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Abstract

A class of non-oscillatory numerical methods for solving nonlinear scalar con-
servation laws in one space dimension is considered. This class of methods contains
the classical Lax-Friedrichs and the second order Nessyahu-Tadmor scheme. In the
case of linear flux, new [y stability results and error estimates for the methods are
proved. Numerical experiments confirm that these methods are one-sided I stable
for convex flux instead of the usual Lip+ stability.

1 Introduction

We are interested in the scalar hyperbolic conservation law
(1) ut+f(u)$ :07 (.%’,t) € R x (0700)7
u(z,0) = u(z), z€eR,

where f is a given flux function. In recent years, there has been enormous activity in the
development of the mathematical theory and in the construction of numerical methods
for (1). Even though the existence-uniqueness theory of weak solutions is complete, there
are many numerically efficient methods for which the questions of convergence and error
estimates are still open. For example, there are many non-oscillatory schemes based on
the minmod limiter which are numerically robust, at least in many numerical tests, but
theoretical results about convergence and error estimates are still missing [3, 7, 8, 23].
In this paper, we consider a class of the so-called Godunov-type schemes for solv-
ing (1). There are two main steps in such schemes: evolution and projection. In the
original Godunov scheme, the projection is onto piecewise constant functions — the cell
averages. In the general Godunov-type method, the projection is onto piecewise poly-
nomials. To determine the properties of these schemes it is necessary to study the
properties of the projection operator. We limit our attention to the case of piecewise
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linear projection based on cell averages using minmod limiters for the slope reconstruc-
tion and we call such a scheme minmod-type. For example, the Nessyahu-Tadmor scheme
[19] is of minmod-type and it is based on staggered evolution, other examples include the
second order non-oscillatory central schemes with non-staggered grids given in [9, 10].
Theoretical results about convergence of such schemes to the entropy solution, or error
estimates, are still missing. In most cases the authors give a variation bound for such a
scheme which is enough to conclude that the method converges to a weak solution. The
only paper which has a convergence result is the Nessyahu-Tadmor paper [19] in which
the authors prove a single cell entropy inequality for a minor modification of the original
MinMod scheme. A single entropy inequality is enough to conclude that the scheme is
convergent to the unique entropy solution but does not give any rate of convergence. In
order to get a rate, one has to have a family of entropy inequalities (see [1, 15]). Al-
ternatively, for a convex flux, one can impose Lip+ stability on the projection and then
prove convergence via Tadmor’s Lip’ theory [19, 24]. Unfortunately, it is well known that
minmod-type schemes are incompatible with the Lip+ condition — the Lip+4 seminorm
is not preserved by a minmod-type projection. It is easy to think about minmod-type
schemes in terms of new/old cell averages. That is, we start with a sequence of cell
averages {w;} and after one time step (projection and evolution) we get a new sequence
{w}}. A scheme is total variation diminishing (TVD) if the variation of the new sequence
> lw); —w}_;| is not bigger than the variation of the old one } . [w; — w;_1], i.e., the
[y norm of the jumps does not increase in time. In the Lip+ case, for convex flux the
condition on the jumps is that the biggest non-negative jump does not increase in time

sup(w; — wj_y)+ < sup(w; — wj—1)+-
j j
In Section 3 of this paper, we prove that for linear flux the l; norm of the jumps for
some minmod-type schemes does not increase in time and based on that we derive a
new error estimate in section 4. In the non-linear case, there is numerical evidence that
for convex flux we have the one-sided analog

D (wh—wi )% <) (wy —wi)}
j j

which suggests a different approach to prove convergence for such schemes.

2 Non-Oscillatory Central Schemes

In this section, we are concerned with non-oscillatory central differencing approximations
to the scalar conservation law

The prototypes of all central schemes are the staggered form of the Lax- Friedrichs (LxF)
scheme and its second order extension, the Nessyahu-Tadmor (NT) scheme [19]. For an
introduction in central schemes see [9, 10, 17, 19]. For simplicity, we limit our attention
to the staggered NT scheme described below. Let v(z,t) be an approximate solution



to (2), and assume that the space mesh Az and the time mesh At are uniform. Let

rj:=jAzx, ] €L, \:= % and

1 Tjt1/2
(3) vj(t) := s /zj_l/z v(z,t)dx

be the average of v at time t over (z;_1/2,%;411/2). Let us assume that v(-,t) is a piecewise
linear function, and it is linear on the intervals (z;_1/2,%;j11/2), j € Z, of the form

1
(4) v(z,t) = Lj(z,t) == v;(t) + (v — xj)ﬂv;-, Tj—1y2 < < Tjy1)2,
where ﬁv;- is the numerical derivative of v which is yet to be determined. Integration

of (2) over the staggered space-time cell (z;, zj11) X (t,t + At) yields

Tj+1/2 Tj+1
(5) ’U]'+1/2(t + At) = ﬁ (/ Lj (x, t) dx + / Lj+1($, t) dCE)
zj Tjt1/2

—+ </;+Atf(u(xj+1,7))d¢—/tt+Atf(u(xj,T))dT>.

The first two integrals on the right of (5) can be integrated exactly. Moreover, if the
CFL condition
(6) A max |f'(v(z,1))| <

zj<e<Tjt1

Y j€Z7

DN | —

is met, then the last two integrants on the right of (5) are smooth functions of 7.
Hence, they can be integrated approximately by the midpoint rule with third order
local truncation error. Note that, in the case of zero slopes ﬁv} and ﬁ %1, the time
integration is exact for any flux f, and even for nonzero slopes the time integration can
be exact for a low degree polynomial flux if a higher order quadrature rule is used. Thus,

following [19], we arrive at
M vaplt ) = S0+ o) + 50— )
= Af(zj,t+ AL/2)) = f(o(z;,t + At/2))) .

By Taylor expansion and the conservation law (2), we obtain
1
) et AL/2) = vy(t) — AS)

where - f; stand for an approximate numerical derivative of the flux f(v(z = z;,1)).
The following choices are widely used as approximations of the numerical derivatives
(we drop t to simplify the notation)

(9) U;' = m(vj+1 — V5,05 — V1),

f]{ = m(f(vj1) — fvy), f(v;) — f(vi-1)),



where m(a,b) stands for the minmod limiter
1
(10) m(a,b) = MinMod(a, b) := §(sgn(a) + sgn(b)) - min(|al, |b])

with the usual generalization

inf (F) if ECRy
(11) m(E) =< sup(£) if ECR_
0 otherwise

A generalization of this numerical approximation is based the so-called minmod-6
limiters

1
(12) v = m <9(Uj+1 = Uj) 5 (U1 = 0j1), 0(v; — Ujl)) ,

1

i = (B0 ) = £ 30) = F3ma)) 00 3) = F31) ).

Given the approximate slopes and flux derivatives (12), we have a family of central
schemes in the predictor-corrector form

1
o(as,t+AH2) = vt = SM,

1 1
(13) vt + AL = S (0(t) + v () + (V) — Vi)
— Af(o(mj41, 0+ AL/2)) = flo(a;, t + At/2))),
where we start with v;(0) := &= [77*'/> uo(x) dz. Note that we alternate between two

Tj-1/2

grids uniform partition of the real line: all intervals with integer end points for t = 2kAt,
k € Z, and half integers for t = (2k + 1)At, k € Z. As a special case, we recover the
staggered LxF scheme for # = 0 and the basic MinMod scheme for # = 1 (the middle

slope in the minmod limiter (12) drops if § < 1).

3 [y Stability for Linear Flux

In this section we will prove that the central scheme given in (13) is [y-stable for any 6 in
the interval [0, 1]. Based on this stability we will also derive a new error estimate in Lo
instead of the usual L; estimates in the conservation laws. Note that even for linear flux
f, the minmod-type schemes are not linear and the only global property known was that
the total variation does not increase in time under an appropriate CFL condition, see
[19]. The class of minmod-type schemes is also not Lip+ stable except for the obvious
choice # = 0. Let us consider a linear flux f(u) = au, uniform time steps ¢, = nAt, and
restrict the minmod limiter to 6 < 1. We denote v} := v;(t,), 07 := v} — v} ;. The
minmod scheme (13) reduces to

(14) vl = SOF +vfh) + g (6, 070) = m(0fy, 67ss))
alAt ([ aAt 0 on . QAL 0 on
_ E (Uj+1 — Eem( j+175j+2) _'Uj + 2Ax9m(5j,6j+1)> .

4



Hence, we have an explicit formula for the new cell averages (at time ¢, 1) on staggered
grid in terms of the old ones (at time ¢,,) on regular grid. In order to simplify the notation,
we drop the time dependence and denote w; = v}, wj,, = il = wh — wj

J+1/20 Y Jj—b
Q —|— “—Amt, and 3 := %a(l — «a). With this notation, we have the followmg relation

between the sequence of the new averages {wj;} and the old ones {w;}
(15) w; = aw; 1 + (1 — a)w; + 06 (m(d; 1,0;) — m(d;,0;11)) -

Using that J; = w; —w,_1, we derive the formula for the sequence of new jumps in terms
of the old ones

(16) 5 —04(5] 1+ (]. —06)5 —Hﬁm( i— 2,(5] 1) +20ﬂm( i—1, ) Hﬁm( +1).

The CFL condition (6) reduces to 0 < a < 1 because a = 1/2 + %% and |%2¢] < 1/2.
The main result in this section is the following stability result.

Theorem 1. If the initial condition ug € Lo(R), then the ly norm of the jumps of the
approximate solution v(-,t) is non-increasing in time. That is

(17) {03 I = {07 = w72 I < {05} e = [{v] — vj1 Hle,
for alln > 1.

Proof. 1t is clear that we have to prove the result for one step assuming that |[{d;}];, <
0o. We split the proof in two parts. First, we prove the stability for a monotone sequence
{w;} which is equivalent to ¢; > 0 for all j € Z. Then we apply that result locally to
derive the lo-stability for a general sequence.

Theorem 2. Let us assume that §; > 0, j € Z, and &’ be given by (16). Then

(18) {052 < [1{05}Hlz,-

Proof. Let us recall that {§;}>=, € [y, and §; > 0 for all j. It is enough to prove
Theorem 2 only for 0 < a < 1. Let 1 := 63, then 0 < 8; < . We construct the new
sequence {d}} by using the rule

(19) 5 (]. — CU)5 + a(SJ 1 — 51 mln((SJ 2, 5] 1) + 251 mln((SJ 1, ) Bl mm(é], 5J+1)

for each j. First we assume that {¢;} has finite support. It is easy to see how to modify
the proof in case the support is not finite. Therefore we assume 9; = 0 for 7 < 3 and for
j = N — 3 for some integer N. Then §; = 0 for j < 3 and j > N — 2. Thus it suffices
to prove

(20) Z 52 > Z(é’)

Let us introduce some notation. Let y; = min(d;,d;11), Ad; = §; — §j_1, Ay; =
Y — Yj—1, A%0; = 6; — 26;_1 + §;_a, and A?y; = y; — 2y;_1 + yj—2. Then (19) becomes

8t = ((1 - a)d; + adj_1) — Ay,

5



Then

N N
D)= (1= )d; + ad; 1)* = 281((1 — a)d; + ad; 1) A%y; + BH(A%;)?) .
j=1 j=1

Note that since dp = 4 = 0 and 0, = J; = 0, we have
N
D 6 — (1= a)d; + ad_1)
j=1
N
Z (1—(1—a)? —204(1—04)(55]1—042

7=1
N
Z (1— ) —a?)8} — 2a(1 — )§;0;1

N

=28 (207 — 20,0, _2525 —8; 1) _2/32 (AJ;)

Jj=1 Jj=1 Jj=1

Thus we get
N

(21) 252 Z = (268(A5)> +2B1((1 — @)6; + ad;1)A%y; — B (A%;)°) .
j=1 j=1

To prove Theorem 2, we need to prove
N
> (28(A8;)° + 261 ((1 — @)3; + ad;_1)A%y; — B (A%;)?) > 0.
j=1

Note that

o
;

(61/8)

(28(A8;)% +261((1 — @)d; + adj1)A%y; — B1(A%;)?) =

] =

1

<.
Il

(2(8/81)(A%;)? + 2((1 — a)b; + ad;_1)A%y; — 51(A2yj)2)> >

Mz

1

(2(A68;)2 + 2((1 — )6; + ad; 1)A%y; — B(A2yj)2)> =

Mz

(28(Ad;)% +2B((1 — )d; + ad;1)A%y; — B*(A%y;)?) .

M= -

1

J
Therefore it is sufficient to prove the theorem in the case ; = 8 (it is the worst case

in certain sense).



Now we use A?y; = Ay; — Ay;_1, Ay; =0,0; =0for j <1,j > N —1, and Abel’s
transform to obtain

N
Zé A%y = Z (0; — 6j1+1)Ay;,

7j=1
and
N N
D 6% = (621 — 6;)Ay;.
p =1

So, (21) becomes

252 Z 0 = 28 (S0 (A6) — (1- a) T, AdjiAy,
—a YL, Ad; Ay, — gZ?le(AzyJ‘V) :

To finish the proof, it is sufficient to prove the following two Lemmas:

Lemma 1.
N N N N
(A5 — (1 —0a) Y AfuAy —a Y AsAYy — Y (A%;)? >0
j=1 j=1 j=1 j=1

WE

N
Lemma 2. 22(A25j)2 > ) (A%y))2
=1 1

The proof of Lemma 1. We consider that 3 denotes Z;VZI Denote

<.
Il

A= A§ Ay,

J
B =Y AjAy;.
J
Our aim is to prove that
(22) D (AG)?—(1—a)A—aB—B) (A%;)*>0
J J
Let u, = max(u,0), u_ = min(u,0). It is easy to check that

(23) Ay; = (Ad;)+ + (Adjs1)-.

We can transform A as follows:

A=Y A5 ((A8)4 + ( ZA (A8, + ZA(S (AS;)_
J



= ) (A& + D AGASL,

A5;<0 Abj11>0
(24) = ) (A§)+ ). A§ASL+ D,
A§;<0 A§;>0,A6541<0
where
D= ) A§As.
A6;>0,A6541>0
Further,
1
D=3 Y ((86)+ (M) — (A%;.)?)
A6;>0,A6541>0
1
== > (A’ +(AG) - (A%;))
A8 1>0,A8;>0
1 2 1 2 1 2 2
== Y (A5)*+ 5 Y (A - 5 > (A%
A8;>0,A8;11>0 A8;>0,A8;_1>0 AS;_1>0,A8;>0
By (24),

A= @6 -5 Y @R -5 Y (A

A5j207A6j+1<0 A&jZO,A5j71<0

(25) 1 A%+ ) A§AGL

A8;-1>0,A5;>0 A8;>0,A8;11>0
Transform B in the same way as A:

(26) B= )Y (A&)+ Y, A§AGL+E,
A§;>0 A8;>0,A8;41<0

where

E= ) A§As.
A§;<0,A6;41<0

The quantity E can also be rewritten in the same way as D:

LRI DNt R SN D DS

A§;<0,A6;41<0 Ad;_1<0,A6;<0 Ad;1<0,A6;<0
Combining this equality with (26) we get
1 1
B =Y (A§)’ - 5 Y (A - 5 Y (Ag)?
7 A&jﬁO,A6j+1>0 AajSO,AlS]'_1>0
1
(27) —= ) (A DY AGAGL

AS;1<0,A8;<0 A841<0,A8;>0



By (25) and (27),

8) Y (A§)—(1-a)A—aB—-B> (A%,)*=F+G+H+I+J+K+1L,

J

where

11—«
F=— 2: (A5;)?,

A8;>0,A8;11<0

11—«
G = 5 Z (Aéj)g,

A8;>0,A8;_1<0

H=% Y ()7

A(Sj §07A6j+1>0

=3 > (A

A(Sj SO,A5j71>O

]__
J=— ¥ A@A@H+< — > Y (A%

A8 11<0,A8;>0 AS;_1>0,A8;>0

+(5-8) X @2
K

AS;_1<0,A8;<0

-5 Y (M%)

Ad;_1>0,A;<0

2 2

L—8 Y (%)
Ad;1<0,A;>0

We have to prove that F+G+H+I+J+K+L > 0. Among the sums F,G,H,1,J, K, L
only the two last sums might be negative; we will show that and

(29) F+I+K>0
(30) G+H+L>0.
Indeed,

l—« 1

T (A8 1)+ S(A0)? = BA%,) = —=(A0;1)” + (A4,

1— 1
_%m —A3;1)* = S((1 - )Ad; + add))? 2 0

Summing the last inequality over all j with Ad;_; > 0, AJ; < 0, we get (29). The
inequality (30) can be proven in similarly.
Also, we have

(31) J >0

Finally, plugging (29), (30), and (31) into (28), we obtain the required (22). This
completes the proof of Lemma 1.



Proof of Lemma 2.
First, recall that A%y; = 0 for j <1 and j > N. Also, from the proof of Lemma 1 we
have:

Abji if A8 <0, A§; <0
Ay d DO+ AY if Al <0, Ad; >0
BTN Ay, if Adj >0, A§; >0
0 if Adjp1 >0, A <0
Similarly,
AS; if A5; <0, A§_ <0
Ay ) B HAGL if Ay <0, Agy >0
Y=y As if A8; >0, A§_ >0
0 if A6;>0, A§;_ <0

Therefore Ad;_1, Ad;, Ad;;1 and their signs determine uniquely A?y;. We have eight
cases depending on what the signs of Ad;_1, Ad;, Ad,; are.

Case I. (+, 4+, +), that is Ad; 1 >0, AJ; >0, Ad; > 0.
Then, Ay; = Ad;, Ay; 1 = Ad;_1, s0 A2y] A?5;.
Thus, (A%y;)? < (A2(5 )2 in this case.

Case II. (+,+,—), that is Ad;_; > 0, Ad; >0, Ad;1 <0.
Then, Ay] = A5j+1 + Aéj, ij,:[ = A5j,1, SO A2yj = A5j+1 + Aéj - Aéjfl.

Case III. (+, -, +), that is A@;l >0, A@ <0, AéjJr]_ > 0.
Then, Ay] = 0, ij,1 = A5] + Aéj,l, SO A2yj = —Aéj - Aéjfl.
In this case (A2yj)2 - (A25j)2 = 4A5jA5j_1 S 0, and (A2yj)2 S (A25j)2.

Case IV. (4, —, —), that is Ad;_1 > 0, Ad; <0, Adjy; <O0.
Then, ij = A5j+1, ij—l = A(SJ + A(Sj_l, SO A2yj = A5j+1 - A(SJ — Aéj_l.

Case V. ( , T+, +) that is A@;l < 0, A5J > 0, AéjJr]_ > 0.
Then, Ay] Ad;, Ayj1 =0, so A?y; = A§;.
In this case 0 < A(5 < Ad; — Ad;_q, and (A%y;)? < (A?5;)2

Case VI. (—,+, —), that is Ad;_1 < 0, Ad; >0, Adj41 <O.
Then, ij = A(Sj+1 + Aéj, ij—l = 0, SO A2yj = A5j+1 + A(SJ
In this case (A%y;)?* — (A20;,1)* = 4A6;,1A6; <0, and (A%y;)* < (A?5;41)%

Case VII. (—, -, +), that is Aéjfl < 0, A§J < 0, A5j+1 > 0.
Then, Ay; =0, Ay; 1 = Ad;, so A’y; = —Ad;.
In this case 0 < —A5J S A5j+1 - Adj, and (A2yj)2 S (A25j+1)2.

Case VIII. (—,—, —), that is Ad;_1 <0, Ad; <0, Ad;j+1 <O0.
Then, Ay; = Aéﬁl, ij 1 = Adj, so AZyJ AT IR
In this case (A%y;)?* < (A2%0;41)%

Therefore in cases I (+,4+,+), III (+,—, +), and V (—,+,+), (A%;)? < (A%5;)%
and in cases VI (—,+,—), VII (—,—,+), and VIII (—, — —), (A?%y;)? < (A%5;41)2

10



There are only two “bad” cases: II (+,4,—) and IV (4, —,—) which need a special
treatment.

Next, we define a sequence of + and — signs {s;} where s; = + if A§; > 0 and s; = —
if Ad; < 0. Note that s; = + for j < 3 and j > N — 2. There are three types of “bad”
quadruples.

Type A quadruple: (+,+,—,—), that is Ad;_; > 0,Ad; > 0,Ad;+1 < 0,Adj12 < 0 for
some 7.
We claim that in this case the following inequality holds:

(32) (A%y5)* + (A%yj11)* < 2(A%6) + 2(A%05.1)" + 2(A%042)".
In this case A%y; = Adj1 + Ad; — Ad;—1 and A?y; 1 = Adjo — Adj — AY;. If we
denote Ad;_; by a, Ad; by b, Adj;1 by ¢, and Ad;,o by d the above inequality becomes
(c+b—a)’+(d—c—0)><2(b—a)’+2(c—b)*+2(d—c)* fora>0,b>0,c<0,d <0,
which is equivalent to

a® + 2% + 2¢% + d* — 2ab + 2ac — 8bc + 2bd — 2cd > 0,

or
(a—b+c)2+(b—c+d)?—4bc>0

which holds since b > 0,c < 0.

Type B quadruple: (+,+,—,+), that is Ad;_; > 0,Ad; > 0,Ad;11 < 0,Ad;15 > 0 for
some 7.
We claim that in this case the following inequality holds:

(33) (A%;)7 + (A%y541)* < 2(A%6;)° + 2(A%111)° + (A%140)°.

In this case A2yj = A5j+1 + A5] — Aéjfl and AQy]'+1 = A5j+2 — A5j+1 — Aéj USiIlg
the notation we just introduced the inequality becomes:

(c+b—a)’+ (c+b)?<2(b—a)’+2(c—b)>+(d—c)’ fora>0,b>0,c<0,d>0.
Since (d — ¢)? > ¢? it is sufficient to prove

(c+b—a)?+(c+b)?<2(b—a)+2(c—b)?+c? or
a’ + 2b* + ¢® — 2ab + 2ac — 8bc > 0, or
(a—b+c)®+b*—8bc>0

11



which holds for b > 0,¢ < 0.

Type C quadruple: (—,+,—,—), that is Ad;_; < 0,Ad; > 0,Ad;j+1 < 0,Ad;42 < 0 for
some j.
We claim that in this case the following inequality holds:

(34) (A%y;)? + (A%yj11)" < (A%5) + 2(A%111)° + 2(A%0542)%.
In this case A%y; = Ad; 1+ Ad; and APy, = Adj2 — Adj 11 — Ad;. Using the notation
we just introduced the inequality becomes:

(c+b)?+(d—c—b)><(b—a)*+2(c—b)*+2(d—c)*fora<0,b>0,c<0,d<0.

Since (b — a)? > b? it is sufficient to prove

(c+ )+ (d+c—b)? <b*+2(c—b)?+2(d—c)? or
b? + 2¢® + d* — 8bc + 2bd — 2¢d > 0, or

(b—c+d)*+c* —6bc >0

which holds for b > 0, ¢ < 0.

We will call the type A (32), type B (33), and type C (34) inequalities - “long”
inequalities; we call the inequalities of type (A%y;)? < (A?5;)?, (A%y;)* < (A?5;41)* -
“short” inequalities.

Now, we construct a set of inequalities. We identify all “bad” quadruples and include
the corresponding inequality (type A, type B, or type C) in the set. Next, for all
j € [1, N] such that s; is not a middle element of a “bad” quadruple, and such that
J does not belong to the “bad” cases II and IV we include the corresponding “short”
inequality in the set. Finally, we add all inequalities in the set. Taking into account
that A%5; = 0 and A?y; = 0 for j > N the resulting inequality is

N

(35) > a;(A%;)* < Z b;(A%5;)?,

i=1

where the a;s and b;s are non-negative integers. To finish the proof of the lemma we
need to show a; > 1 and b; <2 for all j € [1, N].

Note that all “long” inequalities have the form (A?y;)* + (A%y;41)? < ---, where s,
and s;;1 are the middle elements of a “bad” quadruple. Then a; > 1 if s; is a middle
element of a “bad” quadruple. (By middle element of a quadruple we mean second or
third element of the quadruple.)

Now, suppose s; is not a middle element of a “bad” quadruple. Then j does not
belong to the “bad” cases II and IV. Indeed if j is in case II: (s;_1, 5, $j+1) = (+,+, —)
then s; is a middle element of type B quadruple if s;,» = + and a middle element of type
A quadruple if s;1 9 = —. Similarly, if j is in case IV: (s;_1, 8, 8j4+1) = (+, —, —) then
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s; is a middle element of type A quadruple if s;_; = + and a middle element of type
C quadruple if s;_; = —. Therefore a “short” inequality for (A?y;)? has been included
in the set of inequalities. Thus a; > 1 in this case as well. We proved a; > 1 for all
j €1, N].

Now, we prove b; < 2 for all j € [1, N]. Note that (A%§;)? can appear in only two
“short” inequalities: (A%y;)? < (A%§;)? and (A%y;_1)* < (A?%§;)%. Therefore b; < 2 if
(A25;)? does not appear in any “long” inequalities, that if s; is not a second, third, or
fourth element of a “bad” quadruple.

The case when s; is a second, third, or fourth element of a “bad” quadruple requires
more work. First, note that two distinct “bad” quadruples have at most two common
elements. Indeed all “bad” quadruples are of the form (*,+,—, *) where * denotes +
or —, and no “bad” quadruple has (+,—) as its first two or last two elements. Next,
the only case when two “bad” quadruples have two common elements is the following
configuration:

(36) (ijla Sja SjJrla 5j+2> 5j+3a 8j+4) - (+> +a ) +> R _)
Indeed, Type A quadruple can not share exactly two elements with another “bad”
quadruple because no “bad” quadruple has (—, —) as first two elements, or (+,+) as

last two elements. Similar analysis shows that the only way a type B or type C quadruple
can share exactly two elements with another type B or type C quadruple is when the
configuration (36) occurs.

Let us analyze the configuration (36). The “long” inequalities which correspond to
the two “bad” quadruples in this configuration are:

(37) (A%y;)” + (A%y;41)" < 2(A%6;)% + 2(A%6;11)% + (A%3;42)°, and
<

(38) (A%y;12)* + (A%yj4s)?

Their sum is

(A%j42)* +2(A%0513)* + 2(A%5544)°.

(A%)7 + (A%y500)" + (A%Y542)" + (A%;15)" <
2(A2,)° 4+ 2(A%11)? + 2(A%;2)° + 2(A%,1)? + 2(A%;)°
In this case sj, Sj+1, Sj4+2, Sj+3, and s;44 appear as second, third, or fourth element of a
“bad” quadruple. Since the configuration (36) starts with (+,+) and end with (—, —)
it cannot share two elements with a “bad” quadruple outside the configuration. This
means that none of s;,s;1,5j42,5j43, and sj;4 can be a second, third, or fourth ele-
ment of a “bad” quadruple outside the configuration. In other words, none of (A%§;)?
(A%6;41)?, (A%5;10)%, (A%5;13)% and (A?§;,4)? can appear in a “long” inequality other
than (37) and (38). Since, $;, 5,41, S;+2, and s;4+3 are middle elements of “bad” quadru-
ples (A%5;41)?, (A%5;12)%, and (A%§;,3)? can not appear in “short” inequalities as well.
Thus bj11 = bjra = bjrs3 = 2. Also, (A%5;)? can not appear in a “short” inequal-
ity. The only way this could happen is (A%y;_1)* < (A%§;)? which is impossible since
j — 1 1is either in case I (+,+,+) or case V (—,+,+) depending on what s, _» is, and
in both cases the short inequality is (A%y; 1)* < (A2%§; 1)?. Thus b; = 2. Similarly,
(A%3;,4)* can not appear in a “short” inequality. The only way this could happen is
(A2y;44)* < (A25;44)% which is impossible since j + 4 is either in case VII (—, —,+) or
case VIII (—, —, —) depending on what s;,5 is, and in both cases the short inequality is
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(A2y;44)? < (A%5;15)%. Thus bj,4 = 2. This concludes the analysis of the configuration
(36).

Now, let s; be a second, third or fourth element of a “bad” quadruple but not an ele-
ment of a configuration (36). This means (A%§;)? appears in exactly one “long” inequal-
ity (it can not be a second, third, or fourth element of two distinct “bad” quadruples.)
If s; is a third element of a “bad” quadruple then s;_; and s; are the middle elements
of the quadruple and (A?3;)? does not appear in a short inequality. Thus, b; < 2 in
this case. The cases when s; is a second or fourth element of a “bad” quadruple need
separate consideration.

1) s; is a second element of type A quadruple (+,+,—, —). The only way (AZ?§;)?
could appear in a “short” inequality is (A%y;_1)* < (A?§;)? which is impossible since
j — 1 is either in case I (+,+, +) or case V (—,+,+) depending on what s;_5 is, and in
both cases the short inequality is (A%y;_1)? < (A%§;_1)?. Thus b; = 2.

2) s; is a fourth element of type A quadruple (+,+,—,—). The only way (A?3;)?
could appear in a “short” inequality is (A%y;)? < (A%§;)? which is impossible since j is
either in case VII (—,—,+) or case VIII (—, —, —) depending on what s, is, and in
both cases the short inequality is (A%y;)? < (A%§;41)%. Thus b; = 2.

3) s; is a second element of type B quadruple (+,+, —,+). Here the argument is
word by word like in 1). The only way (A?);)? could appear in a “short” inequality
is (A%y; 1)* < (A%);)? which is impossible since j — 1 is either in case I (4,+,+) or
case V (—,+,+) depending on what s;_» is, and in both cases the short inequality is
(A2yj_1)2 S (A25j_1)2. Thus bj = 2.

4) s; is a fourth element of type B quadruple (+,+, —,+). Since the coefficient of
(A2%4;)? in the corresponding “long” inequality (33) is 1 and (A?3;)? could appear in at
most 1 “short” inequality b; < 2.

5) s; is a second element of type C quadruple (—,+, —, —). Since the coefficient of
(A?3;)? in the corresponding “long” inequality (34) is 1 and (A%§;)? could appear in at
most 1 “short” inequality b; < 2.

6) s, is a fourth element of type C quadruple (—,+, —, —). Here the argument is
word by word like in 2). The only way (A2);)? could appear in a “short” inequality
is (A%y;)* < (A%§;)? which is impossible since j is either in case VII (—, —, +) or case
VIII (—,—,—) depending on what s, is, and in both cases the short inequality is
(A2yj)2 S (A25j+1)2. Thus bj = 2.

We have shown that in all cases b; < 2 for j € [1, N| which completes the proof of
Theorem 2. O

Now, we continue with the general case. That is, we want to show that the [y norms
inequality

(39) {85 I < 1{05 31,

holds for any initial sequence {J;} with finite [, norm. We consider the sequence {w;}
and restrict the index j to a maximal subset A,, on which the piecewise constant function
w is monotone, recall that §; = w; — w;_1. Given a sequence {w,}, we can decompose
it into monotone subsequences. This decomposition also gives a decomposition of the
sequence {d,} into nonnegative subsequences. Without any limitations, we assume that
the jumps {0,} are non-negative for all [l < j <7, §_; <0 and §,41 < 0. That is, w;_4
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ia a local minimum and w,; is a local maximum of the piecewise constant function w.
Let w™ be the following piecewise constant correction of w

Wy, if [ SJ < r,
(40) wi =< w_q, if j<lI,
Wpy, if j>mr.

<

Note that A,, = {j : [ <j <7+ 1} and the jumps sequence 6™ := {§;"} of w™ is given
by

m._ Jowj—wiq, i 1< j<r+1,
(41) % '_{ 0, otherwise
Hence, we have a sequence of monotone functions {w™} and the corresponding jump
sequences {07 }; such that

DD e = D I3, = I3

m jEAm m,jEZL

because the sequence of the jumps of {§;} is decomposed into disjoint jump subsequences
{07}, There are two types of jumps d;. A jump & is of type 1 if it is equal to the jump
0;(6™), that is the jump generates with the starting sequence {47"}, where the index m
such that j € A,,. A jump is of type 2 if it is not of type 1. Note that a type 2 jump
&3« occur only inside an interval which contains a strict local extremum. Near a local
extremum we have two nonzero jumps, say 5;-* and 07, generated by the two monotone
w™-s with index sets finishing/starting with j*. It is easy to verify that

DARAREATR

Hence, we have that

and we conclude that
D@D EGEP<Y DO =D )
j m jEA, m jEAn, n

where we use the notation §7(6™) for the new jumps generated by §™. It is also easy to
prove a local inequality but with index set for §} starting from an interval right after an
extremum and finishing right before one. O

4 Error Estimates for Linear Flux

Recall that u is the entropy solution to the conservation law u; + f(u), = 0 with initial
condition u°, and v is the the numerical solution described in (13). In the case of linear
flux and 0 < 0 < 1, the formula for the new averages of the minmod scheme is given in
(14) and the conservation laws (2) reduces to

(42) uy + aug, = 0.
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Let S; be the shift operator defined by S;g(:) := ¢g(- — 7). Then the exact solution
of (42) at time ¢ for any initial data u® is u(t,-) = atuo Let Aj be the averaging
operator defined on a uniform partition by Ang|; := 7 L[ g( ; 9(s)ds, where |I| = h. It will
be useful to define a global approximate solution v. We ﬁrst deﬁne the approximate
solution at discrete times by v" :=v(nAt,-), n = 0,1..., N, in the following way: (i)
00 = 1% (ii) v™ := SuasPpv™ !, where for odd n, 1 <n < N, P,v is the linear function
on I := (xj_1/2,%j41/2) defined in (4) with the minmod slopes (9), and for even n we
have the analog definition of P, on the shifted partition {I;;1/2|j € Z}. Note that,
Py = P, Azv"™ because the piecewise linear projection Py, defined in (4) and (9), is
based only on the averages of v™ on the corresponding partition. The formula (14) for
the new cell averages can be written as

U;L+1/2 = Ah(vn)|Ij+1/2 = Ah(SaAtthnil)thm

for odd n, with Aj, based on the staggered partition {/;,1/2|j € Z} and P, based on
regular partition {I;| j € Z}. For even n, we have the same sequence of operators but on
the reversed partitions. The global approximate solution v is defined by v(nAt,-) = v™
and v(t,-) = Sa—nan(Ppv") for nAt <t < (n+1)Atandn =0,1,...,N —1. That isv
solves exactly (42) for nAt < t < (n + 1)At with initial data P,v"™, n=0,1,...,N — L.

In order to describe the next result, we need to introduce some notation. A function
g is of bounded variation, i.e., g € BV(R), if

n
l9lBv(R) = SUPZ 9(wi41) — g(x5)] < o0,

i=1
where the supremum is taken over all finite sequences z; < ... < z,, in R. Functions of
bounded variation have at most countable many discontinuities, and their left and right
limits g(z~) and g(z™) exist at each point € R. Since the values of the initial condition
u? on a set of measure zero have no influence on the numerical solution v and the entropy
solution solution w, it is desirable to replace the seminorm |- |gy(r) by a similar quantity
independent of the function values on sets of measure zero. The standard approach in
conservation laws is to consider the space Lip(1,L!(R)) of all functions g € L(R) such
that the seminorm

(43) 9l ey 2= limsup / g(z + 5) — g(x)| da

is finite. It is clear that | g|Lip(1,L1(R)) will not change if ¢ is modified on a set of measure
zero. At the same time the above two seminorms are equal for functions g € BV(R)
such that the value of g at a point of discontinuity lies between g(x~) and g(x™) (see
Theorem 9.3 in [6]). Similarly, we define the space Lip(1,LP(R)), 1 < p < oo, which is
the set of all functions g € LP(R) for which

(44) lg(- =) = 9()lle@ < Mh, s >0.

The smallest M > 0 for which (44) holds is |g|Lipa1,Le(r))- It is easy to see that in the
case p = 1 the seminorm given in (44) is the same as the one in (43). In the case p > 1,
the space Lip(1,LP(R)) is essentially the same as W!(LP(R)), see [6] for details. With
this notation, we have the following result.
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Theorem 3. Let u be the entropy solution to (2) with linear fluz f(z) = az and v be
the numerical solution described in (14) with 0 < 6 < 1. If the CFL condition (6) is
satisfied, t, = nAt, 0 <n < N, and T = NAt, we have

(45) [u(T, ) = o(T, )o@y < C(NR)Y2RY2 [0 |Lipa o ey
for p=1,2 where C is an absolute constant.

Proof. The L, estimate is based on the TVD property of the numerical solution v and
the L, estimate is based on the [y stability of the jumps proved in Theorem 1. Both
estimates use a dual argument similar to the one in [24] and in the proof we use an index
p, where p € {1,2}. In the proof, C' will be an absolute constant that can be different
at different places.

Let e(t,z) := u(t,z) —v(t,z), and E(t,z) := [ e(t,s)ds, where we assume that
u? € L'(R) to guarantee that F is well defined for all (¢, z) € (0,T) x R. We have that £
also satisfies (42) for nAt <t < (n+ 1)At with initial data [*_ u(nAt,s) — P,v"(s)ds,

n = 0,1,...,N — 1. For a function g € L*(R), we define a minus one norm in the
following way
(40 loll-1ai= 1l [ ols)dslloey

It is easy to verify that for any 7 € R

(47) 157910 = llgll-1,p-

Recall that T = NAT. Then, we have the representations u(T,-) = (Sa¢)¥u’ and
(T, ) = (SansPn)NuP. Using (47), we have

(T, ) |15 = 11(Sane) Yt = (SanePr) ¥l —1p = |(Sane) ™™ 1’ — Pa(SaaePr) 1’| -1,
and by the triangle inequality we obtain

(48) le(T, M-1p < [1(Saae)™ 0 = (Saaekn)™ -1y

+ [P Sane)V 0 — (SanePr)N |1
Let €® = ((Saat)™ — (SantPr)")u’, n=0,1,..., N. Then (48) is equivalent to
(49) 1M rp < NV Hlnp + 1Pao™ = 0™y,

and applying (49) forn =N, N —1,...,1, we get

N
(50) leMll-1p < D NP — 0™ |1y
n=1

because €® = 0. To prove the error estimates, we need the following technical lemma.
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Lemma 4. For any p € {1,2} and anyn =0,1,..., N, we have
. n _1
(0 {87 H Iy < 277 6| ipr oy,

1
2 B 141
)
1
4 \7
m) W2 uip(u e @) -

(i) [[Puo" — A"y < (

(i) [[Apo® — o1, < (

Proof. The inequalities (i) and (ii) follow by standard arguments, therefore we only prove
(i) in the case p = 2 and omit the rest. Recall that 6 = v? —v? ;, and by Theorem 1

J J—b
we have
1/2 1/2
(Z(W) < (Z(ég’)?) ,
J J
where 69 = u) —ud_;, u) = ; flj u®(s)ds. Hence, to prove (i) for p = 2, we need to prove
2(5?)2 < h||u0||iip(1,L2(R))'
J
Since
2 2
0\2 1 0 0 2 0 0
BOIEDS (g/w (s+h)—u (s))ds> <h </ s+ )~ u <s>|ds> ,
r P I I;

and since by Cauchy-Schwartz

(/1 O(s + h) —uo(s)|ds> < h/l_ WO(s + R — u9(s)[2ds,

we obtain

(51) 2(53)2 < h! /R u®(s + h) — u®(s)|?ds.

J
¢ From (44), we have

[ 1) = )P < F
and using that in (51), we conclude

2(52)2 < Wi 2wy
J

which proves (i) for p = 2. To prove (iii), we note that

n n ) < n _ M n
(52) |Apv™ — 0", < rilezﬁcv (z) Imréllr]w (z),
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and because v" = S, ;0" ! we have that

n g n < n—1 n—1 )
max v (z) min v (z) < 2max(|67- |, |67 ])

The rest of the proof of (iii) is analogous to the proof of (i). O
Combining (i)-(iii), we have
[Pro™ = v"[|-1p < CR?|[0°||Lip(eo(y)

and after applying the above inequality in (50), we derive the following estimate
(53) le™]|-1p < ONB?[[6[[Lip(1,e(w) -
Because vV ¢ Lip(1,L%(R)), we approximate v"¥ by

1 ofehz

0= 7 /z_h/2 Apv(s) ds.

Similar to Lemma 4, it is easy to verify that for p € {1,2} we have

(54) 10— o™ 1 < Ch?|[u’||Lip(r Lo(my)
(55) 15— o™ o) < ChI[W’|lLip(,Le @)
and

(56) 19]|Lipa,Lem)) < ||u0||Lip(1,LP(1R))-

Let € := u(T,-) — 0. Then

lell-1p < leMl-1p + 117 = ™1,
and combining the estimates (53) and (54), we have
(57) 1]l -1 < CNE? [0 |[LipLe (e -

Kolmogorov-Landau inequalities in LP(R) (page 156 in [6]) for the functions E(z) :=
[ é(s)ds, E', and E" give

1Bl < V2B 1B 15",
and using (57) and (56) we arrive at
(58) lellze < CNR)2RY2|[u|[Lipa Loy -
Finally, by the triangle inequality
lellze < llellze + 117 — vV [y < C(NR)2RM2 |6 |Lipr o (m)
and we combine (55) and (58) to conclude
(T, ) = o(T, e = llellze < CNR)2R2 0| ipqa e ey

Note that C' can be computed explicitly and it is not very big (C' < 20). In the case
p=2and u’ ¢ L}(R), we get the same error estimate via an approximation procedure
because the estimate is independent of the L' norm. O
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Corollary 5. In the case of Nh < C, we get the convergence rate
[T, ) = o(T, )o@y < O ipa,immy).
forp=1andp=2.

The L! estimate is not new, it follows from the arguments in [24], but the 1/2 rate

in L? is new. Note that, using the L' estimate, by interpolation arguments, we get only
1/4 rate in L%
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