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CONVERGENCE OF NONCONFORMING V-CYCLE AND
F-CYCLE MULTIGRID METHODS FOR THE BIHARMONIC
PROBLEM USING THE MORLEY ELEMENT

JIE ZHAO

ABSTRACT. Multigrid V-cycle and F-cycle algorithms for the biharmonic prob-
lem using the Morley element are studied in the paper. We show that the
contraction numbers can be uniformly improved by increasing the number of
smoothing steps.

1. INTRODUCTION

Let € C R? be a bounded polygonal domain. Consider the following varia-
tional problem for the biharmonic equation with homogeneous Dirichlet boundary
conditions: Find u € H2(Q2) such that

(1.1) a(u,v) = ¢p(v) Yo € HX(Q),

where )
0%u 0%v
v) = | D? :D2d::/ T Y e,
a(u,v) /Q u: D*vdx 9”2231 Sridr;  Dwidr;

and ¢ € H %(Q) = [HZ(Q)]".

The elliptic regularity of the biharmonic equation (cf. [17], [19]) implies that
there exists o € (3, 1] such that the solution u of (1.1) belongs to H2+%(Q) N HZ (Q)
whenever ¢ € H27%(Q) and

(1.2) lull 2+ 2 < Callgll-s+a (0.

The problem (1.1) can be solved numerically using the Bogner-Fox-Schmit el-
ement (cf. [4]), the Argyris element (cf. [1]), the Hsieh-Clough-Tocher element
(cf. [16]), the Morley element (cf. [23]) and the incomplete biquadratic element
(cf. [26]). In this paper we will concentrate on the Morley element, which is the
simplest among all the finite element methods for the biharmonic problem.

Multigrid methods for the Morley element, which is nonconforming, have been
studied in [8], [9], [10], [21], [25], [24] and [27]. It was shown in [10] that the
W-cycle multigrid method converges uniformly if the number of smoothing steps
is large enough and that the symmetric variable V-cycle algorithm is an optimal
preconditioner, without assuming full elliptic regularity.

In [12] and [11], an additive theory was developed to study the asymptotic be-
havior of the contraction numbers of V-cycle and F-cycle methods for conforming
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2 JIE ZHAO

and nonconforming finite elements for second order problems, without assuming
full elliptic regularity. In this paper we will apply this theory to the biharmonic
problem. We use the Morley element to illustrate the theory, which can also be
applied to other elements (cf. [31]).

Let yx,m be the contraction number of the k-th level symmetric V-cycle algorithm
with m pre-smoothing and m post-smoothing steps. Our main result states that,
there exists a constant C, independent of & and m, such that

C
Yk,m < W for m > my,

where the positive integer my is also independent of k. A similar result also holds
for the F-cycle algorithm.

The rest of the paper is organized as follows. We discuss the Morley element
and its relation with the Hsieh-Clough-Tocher element in Section 2, and describe
multigrid V-cycle and F-cycle algorithms in Section 3. In Section 4 we discuss mesh
dependent norms and their properties. Some known results concerning the additive
theory are summarized in Section 5. Convergence analysis is then carried out in
Section 6. Numerical results are presented in Section 7.

2. THE MORLEY ELEMENT AND THE HSIEH-CLOUGH-TOCHER ELEMENT

The Morley finite element is defined on a triangle. Its shape functions are qua-
dratic polynomials on the triangle. Its nodal variables include the evaluations of the
shape functions at the vertices of the triangles and the evaluations of the normal
derivatives at the midpoints of the edges of the triangles (cf. Figure 1(a)).

' '

(a) Morley (b) H-C-T

FIGURE 1. The Morley element and the H-C-T element

The Hsieh-Clough-Tocher macro element is also defined on a triangle. The shape
functions are those C'' functions on the triangle whose restriction to each smaller
triangle formed by connecting the centroid and two vertices of the triangle is a cubic
polynomial. The nodal variables include the evaluations of the shape functions at
the vertices of the triangle, the evaluations of the gradients at the vertices and of
the normal derivatives at the midpoints of the edges of the triangle (cf. Figure
1(b)).

Since the shape functions and the nodal variables of the Morley element is also
the shape functions and nodal variables of the Hsieh-Clough-Tocher element, we
call the Hsieh-Clough-Tocher element a “relative” of the Morley element (cf. [10]).

Let {7x}r>1 be a family of triangulations of €2, where 741 is obtained by con-
necting the midpoints of the edges of the triangles in 7. We denote the mesh size
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of T, by hy = max{diamT : T' € T;}. Note that
(2.1) hi_1 = 2hg.

Let Vi be the Morley finite element space associated with 7;. Then v € V} if
and only if it has the following three properties:

(i) vz = v|r is a quadratic polynomial for all T' € Ty,

(ii) v is continuous at the vertices of T3 and vanishes at the vertices along 9<,

(iii) The normal derivative dv/On is continuous at the midpoints of interelement
boundaries and vanishes at the midpoints along 0f2.

Note that Vi, ¢ H2(Q) (i.e., nonconforming) and Vj,_; ¢ Vj (i.e., nonnested).

Let Vi be the Hsieh-Clough-Tocher macro element space associated with 7.
Then a function & € Vj, is C* on €, its restriction to each T' € T, is a piecewise
cubic polynomial function, and its nodal values along Of) are zero. Note that
Vi C H3(Q) (i.e. conforming).

Now we discuss the relation between the Morley space and the Hsieh-Clough-
Tocher space. We can define an operator E : Vi, — f/k For each v € V4, the
function Eyv € Vj is defined as follows. For any internal vertex p and internal
midpoint m,

(Exv)(p) = v(p),
O(Exv) ) = Ov

on N 0_n(m)’
(BB(EkU))(p) = average of (8ﬂvi)(p),

where 8 = (0,1) or (1,0), and v; = v|r, for T; with p as a vertex.
We can also define an operator Fy, : Vi — Vi as follows. For each ¢ € Vy,, Fr0
is the function in Vj satisfying

(B)(p) = o(p) and 2T ) = 2

for every internal vertex p and midpoint m of Tg.
The operators Ey and Fj, satisfy the following two properties (cf. [10]):

(2.2) Fj, 0 By = Idy,
23) (Bl S 1oln@ and (Bl S ol Vo€ W,
where Idy, is the identity operator on Vy,
(2.4) 0]a), = ax(v,v)*/? Yo € H3(Q) + Vi,
and the bilinear form ay(-,-) on HZ() + Vj is defined by
ar(u,v) 1= Z D*u : D*vdz.
reTr T

Note that the constructions of Ej and Fj and the properties (2.2) and (2.3)
rely on the fact that the Morley element and the Hsieh-Clough-Tocher element are
relatives.

Now we define the Morley element method and the modified Morley element
method for (1.1).
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If ¢(v fQ fvdz for a function f € Lo(f2), then the Morley finite element
method for (1 1) is: Find uy € Vj such that
(2.5) ag(ug, v / fvdx Vv € V.

In the case where ¢ € H~2(Q), the modified Morley finite element method for
(1.1) is: Find uj, € Vi such that

(2.6) ak(uy,v) = ¢(Exv) Vo € V.
The properties of these methods are discussed in [10].
3. V-CYCLE AND F-CYCLE MULTIGRID METHODS

In this section we describe the V-cycle and F-cycle multigrid methods for the
Morley finite element.

Let the discrete inner product (-, ) on V be defined by

60 e | S i+ 3 (f o) ([ )|

PEVE

where Vj is the set of internal vertices of T, & is the set of internal edges of Ty
and n(p) = §x the number of triangles sharing the node p as a vertex. We can
represent the bilinear form ag/(-,) by the operator Ay : Vi, — V}, defined by

(3.2) (Agvy, v2)r = ag(vy,v2) Yoy, vg € V.
Then equations (2.5) and (2.6) can both be rewritten as
(3.3) Aguk = fr,

where fi € Vj is defined by (fr,v)r = [, fvdz for all v € V; for the standard
Morley method, and (fx,v)r = ¢(Egv) for all v € Vi for the modified Morley
method.

In order to describe multigrid methods, we need to define the intergrid transfer
operators. We first define I ,’j_l : Vik_1 —> Vi, the coarse-to-fine intergrid transfer
operator.

Let v € Vi_1. We define I, ,’:_11) € Vi by an averaging technique as follows:

1. If p is an internal vertex of T, then

(3.4) L)) = o > uelo),

|S ’k71| TESp k-1

where Sp 1 :={T € Tp_1 : p € OT}.
2. If e is an internal edge of T, which means that e C 9Ty N 0T for some
T,T5 € 77‘;, then

(3.5) /ea(jgknlv (/ 6“ ds / 8T2 d)

We can then define the fine-to-coarse operator I,’: L' Vi — Vi_y and the
nonconforming Ritz “projection” operator P,f 1 Vi — Vi, as follows:

(I,’j_lv,w)k = (v,I,Ij_lw)k_l Yo € Vig_1,w € Vg,
ar(IF_ v, w) = a1 (v, PFrw) Yo € Vi 1,w € Vj.
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Symmetric V-cycle Multigrid Method (cf. [5], [8], [14], [18], [20], [29] and [30])
The symmetric V-cycle multigrid algorithm is an iterative solver for equations of the
form of (3.3). Given g € Vj and initial guess z¢ € V4, the output MGy, (k, g, z9,m)
of the algorithm is an approximate solution for the equation

(36) Akz =9,

where m is the number of pre-smoothing and post-smoothing steps.
For k = 1, we define

MGV(laga ZOam) = Aflg
For k > 2, we obtain MGy (k, g, zo,m) in three steps.

1. (Pre-Smoothing) For j =1,2,--- ,m, compute z; by

1
zj =zj—1+ rk(g — Agzj-1),

where Ay is a constant dominating the spectral radius of Ag.
2. (Coarse Grid Correction) Compute z,,41 by

Zma1 = Zm + IF_ \MGy(k — 1,15 (g — Arzm),0,m).

3. (Post-Smoothing) For j =m +2,---,2m + 1, compute z; by

1
Zj = Zj—l + rk(g - Aij_l).

Finally we set MGy (k, g, z0, m) to be zam41-

In this algorithm we use Richardson relaxation as the smoother for simplicity.
Other smoothers can also be used (cf. [2], [6] and [13]).

F-cycle Multigrid Method (cf. [22], [30], and [29]) The k-th level F-cycle algo-
rithm (associated with the symmetric V-cycle algorithm) produces an approximate
solution MG x(k, g, z0,m) for (3.6). For k = 1, we define

MG.'F(]-aga'ZOam) = Aflg
For k > 2, we obtain MG £(k, g, z0,m) in three steps.
1. (Pre-Smoothing) For j =1,2,---,m, compute z; by

1
Zj = Zj—1 + A—k(g - Aijfl).

2. (Coarse Grid Correction) Compute z,,, 1 and zm41 by
Zmpl = MGg(k — 1,1571(9 — Agzm),0,m).
Zmi1 = Zm + I MGy (k= 1,151 (g = Arzm), Zg 1, m).

3. (Post-Smoothing) For j =m +2,---,2m + 1, compute z; by

1
zZj =2j-1+ A_k(g — Aij,l).

Finally we set MG x(k, g, 20, m) to be z2,,41.
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4. MESH DEPENDENT NORMS

One of the main tools for the convergence analysis of multigrid methods is the

mesh-dependent norm || - ||s,x (cf. [3]). For each v € V}, we define
(4.1) lellse = (A% %0, )

It is easy to see that

(4.2) Iol15.5 = (v, ) Vv € Vi
(4.3) lollz = [[vlla, S 2 l0llza(2) Vo € Vi

To avoid the proliferation of constants we use two notations < and =~. The
statement A < B means that A is bounded by B multiplied by a constant which is
independent of mesh sizes, mesh levels and all arguments in A and B, and A =~ B
means A < B as well as B < A.

We can also easily see that (cf. [3] and [10])

(4.4) | I where 0 <t < s < 4.

The following smoothing properties of Ry, can also be easily verified (cf. [20] and
[14]) :

(4.5) | Bxvlls, s,k Yv € Vi, s € R,
(4.6) IR vl S B mE A ollor, Yo € Vi, 0 <t <s <4,

where Rk, = Idk, — AI;IA]Q.
The following lemmas relate the mesh-dependent norms with the Sobolev norms.

Lemma 4.1. It holds that
(4.7) lvllox = l[vll,@) Vv € Vi

Proof. Let T be a triangle with |T| ~ 1. Then for all quadratic polynomials v on
T, we have

(4.8) l|v]|? P zs:vp —i—i /@ds 2.
L= i=1 ¥ i=1 €i on

Using a scaling argument on (4.8), and by the definition (3.1) of the inner product
(-, )k, we have

(4.9) (v, ) & H”||2L2(Q) Yv € V.
The lemma follows from (4.2) and (4.9). O

Lemma 4.2. Let Ej, : Vi, — Vi, be the operator defined in Section 2. It holds that
(4.10) ‘EkU|H1(Q) ~ H|UH|1J€ Yv € V.

Proof. Tt is known from [10] that the operator Ej is a bounded operator from
Vies |+ l2o(2)) to (L2(), I+ |2a(0)» and from (Vi, ||+ [la,) to (HG (), |- [r2(0)), i.e
(4.11) 1Ervllo0) S [vlla) Vo € Vi,

or equivalently

(4.12) 1ExvllLo@) S lvllok Vo € Vi;
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and
(4.13) |Exvlm2@) S Jvlla, Vv € Vi,
or equivalently

(4.14) |Exvlmz(0) S llv

By interpolations of Sobolev spaces and Hilbert scales(cf. [5] and [28]), we have

2,k Yv € V.

(4].5) |EkU|H1(Q) 5 \Hv\HLk Yv € V.

Conversely, let Qy : L2(2) — Vi be the Ly projection operator on Vg, i.e., for
each ¢ € Ly(Q2), the function Qr( € Vj satisfies

(Qk(aﬁ)Lg(Q) = (C,'D)L2(Q) Vo € f/k.
It is known that (cf. [7])

(4.16) 1@kCll o) S ICllLa)  VC € La(),
(4.17) QuClrz(0) S IClm2(e) V¢ € HF ().
We define Ji : La(Q2) — Vi, by J, = FrQg. Then from (2.3), (4.16) and (4.17) we

have

I7eCllok ~ | Fr@iCll o) S 1QkClza) S ICllza)  VE € La(92),
IeCll2k = |1 FxQrClla, S 1QkCla2(0) S 1¢IH2(0) V¢ € HF(Q).

By interpolations of Sobolev spaces and Hilbert scales, we have
(4.18) ITkCllie S KKl V¢ € Hy().

For each v € Vi, We have Ejv € ¥. Then by (2.2) and the definition of Qy, we
have

(4].9) JkEk’U = FkaEkU = FkEkU = .

From equations (4.18) and (4.19) we have

lollie = I JkExvllie S |1 Ekvimz@) Vv € Vi
Lemma 4.3. It holds that
(4.20) S ol = Ivlli s, Yo € Vi
TeT
Proof. Tt is known that (cf. (E) of [10])

(4:21) lv = Bevllaey S llolla, Vo € Vi.
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From (2.4), (4.4), Lemma 4.2, (4.21) and a standard inverse estimate (cf. [14], [15])
we have

> ol < Y (v = Ewvlgry + |Eivlmn)?

TETk TETk
S - Bwliney + Y [Bevlin
TeT TeTw

S byl - Ek”||2L2(Q) + |Ekv|§{1(n)

S il + 1Bl o
TeTk
S BElloll3 x + [ Brol ) S T0l7

for all v € V4.
Conversely from Lemma 4.2, (4.21) and a standard inverse estimate we have

|||U”|ik N |Ekv|2H1(Q) = Z \Ekvﬁﬂ(m

TET:
< (v = Bxvlmry + [vlm(n))?
TETx
S Z v — Eyvlin ) + Z o3 ()
TET, TETr
ShiPllv = Brollg ) + D vl
TET:
SElI, + Y [l
TeTs
S Z |’U|%Il(T)
TETk
for all v € V4. O

5. SOME KNOWN RESULTS FOR THE ADDITIVE THEORY

Let Ex m : Vie — Vi be the error propagation operator of the symmetric V-cycle
algorithm applied to the equation (3.6), i.e.,

]Ek:,m(z - ZO) =z — MGV(kLgv Zo,m),
where z is the exact solution of (3.6). The following relations (cf. [5] and [20]) are
well-known:
(5.1) Bk m = RP((Idy, — IF_ PE™Y) + I By, PETYRY for k> 2,
(5.2) Epm = 0.
From (5.1) and (5.2) the following additive expression for Ey ,, can be derived that
is the starting point of the additive theory (cf. [11]):
k

m m i+1 pm j i—1 m

(5.3) Eim = 3 RPIf - RYG IV RM(Id; — I)_ P! RY
j=2

7 m k—1pm
x Pl RP - P} IR,
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Let I~Ek7m : Vi — Vi be the error propagation operator of the symmetric F-cycle
algorithm applied to the equation (3.6), i.e.,
I’.Ek:,m (Z - ZO) =z MG]:(kvga 20, m)7

where z is the exact solution of (3.6). The following relations are also well-known
(cf. [29]):

(54) Ei,,=0
(55)  Brm = RP[(Idy — I P Y) + I Br 1B 1 P YRR, k> 2,

An additive theory for the convergence analysis of V-cycle and F-cycle multigrid
algorithms is developed in [11] based on the expressions (5.3)—(5.5). It is shown
there that, to complete the convergence analysis, we only need to verify the following
assumptions.

Assumptions on Vi:

(v, 0)k ~ ||UH%2(Q) Yv € Vi,
[vllay < h];2||v||L2(Q) Yv € Vi;

Assumptions on If_, and PF~1:
5k < @+ 0)I0l3 oy + CLO7 R NI0]13 10 g
Yv € Vi_1,0 € (0,1),
I 1l e < A+ O3 e 1 + Cot B I0ll3 4+
Yv € Vi_1,6 € (0,1),

k
25—l

1P 0l13_ pmr < (14 0I5 s + Cs0 2R3 [|0]I5 4
Vv € Vi, 8 € (0,1);
Assumptions on I,’j_lPk’f*l and P,f*lI,’j_l:
I(Id = I Pe Y )ollz—an S B lvllasan Vo € Vi,
I(Idk—1 = PE IE_)vlla—an—1 S hgllvllak—r Vo € Vi

It is also shown in [11] that these assumptions can be verified for a specific
nonconforming multigrid method by the use of the following framework.

First, we should establish a good relation between the nonconforming finite ele-
ment space Vi and its conforming relative V. Beside (2.2) and (2.3), the two spaces
are also assumed to satisfy the following properties, which have been established in
[10].

Let ¢ € H**(Q) N HE(Q), {k € Vi and (_1 € Vi_1 be related by

a(¢, Exv) = ak(Ck,v) Yv € Vg,
a(¢, Ex—1v) = ag—1(Ce—1,v) Yv € Vi_y.

Then the following estimates hold:

(5.6) 1€ = Cklla S PEIICI 24 (),
(5.7) ITTk¢ = Cilla—ak S RREICH a2 4 (0
(5.8) Gk—1 = P Cello—ak—1 S BR¥(ICN m2+a ),
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where « is the index of elliptic regularity in (1.2) and Il : H3(Q) — V4 is the
Morley interpolation operator defined as follows. For each ¢ € HZ(f2), the function
I € Vi, satisfies

(5.9) (Ix0)(p) = v(p) and / %ds = [5oas

where p and e range over the internal vertices and edges of 7.
Secondly we need the following estimates concerning If , and Iz, which have
also been established in [10] :

(5.10) IZE_1olls ke S Nollse—a Vo € Vi1, 0 < s < 2,
(5.11) 1¢ = MiCll o) S hil¢lm2 (o) V¢ € Hy (Q),

(5.12) 1€ = MiCllay S PElIC] zta V¢ € H*F*(Q) N Hy (),
(5.13)  ITk¢ = i Ty 1Cllz-ak S BE%IICN H2ta(e)  VC € HH(Q) N HE ().

Finally, the following new estimates are required for relating mesh-dependent
norms between two consecutive levels. First of all, we have

(5.14) g yvlle e < (L4005 k1 + Cob 2RI k1 Vo € Vi, 6 € (0,1),

where the positive constant Cy is mesh-independent. Moreover, the operator Ty
can be extended to map HZ(Q) + Vi to Vi1 (see the next section for details) and
we have

(5.15) - 10llay S [0l Vo € H3(Q) + Vi,
(5.16) IM—10 = 0]l @) S hillolla, Vo € Vi,
(5.17) k-0l k-1 < (L+6)[0ll5 1, + Cof 2R 0ll%, . Yo € Vi, 8 € (0,1),

where the positive constant C, is mesh-independent.

The theory in [11] can be applied to V-cycle and F-cycle multigrid methods using
the Morley element once we have (2.2), (2.3), (5.6)—(5.8) and (5.10)—(5.17).

We will establish the new estimates (5.14)—(5.17) in next section and complete
the convergence analysis.

6. CONVERGENCE ANALYSIS

We first extend the definition of ITj, to a larger space. In fact, the definition (5.9)
can be extended to HZ(Q) + Vi, + Vii1-

Let v € HZ(Q) + Vi + Vis1. First of all, the value v(p) is well-defined for p € V.
Secondly, the integral fe g—z ds is also well-defined for e € &;. In particular, if
v € Vi11, then

Ov ov ov
6.1 —ds = —d —d
(6.1) eans e ON st 628ns
where e1,e5 € g1 with e = e; U ey (cf. Figure 2). Therefore the linear operator
II} is well-defined from the larger space HZ(Q) + Vi + Vi1 into Vj. In particular,
Oy : H3(Q) + Vi, — Vi and Hi_y : H3(Q) + Vi — Vi—1 are both well-defined.
Before we prove the estimates (5.14)—(5.17), we give two lemmas.

Lemma 6.1. It holds that
(6.2) [0 = Tkvl| Ly (o) + PEITR0] 0y S PEll0]lay, Vo € HF(RQ) + Vi

~
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A
K

FIGURE 2. An edge e € E_1.

Proof. Let T € Ty, ¢ € H*(T) and the quadratic polynomial II.¢ on T be the
Morley nodal interpolant of (, i.e.,

(6.3) (L) (pi) = ¢(p:) and / % ds = / g_ft s,

for i = 1, 2 and 3, where py, p2 and p3 are the vertices of T, and ey, es and es are
the edges of T It is well known that (cf. [14] and [15]),

(6.4) 1¢ — e Cll Loy + P Me| 12y S RElCI a2 (1)

Let v € HZ(Q)+ Vi and T € Tg. Then vy € H2(T) and v = v, on T. Therefore
(6.5) [0 = Tgo|| £y () + W[ ko] g2y S hiloluz()-

The estimate (6.2) holds because (6.5) is valid for all T € Ty. O
Lemma 6.2. It holds that

(6.6) ) o =0 Vv € HE(Q) + Vi,

Proof. Let v € H2(2) + Vi be arbitrary. The functions I IIzv and I ;v are
both in V;_1. Moreover, we have

(Ik—11Lxv)(p) = (Lk-1v)(p)
for all p € V,_1, and

/8(Hk11'[kv) dS:/ 8(Hkv) d8+/ 8(Hkv) ds
e on e1 on e on

ov ov
:Lla?d5+L287dS

_ @dS:/E)(Hk_w) ds
e an e

for all e € &1, where e1, es € &, with e = e; Ues (cf. Figure 2). Therefore
kalﬂk’l} = kalv. O

Lemma 6.3. The estimate (5.16) holds. That is

IMe—1v — vl 0) S Rillvlla, Vv € Vi
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FIGURE 3. A reference triangle T divided into 4 triangles T, Ty, Ts
and Ty

Proof. Let T € Tr_1 be divided into 4 triangles T,T5,T3 and Ty in T; and T =
T/hj_1. Then |T| ~ 1 (cf. Figure 3).

For each v € Vj, define #() = v(hy_1%) for & € T. Note that Z € T if and only
if hj_1Z € T. If w = II;_qv, then we define II;_1% to be .

Let V(T) be the Morley finite element space associated with Ty, T, T and T.
Note that V(T') is the space of functions & € Lo(T) such that |7, is a quadratic
polynomial on 7T} for i = 1, 2, 3 and 4, ¥ is continuous at p;, p2 and ps, and 00/0n
is continuous at m;, mo and mg. We can see that V(T) is a finite dimensional linear
space and
1/2

|« = [Z Ll H2(Ty)

defines a norm on the quotient space V(T)/P,(T), where P;(T) is the space of
linear functions on 7. On the other hand,

v — [0 = 8]l 1, ()
defines a semi-norm on V/(T)/Py(T). Therefore

1/2
(6.7) M1 — O, < [ZW H2(T;) ] :

A scaling argument on (6.7) yields

4 1/2
(6.8) Me—10 = vl zo(ry S ik [Z |U|§{2(Ti)] :
i=1
The estimate (5.16) follows. O

Lemma 6.4. The estimate (5.15) holds. That is

=10l S Mlolla, Yo € HG(Q) + Vi
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Proof. From (6.2), (6.6), Lemma 6.3 and an inverse estimate we have that, for all
v € Hg (Q) + Vi,

Mk —10]]ay, = [[k—11150]ay
< M1 Igv — Mgv o, + (Mg,
S hy k-1 1k — Iy 0) + [[Tk0]lay
S Mevllay S llvllay-
]
Before we prove the estimates (5.14) and (5.17), we state an elementary inequal-
ity:
(6.9) (a+b)? < (1+6%)a*+ (1+62)* Va,beR, 0€(0,1).

In the rest of the section, we use C for a mesh-independent constant. The values
of C' at different appearances are not necessarily identical.

Lemma 6.5. The estimate (5.14) holds. That is

(6.10) 17613 < (L +)lIF k-1 + CORE 0N, k-1

for allv € Vj_1 and 6 € (0,1).

Proof. Let v € Vi,_; be arbitrary and w = I¥_,v. Then by (3.1) we have

ow 2
610 Mol = e =1 | Y @2+ Y ([ G as)
PEVk ecé&y, €
and
2 2 2 v ?
(6.12) ollg s =R | D nlp)v(p)’+ %) |
PEVE-1 e€lk_1 ¢

where n(p) = |Sp|/6 and S, is the set of triangles sharing p as a common vertex.
Note that n(p) is independent of k.

If p € Vi1, then the value v(p) is well defined, i.e., vr(p) = v|r(p) = v(p) for all
T € Ti—1 sharing p as a common vertex. From (3.4) in the definition of I} | we
have w(p) = v(p). If p € Vi \ Vk_1. Then p is the midpoint of some e € &1, which
is the common edge of two triangles T, T" € T._1 (cf. Figure 4). After subdivision,
p is the common vertex of 6 triangles in 7 and therefore n(p) = 1. Hence we can
write

(6.13) Y nwp)?’= > nep®)>+ Y. wp)?
PEVk PEVE_1 PEVE\Vi—1

Suppose p; and py are the endpoints of e (cf. Figure 4). We have
1 1 1
610 w0 = [3(er0) + o o)| < H0n)? + o)

Then from (6.9) we can write
S (er(p))” = 3 1) + (0r(p) — (o)

<

N — N~

(L+6%)v(p1)* + CO*[vr(p) — v(p1)]*.
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D1

T/

D2

FIGURE 4. A vertex p € Tg \ Ti—1

Note that the Mean-Value Theorem and a standard inverse estimate imply that
[or(p) = v(p1)]* < o = P11Vl (1) < Clolin (-

Therefore we have

1 1
(6.15) S (wr())? < 51+ 0)0(p1)? + OO 2ol ),
and similarly

1 1
(616) i(UTI (p))2 S 5(1 + Gz)v(pg)z + 0072‘1)‘?.[1('11/).

Thus from (6.14), (6.15), and (6.16) we have

1 ~
(6.17) w(p)? < S+ 6%)[v(p1)® + v(p2)*] + CO[[olFna () + [VlFra ().

Taking summation of (6.17) over p € Vi \ Vi1 gives

S owl < G046 Y ISkm? 67 Y ol

PEVE\Vi-1 PEVE-_1 TeETk-1
= 3(1+6%) DY nEw®?+Co % > |olinm
PEVE -1 TETk_1

Therefore it follows from (6.13) that

(6.18) Z n(p)w(p)? < 4(1 + 6?) Z n(p)v(p)? + CH~2 Z |v|§{1(T).

PEV PEVE-1 TETK -1

By the definition of IF_, (cf. (3.5)), we have

(6.19) Z(/ﬁ?;dsfch(/aT%’;ds)z.

e€Ey, TET

From the Mean-Value Theorem and a standard inverse estimate we have

Ov 2
6.20 / —Tds> < |0T?|| V|7 < Clo|n
(6:20) ([ Szds) <IOTPIVelE ) < Chlecr

for all T € T. Therefore from (6.19) and (6.20) we have

(6.21) 3 </eg—1;:ds>2 < Y i

ecly TETK-1
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By (2.1), (4.4), Lemma 4.3, (6.11), (6.12), (6.18) and (6.21), we have
k1113

< hy [41+6%) Y @@ +007% Y ipgy +C Y Pl

pPEVE_1 TETK-1 TETk—1
S@+60hi_, > n@we)?+CO i > ol
PEVE_1 TETk-1

(L+ 00l -1 + CO*REVI ks
(140 wl5 1 + CO* R ol k-

<
<
Lemma 6.6. The estimate (5.17) holds. That is
(6.22) T2l 1 < (1 +6*)[0]I5 5 + CO gl
for allv € Vi, and 0 € (0,1).

Proof. Let v € Vi be arbitrary. It is easy to see from (3.1) that [Jv[|§, can be
expressed as follows:

(6.23)

s w2 ()]

TE'Tk pPEVT e€&y

where Vr is the set of the vertices of the triangle T
Let w = IIx_qv. Then

(6.24) lwll§ 1 = hiz1 | 7 Z > v+ Y ( g_:ds>

TeT;c 1 PEVT e€&r_1

By the definition (5.9) of II,_; and (6.1), we have w(p) = v(p) for all p € V1 and
ow ov ov 2
( eand> ‘( an ds+/626_nds>
2
<2 / %ds +2 / %ds
e, ON er ON
for all e € &1, where ej, ey € & with e = e; U es (cf. Figure 2). Therefore

(6.25) . io‘ D > v+ Oy < Zvds>

TETk_1 pEVT e€&y

Let T € Ti_1 be divided into four triangles 17,5, T3 and T}y in T, whose vertices
are labeled as in Figure 5. Then we have
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D1

‘I1Q3
Ty F Ty
P2 D3

q2

FIGURE 5. A Triangle T' € Ti_1 divided into four triangles in Ty

3

4) v’ =D v(p) +32 v(g:) —v(g))]?

pPEVT i=1
(6.26) < v(pi)’+3 Z[(l +6%)0(@:)* + (1+ 0 %) (v(pi) — v(a))?]
+92ZZ 24Co” 2Z|U|H1
= 1p€VT

From (2.1) and (6.26) we have

4
(6.27) D @< AH0RED D w(p)? +CO” thZ\v\Hl(T

pEVT i=1 pGVT i=1
Summing up over all T' € Ty, gives

(6.28) Wiy > Y u(p)?

T€Tk-1 PEVT

<h2 1+02 Z Z +C€ 2h2 Z ‘U‘Hl(T)

TETr pEVT TETk

Using a similar argument as in (6.19)—(6.21) we have

(6.29) </—ds> <03 ol

ecéy TeTw
Therefore from (4.4), Lemma 4.3, (6.23), (6.25), (6.28) and (6.29) we have

LS S e on Y (/g_d>

M1l 5y <

T€Tk—1 PEVT e€Ek
< 1+92 )Y w2+ CO2RE DY ol
TET: pEVr T€Tk
< (1 +6)[lvll3 . + CO*Ri NI &
< (L+0)v)l3 . + CO 2R3 |v)|2
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(a) Square domain (b) L-shaped domain

FIGURE 6. The triangulation 7y for k& = 2.

We have proved all the required estimates for the additive theory (cf. [11]). The
following theorems are then established.

Theorem 6.7. There exist a positive constant C and a positive integer mg, both
independent of k, such that for all m > mgy and zg € Vg,

(6.30) Iz = MGy (k, g, z0,m)l|a, < Cm™*/%|lz = z0]la,

where z is the exact solution of (3.6).

Theorem 6.8. There exist a positive constant C and a positive integer my, both
independent of k, such that for all m > mqg and zg € Vi,

(6.31) |z — MGx(k, g, 20,m)la, <Cm %z~ 20]lay,

where z is the ezact solution of (3.6).

7. NUMERICAL EXPERIMENTS

In this section we present some experimental results to illustrate Theorem 6.7
and Theorem 6.8.

First let 2 be the unit square (0,1) x (0,1) (cf. Figure 6(a)). Since the domain
(2 is convex, we have full elliptic regularity, i.e., the index « in (1.2) is 1. Let v m
be the contraction number of the kth level V-cycle iteration with m pre-smoothing
and m post-smoothing steps. According to Theorem 6.7, there is a constant C,
independent of k and m, such that

(7.1) mY 2y < C.

The numerical results in Table 1 are consistent with (7.1). In fact, they seem to
indicate that C could be some number less than 10 and (7.1) is valid as long as
m > 50.

Remark 7.1. Note that the condition number of the operator Ay (cf. (3.2) and
(4.3)) is of order h, * while the condition number for second order problems is of
order h,f. Therefore the effect of m smoothing steps for fourth order problems is
equivalent to the effect of 1/m smoothing steps for second order problems.

Let 4x,m be the contraction number of the kth level F-cycle iteration with m
pre-smoothing and m post-smoothing steps. According to Theorem 6.8, there is a
constant C, independent of k£ and m, such that

(7.2) m' 25 1 < C.
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m* 2,k | m=20 | m=30 | m=40 | m=50 | m=60 | m=70 | m=80
1.1347 | 1.0005 | 0.9075 | 0.8251 | 0.7454 | 0.6683 | 0.5948
1.5547 | 2.2969 | 2.1645 | 2.0767 | 2.0067 | 1.9455 | 1.8904
3.9972 | 3.5275 | 3.3043 | 3.1722 | 3.0803 | 3.0009 | 2.9491
5.3075 | 4.5923 | 4.2589 | 4.0665 | 3.9393 | 3.8459 | 3.7726
6.4352 | 5.4653 | 5.0207 | 4.7645 | 4.5984 | 4.4800 | 4.3898
7.3727 | 6.1637 | 5.6143 | 5.2982 | 5.0953 | 4.9528 | 4.8459

W‘W‘TTPT‘PT‘PT‘
0| 3| S| O = W

TABLE 1. V-cycle results on the unit square

The numerical results in Table 2 are consistent with (7.2) and seem to indicate that
C =2 and (7.2) is valid as long as m > 15.

3

1 2’ym7k m=10 | m=11 | m=12 | m=13 | m=14 | m=15 | m=16
1.2132 | 1.1890 | 1.1706 | 1.1524 | 1.1364 | 1.1231 | 1.1071
1.4359 | 1.4037 | 1.3764 | 1.4097 | 1.3907 | 1.3838 | 1.4097
1.4310 | 1.3909 | 1.4163 | 1.4140 | 1.4030 | 1.4000 | 1.3933
1.4057 | 1.4041 | 1.3989 | 1.4017 | 1.3924 | 1.3908 | 1.3905
1.7918 | 1.3958 | 1.4035 | 1.3841 | 1.3756 | 1.3949 | 1.3759
5.4706 | 3.5578 | 2.4361 | 1.7541 | 1.3662 | 1.3775 | 1.3700

I
ool | S| o x| o

R R

TABLE 2. F-cycle results on the unit square

In the case of the L-shaped domain (cf. Figure 6(b)), the index of elliptic regu-
larity is a, = 0.5444837368. Numerical results for V-cycle and F-cycle algorithms
are reported in Table 3 and Table 4, which are also consistent with (7.1) and (7.2).

Q

m® /2y, | m=30 | m=40 | m=50 | m=60 | m=70 | m=80 | m=90
k=3 0.2237 | 0.1404 | 0.0879 | 0.0546 | 0.0337 | 0.0208 | 0.0127
k=4 0.9099 | 0.7905 | 0.7137 | 0.6597 | 0.6173 | 0.6833 | 0.5561
k=5 1.5698 | 1.3924 | 1.2888 | 1.2124 | 1.1605 | 1.1192 | 1.0877
k=6 2.1111 | 1.8776 | 1.7316 | 1.6282 | 1.5592 | 1.5073 | 1.4635
k=7 2.5752 | 2.2753 | 2.0991 | 1.9814 | 1.8938 | 1.8276 | 1.7715
k=8 2.9648 | 2.6232 | 2.4243 | 2.2913 | 2.1894 | 2.1138 | 2.0517

TABLE 3. V-cycle results on an L-shaped domain

Remark 7.2. Even though the asymptotic convergence rate for both algorithms is
O(m""/ %), the performance of the F-cycle algorithm is clearly superior, as demon-
strated by the numerical results in Table 5 and Table 6. Similar results also hold
for the L-shaped domain.

Compared with the W-cycle algorithm, the contraction numbers for F-cycle are
larger for small numbers of smoothing steps. In Table 7, the contraction numbers
of W-cycle algorithm are given for 3 < m < 8. In general F-cycle algorithm diverges
for these m’s. However, for larger m (say, for m > 13), the contraction numbers for
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Qo

m 2'~ym7k m=11 | m=12 | m=13 | m=14 | m=15 | m=16 | m=17
k=3 0.5550 | 0.5266 | 0.5006 | 0.4762 | 0.4532 | 0.4313 | 0.4112
k=4 0.8529 | 0.8459 | 0.8126 | 0.8080 | 0.7965 | 0.7858 | 0.7743
k=5 0.8274 | 0.8092 | 0.7942 | 0.7701 | 0.7646 | 0.7303 | 0.7341
k=6 0.8134 | 0.7958 | 0.7830 | 0.7627 | 0.7515 | 0.7391 | 0.7192
k=7 0.8205 | 0.8038 | 0.7894 | 0.7759 | 0.7601 | 0.7381 | 0.7246
k=8 2.0406 | 1.4087 | 1.0198 | 0.7749 | 0.7449 | 0.7264 | 0.7140

TABLE 4. F-cycle results on an L-shaped domain
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both algorithms are almost the same, and sometimes the F-cycle algorithm is even
better (cf. Table 6 and Table 8). Considering the fact that the cost for W-cycle
is higher, we could say that the F-cycle algorithm is even more efficient then the
W-cycle algorithm for m between 11 and 16.

It would be interesting to find a theoretical explanation for the superior perfor-
mance of the F-cycle algorithm.

m=34

[NE

m=35

m=36

m=37

m=38

m=39

m=—40

m=—41

0.1648

0.1609

0.1571

0.1535

0.1500

0.1467 | 0.1435

0.1404

0.3834

0.3756

0.3683

0.3613

0.3546

0.3483

0.3422

0.3365

0.5869

0.5746

0.5630

0.5521

0.5417

0.5318

0.5225

0.5135

0.7605

0.7438

0.7281

0.7133

0.6993

0.6860

0.6734

0.6614

0.9014

0.8807

0.8613

0.8430

0.8257

0.8093

0.7935

0.7791

PT'PT‘PT‘TT‘PT‘PT‘Q
oo| ~1| o | | colie

1.0128

0.9887

0.9667

0.9448

0.9247

0.9057

0.8877

0.8707

TABLE 5. Contraction numbers for V-cycle algorithms on the unit square

m=11

m=12

m=13

m=14

m=15

m=16

INE

0.3580

0.3379

0.3196

0.3037

0.2900

0.2768

0.4232

0.3973

0.3910

0.3717

0.3573

0.3524

0.4194

0.4089

0.3922

0.3750

0.3615

0.3483

0.4234

0.4038

0.3888

0.3721

0.3591

0.3476

0.4208

0.4051

0.3839

0.3677

0.3602

0.3440

WW'WIT'WW'\Q:
|~ o o | wof

1.0727

0.7032

0.4865

0.3651

0.3557

0.3425

TABLE 6. Contraction numbers for F-cycle algorithms on the unit square
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(4]
6
[7]

(8]

[9]
[10]

(1]

(12]
(13]
[14]

(15]

JIE ZHAO

Ymkw | M=3 | m=4 | m=5 m=6 | k=7 m=8

k=3 0.7260 | 0.6620 | 0.5922 | 0.5313 | 0.4883 | 0.4245
k=4 0.7628 | 0.7005 | 0.6294 | 0.5787 | 0.5323 | 0.4898
k=5 0.8499 | 0.7477 | 0.6505 | 0.5743 | 0.5348 | 0.4988
k=6 0.8926 | 0.7673 | 0.6660 | 0.5850 | 0.5445 | 0.4990
k=7 0.9349 | 0.8051 | 0.6544 | 0.5874 | 0.5384 | 0.5003
k=8 0.9334 | 0.8214 | 0.6747 | 0.5856 | 0.5362 | 0.5009

TABLE 7. Contraction numbers for W-cycle algorithms on the unit square

Ymkw | M=11 | m=12 | m=13 | m=14 | m=15 | m=16
k=4 0.4250 | 0.4113 | 0.3943 | 0.3790 | 0.3660 | 0.3473
k=5 0.4288 | 0.4078 | 0.3958 | 0.3774 | 0.3670 | 0.3558
k=6 0.4296 | 0.4137 | 0.3957 | 0.3803 | 0.3642 | 0.3553
k=7 0.4285 | 0.4117 | 0.3954 | 0.3817 | 0.3667 | 0.3546

TABLE 8. Contraction numbers for W-cycle algorithms for large m’s.
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