Then the
sequence

Sun(fiz) = 3D Z Z F(m,n) sin mnx

m2 + n?
m=3D1n=3D1

s uniformly bounded:

sup sup |Sun(f;7)| < oo, (2)
z€R (M,N)eN?

and there exists the limit S(x) := 3D liMuyin{a,N}— 00 SN (f32).

Proof. Without loss of generality, we will assume that ||f||sz < 1. For n, m € N, n > m and

y eR, let
sin 27y N sin 2mny
Rom(y) :==3D ) P Tm(y) = 3D]§[glr)n > PRC
v=3Dn = n=3Dm
il sin 2mny
om(y) = 3Doy, = 3D su m,n)——| .
(y) = (f;y) = sup 2 f( )m2+n2

Clearly, it is enough to prove that

sup Z om(maz) (3)

m=3D1

For a fixed y € R, the following estimates are true

a(m(y)) nlog 5 it n <1,
where (y) denotes the distance from y to the nearest integer.
Indeed, we have
1
R € 5777 ™) < 5 on(y) K : )
WS Gty T <SSy WS g )

The estimates of R and 7 follow by application of the partial summation (Abel’s transform)
and the well-known estimate of the Dirichlet kernel

§ ' e%rzny

n=3DM

<y> '

sup




To prove the estimate for o, let us consider a slow sequence f(n), n € N and also another
numerical sequence R(n), n € N such that

> |R(n) = R(n+1)| < oo.

neN

Then, applying Abel’s transformation, and the dyadic blocks summation we see that

> fn R(n+1)) = 3Df(m Z Y. (f(n) = f(n—1)R(n).

n>m k=3D0 ne(2km,2k+1m]

From here and the definition of a slow sequence, it follows that

N 00
sup| > f()(R(n) = R(n+1))| <2 fls Y  max |R(n)|.
n=3Dm k—3pp "EZEm2tim]

The estimate for o is a corollary of this relation and the estimate of 7 (also, recall the assumption
[flls2 < 1):

N
S fm ST 3D | ST 1) (Run(5) — Rusa(v)
n=3Dm n=3Dm
= 1 1
< k_z?);m Torm (y) < k;m T <

This completes the proof of (4) in the case, when m(y) > 1. On the other hand, if m(y) < 1,
we have

Netm1/w)] |, oy mitnd ey T m{y)

S )22 < () < —— 3D(y)

sup m,n)————| S 01 Y = Y),
N1/ ) m? 2| = "/ W) (1/(w)2(y)

n€(1/(y),N]

and (4) follows.
Let us prove that for every fixed z € [0, 1]



Clearly, it is sufficient to establish this estimate for the irrational z. Let us consider the Farey
sequence, see [4], Section 6.10, and a pair of neighboring fractions (%, %) in F, that is adjacent
tox,i. e. Q > q and

!/

(a,q) =3D(d',Q) = 3D1, ‘g — % 0

1
—3D—, z=3D%4+s5 6=3D
qQ q

Let
A:=3D Z M,

m
me[q,Q)

and denote B and, respectively, C' the parts of the sum A that corresponds to m € [¢, Q) with
the “large” and “small” values of (mz), namely,

p—3p Yy mme) o gy oy alminn)
m
melg,Q), (mz)>1/q melg,Q), (mz)<1l/q

Since (a,q) = 3D1, for each fixed k € N the set of numbers ma = 3D(kq + l)a, | =
3D0,1,...,q — 1 represents all residues modq. Therefore,

—1 -1
l
E <@> =3D E <—> < qlog (eq).
kg<m<(k+1)q q 0<l<gq q

Moreover, if ¢ < m < @, then by (7) we also have

and hence

B< > > (m*(ma))™" < Y (kq)~>qlog (eq) <<@. (8)

k=3D1 me(kq,(k+1)q), (ma)>1/q k=3D1

Now we prove that
1
C < . (9)

Without loss of generality, we may assume that ¢ > 0 in (7). Then the set of natural
numbers

C:=3D {m €l0,Q), (mz)< 3}



consists of two finite progressions

C:3DC]_UCQ, Cl :3D{m:3Dk‘q, 1§]{3<%}, C2 :3D{m:3Dk‘q+l*, 1§k<%}

where [* is the residue of the number —1 mod ¢, i. e. (cf. (7)) I* = 3Dg {?}, and {-} denotes

the fractional part function.
Let us first consider the progression C;. If m € C;, we have m(mz) = 3Dm?§, and the

condition m({mz) < 1 is equivalent to m?§ < 1, or m < 1/v/§. Consequently, & = 3Dm/q <
1/A where A :=3D1/ (q\/g), and it follows from the definition of the function « in (4) that

3 ( < > kqalog Z Anklog

meCy, m(maz)<1 1<k<1/A 1<k:<1/A

where 7 := 3DkA. Clearly, the latter sum is < 1, because it is the Riemannian sum for the
integral fol nlog(e/n?) dn, so that

meCy, m(mz)<1

Further, if m € C; and m(mz) > 1, we have a(m(mz)) = 3D(m?§)~*. Thus

a(m(mz)) 1 1

E — < E < -
= 3

" k>1/(aV) (ka0

meCy, m(ma)>1

Finally, let us consider the remaining progression Cy. If m € Cy, we have (mz) = 3D(1/q) —mJ,

so that

a(m({mzx)) q 1
NN < R S =
meCa meCz, 2gmdi<1 meCa, Q/2<m<Q
1 = 1
= <X et X
k=3D1 Q/(2g)<m<=

Q/q 1@Summarizing, we see that the sum A satisfies the estimate

log(eq)
q
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[e.e]
Now let us consider the whole sequence of convergents {Z—J} of z in the Farey tree F. Then
i)

by the well-known property of F we have ¢;41 = 3Dg; + ¢;_1, and consequently

e 0]

a(m(mz)) a(m(mz)) _ . log(eg;)
> — =3D>" Y — 3Dzj:AJ<<Zj:—qj < 1.

m=3D1 J me[gj,q541)

From here (6) and (3) follow, and the proof is complete.
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