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ABSTRACT. We study nonlinear m-term approximation in a Banach space with re-
gard to a basis. It is known that in the case of greedy basis (like the Haar basis
H in Ly(]0,1]), 1 < p < o0) a greedy type algorithm realizes near best m-term ap-
proximation for any individual function (element). In this paper we generalize this
known result in two directions. First, instead of greedy algorithm we consider weak
greedy algorithm. Second, we study in detail unconditional non-greedy bases (like
the multivariate Haar basis H% = H x --- x H in Lp(]0,1]%), 1 < p < 0o, p # 2). We
prove some convergence results and also some results on convergence rate of weak
type greedy algorithms. Our results are expressed in terms of properties of the basis
with respect to a given weakness sequence.

1. INTRODUCTION

This paper deals with nonlinear m-term approximation with respect to a basis.
Let X be an infinite dimensional separable Banach space with a norm ||-|| := || - || x
and let ¥ := {4, }5°; be a normalized basis for X (||| = 1, n € N). All bases
considered in this paper are assumed to be normalized. For a given f € X we define
the best m-term approximation with regard to ¥ as follows

Um(f, \Il) = Um(fa \IJ)X = bll?,f/‘\ ||f - Z bk¢k||X7

keA

where inf is taken over coefficients by and sets of indices A with cardinality |A| = m.
There is a natural algorithm of constructing an m-term approximant. For a given
element f € X we consider the expansion

(1.1) F=>alf, D
k=1

We call a permutation p, p(j) = kj, j = 1,2, ..., of the positive integers decreasing
and write p € D(f) if

ek, (s @) > Jery (f, T)] > ...

IThis research was supported by the National Science Foundation Grant DMS 0200187 and
by ONR Grant N00014-91-J1343
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In the case of strict inequalities here D(f) consists of only one permutation. We
define the m-th greedy approximant of f with regard to the basis ¥ corresponding
to a permutation p € D(f) by formula

G (f,0) = GR(f,0) := G (£, ¥, p) := Y _ iy (f, U)o,

Jj=1

It is a simple algorithm which describes a theoretical scheme (it is not computation-
ally ready) for m-term approximation of an element f. This algorithm is known in
the theory of nonlinear approximation under the name Greedy Algorithm (see for
instance [T2], [T3], [W]) and under the more specific name Thresholding Greedy
Algorithm (TGA) (see [T8], [DKKT]). We will use the latter name in this paper.
The best we can achieve with the algorithm G,, is

||f - Gm(f7 \II,p)HX = O-m(fv \II)Xa

or a little weaker

(1.2) If = Gm(f, ¥, p)lx < Gom(f, ¥)x

for all elements f € X with a constant G = C(X, ¥) independent of f and m. The
following concept of greedy basis has been introduced in [KT].

Definition 1.1. We call a basis ¥ greedy basis if for every f € X there exists a
permutation p € D(f) such that

(1.3) If = Gm(f, ¥, p)lx < Gom(f, ¥)x

holds with a constant independent of f, m.

The first result in this direction (see [T2]) established that the univariate Haar
basis is a greedy basis. We remind the definition of the Haar basis. Denote H :=
{H}32 ; the Haar basis on [0,1) normalized in Ly(0,1): H; =1 on [0,1) and for
k=2"+1,n=0,1,...,01=12...,2"

on/2 g2l —2)2 "L (20 —1)27 )
Hy(z) =4 —2™2% ze[20—1)27""1 2127 1)

0, otherwise.

We denote by H,, := {Hj, ,}7>, the Haar basis H renormalized in L,(0,1).

The following weak type greedy algorithm was considered in [T2]. Let ¢t € (0, 1]
be a fixed parameter. For a given basis ¥ and a given f € X denote A,,(t) any set
of m indices such that

1.4 i U)| > 1
(1.4) kerz?gl(t)m(f’ )|_tk¢r?&i)%t)|0k(f’ )



and define
Gi,t(fv ‘II) = Z Ck (f7 \Ij)wk
kEA ()
It was proved in [T2] that in the case of X = L,, 1 < p < oo, and ¥ is the Haar
system H we have for any f € L,

(1.5) If = Gz (F, 1), < Co,)om(f, H)1,
We note here that the proof of (1.5) from [T2] works for any greedy basis instead

of the Haar system H. Thus for any greedy basis ¥ of a Banach space X and any
t € (0,1] we have for each f € X

(1.6) If =G M, 0)][x < Cp,t)om(f, ¥)x.
This means that for greedy bases we have more flexibility in constructing near best
m-term approximants.

Recently, in the theory of greedy algorithms with regard to redundant systems
the Weak Greedy Algorithm with an arbitrary weakness sequence 7 := {t;}72,
has been studied (see [T7], [LTe|, [T9]). In this paper we study a modification of
the above weak type greedy algorithm in a way of further weakening the restric-
tion (1.4). We call this modification the Weak Thresholding Greedy Algorithm
(WTGA). Let a weakness sequence 7 := {t;}72,, tx € [0,1], K = 1,... be given.
We define the WTGA by induction. We take an element f € X and at the first
step we let

Ai(r) :={m};  GI(f,¥):= cn,¥n,
with ny any satisfying
|, | = 11 mgx|cn|

where we denote for brevity ¢, := ¢, (f, ¥). Assume we have already defined
:nfl(f’ \IJ) = Gmfl(fa \I]) = Z Cn¢n-
nEAm,]_(T)
Then at the mth step we define
Am(7) == Ama (1) U{nm}; GL(£9) =G (£,0) = Y cathn
nEAp, (1)
with n,, ¢ A,,_1(7) any satisfying

len,, | > tm  max e
m—1(T)
Thus for an f € X the WT'GA builds a rearrangement of a subsequence of the
expansion (1.1). If ¥ is an unconditional basis then always G7, (f,¥) — f*. It is
clear that in this case f* = f if and only if the sequence {n;}72, contains indices
of all nonzero ¢, (f,¥). We say that the WIT'GA corresponding to ¥ and 7 is
convergent (converges) if for any realization G (f, V) we have

If =GR/, V)| =0 as m— o0

for all f € X.
In Section 2 we prove the following three theorems on convergence of the WTGA.
The first one deals with an arbitrary Banach space X and any basis V.
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Theorem 1. Let X be a Banach space with a normalized basis V. Let T = {t,,n >
1} be a weakness sequence. The following condition (D) is a necessary condition
for the WTGA corresponding to ¥ and T to be convergent.

(D) For each subsequence {ny,k > 1} of different indices, the series Y poq tk¥n,
diverges in X.

If the basis U is unconditional, then the above condition (D) is also a sufficient
condition for the WTGA corresponding to ¥ and T to be convergent.

In the case X = L,([0,1]?) we can derive from Theorem 1 a more specific con-
dition in terms of 7.

Theorem 2. Let 2 < p < 0o, d > 1 and let ¥ be a normalized unconditional
basis in L,([0,1]%). Let T = {t,,n > 1} be a weakness sequence. Then the WTGA
corresponding to ¥ and T converges if and only if T € 1.

We do not have that simple criterion in terms of 7 in the case X = L, ([0, 1]¢),
1 < p < 2 and arbitrary unconditional basis ¥. In this case we have the following
result for the multivariate Haar basis ’Hg defined as the tensor product of the
univariare Haar bases: ’Hg :=Hp X --- X Hp. To formulate the result, introduce the
following notation. For a sequence {tx,k > 1} of nonnegative numbers such that
limg_ ooty = 0, {t;,k > 1} is a nonincreasing rearrangement of the subsequence
{tn,,k > 1} consisting of positive elements of {tx, k > 1}.

Theorem 3. Letd > 1 and 1 < p < 2. The WTGA corresponding to ’Hg and
a weakness sequence T converges in Ly,([0,1]?) if and only if one of the following
conditions s satisfied:

(i) The sequence T = {ty} does not converge to 0.

(ii) limg_y oo tx = 0 and

oo

(1.7) 3 ()% (k(log k) )P = og

k=2

Along with convergence of the WTGA we study efficiency of approximation by
GT.(-,¥). We compare accuracy of the WTGA with best m-term approximation.
In the case of greedy basis and 7 = {t}, t € (0,1] the relation (1.6) shows that
G7.(-, ¥) realizes near best m-term approximation. There are two natural ways of
adapting (1.6) to the case of nongreedy basis or to the case of general weakness
sequence. In the first way (see [T5], [T3], [W], [Os]) we write (1.6) in the form

If =GR (f, ¥ < Clm, 7, ¥)on(f, V)
and look for the best (in the sense of order) constant C'(m, 7, ¥).

We now formulate the correspoding results. For a basis ¥ we define the funda-
mental function



We also need the following functions

®(m) := S 1D wel, @'(m)= inf |3 .

l=m  rca |Al= kcA
It is clear that
@(m) = sup ¢*(n).

n<m

We now introduce some characteristics of a basis with respect to a weakness se-
quence 7. For a subset V' C [1,m] of integers we define

o(r,m,V) :=

{ki}

where inf is taken over all sets {k;} of different indices. For two integers 1 <n <m
we define

¢(r,m,n) 1= H;?j ¢(r,m, V),

and finally
©*(n)
T,m) (= sup ————
plrm) = sup oy

We have the following result.

Theorem 4. Let ¥ be a normalized unconditional basis for X. Then we have

If = GL.(f, Ol < C()ulr, m)om(f, ¥).

In the case 7 = {1} Theorem 4 is known. The first result in this direction was
obtained for the multivariate Haar basis HY (see [T3]). Then it was generalized in
[W] for other bases, in particular, for normalized unconditional bases. Moreover,
it has been proved in [W] that p,,({1},m) is an optimal extra factor in the above
inequality for 7 = {1}.

In Theorem 4 we compare efficiency of G7,(-, ¥) with 0,,(-, ¥). It is known in
approximation theory that sometimes it is convenient to compare efficiency of an
approximating operator which is characterized by m parameters with best possible
approximation corresponding to smaller number of parameters n < m. We use this
idea in approximation by the WTGA. In this paper we study a setting when we
write (1.6) in the form

If = GL,.(f, 9)[| < C(¥)om(f, )

and look for the best (in the sense of order) sequence {v,,} that is determined by
the weakness sequence 7 and the basis ¥. We need some more notation. Define

N
O(7,N) = o(r, N, [L,N]) = inf, |3 59, |
P

Assume that ¢(7, N) — oo as N — oo and denote v, the smallest N satisfying
¢(1, N) > 2¢p(m).

We have the following result in this case.
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Theorem 5. For any normalized unconditional basis ¥ we have

If = GL,.(f, ©)] < C(¥)om(f,¥).

It is interesting to compare this result with some recent results from [DKKT]. It
has been established in [DKKT] that the inequalities

(1.8) 1f = Gam(f, O)|| < C(¥, A)om(f, )

with fixed A > 1 are characteristic for a special class of bases. We describe this
class now. Let us say that a basis ¥ is almost greedy if there is a constant C so
that for any f € X

If =Gu(F 0 <C imf If =D erlf, )l

A= kEA

It is clear that each greedy basis is an almost greedy basis. It has been proved in
[DKKT] that if (1.8) holds for some A > 1 for all f € X then ¥ is almost greedy.
It has also been proved in [DKKT] that (1.8) holds for any A > 1 for all f € X
provided ¥ is almost greedy.

In Section 4 we discuss the greedy properties of subsequencies of the Haar basis
'Hg = H, x -+ x H, that is a tensor product of the univariate Haar bases H. It is
known (see [T2] and [T3]) that #, is a greedy basis for L,([0,1]), 1 < p < co and
H is a greedy basis for L,([0,1]%), d > 2 only for p = 2. Let M be a subset of the

set of indices n € Zi. We denote
HEM] == {Hnp,n € M},
Ly[M] :={f € Ly([0,1]%) : (f,Hn) = 0,n ¢ M} = span{Hj[M]}

where closure is taken in L,([0,1]%).

We introduce some more notation. Let us define the decomposition of ’Hg into
dyadic blocks. First, define

(1.9) Up:={1,2}, and Us,:={neN:2°+1<n<2"} for s>1.
For s = (s1,...,84) we set
(1.10) Us:={n=(ny,...,nq) :n; €U, for i=1,...,d}.

We note that for each s the supports of the functions {Hy ,,n € Us} have the

same shape and measure 25|, where |s| = s; + ... + s4. Moreover, note that if

s = (s1,...,8q) with s; # 0 for all 1 < i < d, then #U, = 2/sl and the supports of

the functions { H,, ,,n € U,} are disjoint. For general s we have 2/s| < #U, < 2lsl+d,

and at most 2¢ different functions from {Hpn,p,n € Ug} have the same support.
For a positive constant K we define two classes of subsequences M:

R(K):={M:Vn #{s: MnNUs#£0, |s|]=n}<K}
J(K):={M:Vs #MnNUs) <K}

Denote by G(d) the set of all subsequences M representable in the form M =
M1 UMs, My € R(Ky), Ms € J(K3) with some constants K7, K.
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Theorem 6. Let M € G(d). Then HI[M)] is a greedy basis for Ly[M], 1 < p < cc.

It is clear that the condition M € G(d) is not a necessary condition for HZ[M]
to be a greedy basis for L,[M]. Indeed, we can find a sequence M ¢ G(d) with
disjoint supports of H,, n € M. However, we will show in Section 4 that Theorem
6 is sharp in a certain sense.

In Section 5 we present results on relations between {om, (f, %), } and {ca(f, HE)}.
We give some embedding theorems in terms of the Lorentz spaces and their slight
modifications.

Let us agree to denote by C various positive absolute constants and by C' with
arguments or indices (C’ (¢,p), C, and so on) positive numbers which depend on the
arguments indicated. For two nonnegative sequences a = {a,, }5° ; and b = {b,,}3° ;
the relation (order inequality) a,, < b, means that there is a number C(a, b) such
that for all n we have a,, < C(a,b) b,,; and the relation a,, < b,, means that a,, < b,
and b, < a,.

2. THE CONVERGENCE RESULTS
We will prove and discuss Theorems 1-3 in this section.

Proof of Theorem 1. We begin with the necessity part. Our proof is by contra-
diction. Suppose that Y 7~ tkty,, converges in X for some sequence of different
indices {ng, k > 1}. First, we consider a special case. Let {ng,k > 1} be a sequence
of different indices such that >~ | tx9n, converges in X and there is a v € N such
that ng # v for all kK € N. Take

f :1/)1/ +Ztk¢nk

k=1

Then we can take the following realization of the WTGA
G;z(fv \II) = Z Ukeny -
k=1

Thus

oo

f_G:n(fam):¢u+ Z tk¢nk

k=m+1

and ||f — GI (f,9)|| # 0. Consequently, the WT'GA corresponding to ¥ and 7 is
not convergent.

We now reduce the general case to the considered above special case. Let {ng, k >
1} be a sequence of different indices such that Y .-, tgty,, converges in X. This
implies that limg_, o tx = 0, so there is a subsequence {k;,l > 1} with k; = 1 such

that
oo
Z ty, < 00.
=1
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Clearly, then both
Z tkld}nkl and Z tklwnkul
1=1 1=1

converge in X, and

oo oo 0o 0o
Z tk¢nk - Ztkﬂpnkl + Ztkl¢nkl+1 = Z tk¢ska
k=1 =1 1=1 k=1

where

_{nk if k=#k forall [>1,
"7\, if k=Fk forsome [>1.

Note that {sx,k > 1} is a sequence of different indices such that s, # n; for all
k > 1. Therefore we are in the special case considered above. This completes the
proof of the necessity part.

We now proceed to the sufficiency part. Our proof is again by contradiction.
Assume that ¥ is an unconditional basis. Suppose that f € X is such that

G (f, )~ f
in X. By definition,

GTm(fv \I’) = Z Crg, Ynge s
k=1

where

(2.1) len, | > tisup|en|, and |ep,| >tk sup len| for k> 2.

neN N#ENY,... N—1

As G7,(f,¥) # f and the basis ¥ is unconditional, there is 4 € N with ¢, # 0 such
that ng # p for all &k € N. This and (2.1) implies that t; < el Gince the basis ¥

lep
is unconditional, it follows that the series > .-, txtn, converges in X. Theorem 1

is now proved.

Remark 2.1 It is clear that in the case of TGA (7 = {1}) the condition (D)
of Theorem 1 is always satisfied. However, the TGA may not converge for some
bases. For instant, it was proved in [T5] (see also [CF] for 1 < p < 2) that the TGA
may diverge in L,, p # 2 for the trigonometric system. A basis for which the TGA
converges is called quasi-greedy basis ([KT],[W]). It is clear that any unconditional
basis is a quasi-greedy basis. It is known (see [KT]) that there is a quasi-greedy
basis that is not an unconditional basis. For other examples of such bases see [DM].

We will prove one technical result that we will need later on. Let M = {my, k >
1} be a sequence of different indices, and let 7 = {tx, k > 1} be a weakness sequence.
Consider a new weakness sequence 7(M) = {n,,n > 1}, where

tr when n=mg for k>1,
n =

0 otherwise.

We have the following corollary of Theorem 1.



Proposition 2.1. Let ¥ be a normalized unconditional basis in a Banach space
X. Then the WTGA corresponding to ¥ and 7(M) is convergent if and only if
WTGA corresponding to ¥ and T is convergent.

Proof. 1t is clear that if 7(M) does not satisfy the necessary and sufficient condition
(D) from Theorem 1, then 7 also does not satisfy that condition. Thus if the WTGA
diverges for 7(M) it diverges for 7. We now prove that if 7 does not satisfy (D)
then 7(M) also does not satisfy (D). Assume that >.,- ; txt)p, converges. Then
tr — 0 and we let K := {k;}52; to be such that all k; are even numbers and

o0
Z tkj < 0.
j=1

Then the set £ := N\ K is infinite and the series ), .. tx%n, also converges.

We now assign for the sequence 7(M) to each n,,, = t, k € L a basic function
©n, - We split the infinite set K into a union of two infinite sets Ky and Ky. Then
we set up a one-to-one correspondance k <+ k' between K and K7 and assign to each
Nm, = tk, k € K a basic function 1, , and to different 7, = 0 we assign different
basic functions 1, with s € Ugex,{nxr}. Then the corresponding sum from the
condition (D) for the 7(M) will be

Z tk¢nk + Z tk¢nk/ .

kel ke

This series converges and therefore 7(M) does not satisfy (D). By Theorem 1 we
conclude that the WTGA corresponding to 7(M) diverges. This completes the
proof of Proposition 2.1.

Proof of Theorem 2. Since W is a normalized unconditional basis in L, ([0, 1]%) with
p > 2, we have for any set {ny} of different indices

I Ztkv,bnkﬂp > C’(/ (Z It [tn, (x)|2)p/2dat)1 P > C(Z |tk|p)1 P
k=1 (0,1 k=1 k=1

Therefore, by the sufficiency part of Theorem 1 the WTGA with a weakness se-
quence T converges if 7 & [,,.

Let us assume that 7 € [,. Then it is known (see [KP]) that an unconditional
basis ¥ = {1, }22; of L,([0,1]¢), 1 < p < oo contains a subsequence {1, }° ; such
that each series Y p.; axty, converges provided {ay}3>, € l,. Specifying aj = t
and applying Theorem 1 we obtain that the WTGA with the weakness sequence 7
does not converge. This completes the proof of Theorem 2.

The case of L,([0,1]%) with 1 < p < 2 is different — the condition on the weakness
sequence 7 depends now on a particular unconditional basis ¥. Let ¥ be a nor-
malized unconditional basis in L,(]0,1]¢) with 1 < p < 2, then for any coefficients
{a,} we have

e (S len?) " < IS antnlly < Co( 3 anr) .
n=1 n=1 n=1
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Thus by Theorem 1 if a weakness sequence 7 € [,,, then the WTGA corresponding
to U and 7 is not convergent in L,([0,1]%). Also, if 7 & [? then the WTGA
corresponding to ¥ and 7 is convergent in L,([0,1]¢). In addition, as L, ® Iy is
isomorphic to L,, there is an unconditional basis ¥ in L,([0,1]?) (1 < p < 2) for
which the condition 7 ¢ l5 is also a necessary condition for WTGA corresponding
to ¥ and 7 to be convergent.

Let us consider in detail the case of the Haar system Hg.

Proof of Theorem 8. If T = {ty,k > 1} is a sequence of nonnegative numbers which
does not converge to 0, then limsup;_, . tx > 0, and convergence of the WI'GA
corresponding to ’Hg and 7 is an immediate consequence of Theorem 1.

It remains to consider sequences 7 such that limg_, ., tx = 0. By Proposition 2.1,
it is sufficient to consider a sequence 7 with t; # 0. Introduce the notation:

Gm = #{n :|supp Hn| =2""}, 1 =0, qu, for m > 1.

Note that ¢, =< m?12™ =< v,, and logg,, =< m = logv,, for m > 1. As the
sequence {t;,k > 0} is nonincreasing, we have for v, <k < vy,11

Cl(t* )22m(2/p—1) < (t2)2(k(10g k)(l—d))2/P—1 < C2(tim)22m(2/p_1)?

Vi1
which implies that
o0 o0
Z k(log k) (1’d))2/p_1 <o = Z(t;‘jmﬂ) md=122m/P < oo,
k=1 m=1

Let us recall (see Lemma 3.1 below for more detail) that for any N different
indices ny,... ,ny

N
(2.3) 1D Haupllp = Clp, d)(log N)@-DE2URINYP 1 < p <2,
=1

For any sequence of different indices {ny, k > 1}

| Ztank,p P — = | Ztk k,p

where nj is such that t; = ¢« and n; = ng-. By (2.3) we continue

Um+1

2 Cwd( S0 S GHal2)”

m=0 k=v,,+1

= 1/2
> C(p, d)( Z (timﬂ(log qm)(d—l)(1/2—1/p)q717{p)2) >
m=0

(i £ ) )2(m + 1)% 122m/p)1/2.

m=0
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Thus, it follows from (2.2) and Theorem 1 that if a weakness sequence 7 satisfies
the condition (1.7), then the WTGA corresponditng to ¢ and 7 converges.
Suppose now that

(2.4) Z k(log k) (1_d))2/p71 < 0.
k=1
Take a sequence {ng,k > 1} of different indices satisfying
|supp Hp, p| =2 for v+ 1<k < vy,

i.e. we order the functions Hy , according to the measure of their supports (more
precisely, the sequence of measures |supp Hp, p| is nonincreasing). Then, using
unconditionality of ’Hg, we obtain

> p/2
||Ztk oy < Cd) [ (3t p @) o
k=1
(e e} . Um+41 ) p/2
<0pa) [ (S D @) e
m=1 k=vpy,+1

> oo\ P2
< Clp,d) (Dot 40)2(m+ 1) 122/ )
m=0

The above inequality combined with Theorem 1 and (2.2) implies that for 7 satis-
fying (2.4) the corresponding WTGA is not convergent.
3. PrROOF OF THEOREMS 4 AND 5

This proof uses an idea from [T2]. The following proposition is a well known
fact about unconditional bases (see [LT],v.I, p.19).

Proposition 3.1. Let ¥ be an unconditional basis for X. Then for every choice
of bounded scalars {\p}521, we have

| Z)\kak%H < KSUP Axl] Zawkll

k=1 k=1

Take any € > 0 and find

= bt

keP

such that |P| = m and

(3'1) ||f _pm(f)H < Um(fa\Ij) +e.
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For any finite set of indices A we denote S the projector

SA(f) =D er(fs Oy

keA
Proposition 3.1 implies that
(3.2) If = Sp(f)Il < K(om(f,¥) +e).
Let
GR(f,®) = en(f, ¥)r = So(f).
keQ
Then
(3.3) If =GN (O < Nf = Sp(HI + I1Sp(f) — Sa (Il

The first term in the right side of (3.3) has been estimated in (3.2). We estimate
now the second term. We have

(3.4) Sp(f) = So(f) = Spa(f) — Sa\r(f)-

Similarly to (3.2) we have

(3.5) [So\p(NI < K(om(f, ¥) +¢).

We now estimate ||[Sp\q(f)||- Let J be the set of indices i such that elements of
P N @ where chosen at steps ¢ € J. Denote

= U)l.
a kfgﬂg@ck(ﬁ )|

Then from the definition of the WTGA we obtain that

Sovp(f) = > alf, V)i

keQ\P

and {ck(f, ¥)}reg\p can be enumerated by indices ¢ € V := [1,N]\ J in such a
way that
ek, (f, @) > tia, i€V

Then by Proposition 3.1 we have
(3.6) ISo\p (£l > K~ ag(r,N, V)
and

(3.7) ISP\ (NIl < Kap®(|P\ Q).
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Thus in the case of N = m (Theorem 4) denoting n := |P\ Q| = |Q \ P| we get

HSP\Q<f>Hs;zr2$g§¥§?55nsQ\p<fn|s

K?u(r, m)||So\p (f)]]-

In the case of N = v, (Theorem 5) we obtain

(3.8) $(r,N,V) > ¢(r,N) = | Y tithw, | = ¢(7, N) = p(m) > (m).

ieJ
Combining (3.6)—(3.8) we get

ISp\@ ()] < E*(ISq\pl.

It remains to substitute this inequality and the inequality (3.5) into (3.4) and use
(3.3).

Theorems 4 and 5 are proved.

Let us make some comments on Theorems 4 and 5. First we consider the case
when U is a greedy basis. Then by Definition 1.1 we have (1.3) satisfied. Let us
see what Theorem 4 gives in this case. We remind one result from [KT].

Definition 3.1. We say that a normalized basis ¥ = {¢}}%2, is a democratic
basis for X if there exists a constant D := D(X, W) such that for any two finite
sets of indices P and Q with the same cardinality |P| = |Q| we have

(3.9) 1"l < DI -

keP ke@

The following theorem was proved in [KT].

Theorem 3.1. A normalized basis is greedy if and only if it is unconditional and
democratic.

Thus by Theorem 3.1 we have (3.9) satisfied for a greedy basis. It is easy to see
that (3.9) implies ¢*(m) < D¢(m) and therefore for 7 = {1} we get pu({1},m) < D.
This means that Theorem 4 states that for any greedy basis ¥ we have (1.3) for

any p € D(f).
We now apply Theorems 4 and 5 in the case of ¥ = ’Hg, 1 < p < co with the

weakness sequence 7 = {1}. We will use the following known inequalities.

Lemma 3.1. Let 1 < p < oo. Then for any A, |A| = m, we have for 2 < p < oo

Czla dml/p glel}\l [enHullp < | Z cnHnllp < Cg,dml/p(log m)h(p’d) Té’“f [en Hnllp,

)

ncA

and for1 <p <2

Cg,dml/p(log m)_h(p’d) Lneljr\l [enHallp < || Z cnHa|lp < C;,dml/p max [enHallp
neA
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where h(p,d) := (d —1)|1/2 — 1/p|.
Lemma 3.1 in the case d = 2, 4/3 < p < 4 has been proved in [T3] and in the
general case in [W]. Lemma 3.1 implies that for 1 < p < oo
p({1},m) = C(p, d)(logm) - DI/2=1/»

and

Uy = C(p, d)ym(log m)(@—VIP/2=1],

Therefore Theorem 4 gives the known result (see [T3], [W])
(3:10) [[f = Gm(f, Hp)llp < C(p,d)(logm) =2 oMoy (£,H7),, 1< p < 0.

Theorem 5 gives a new result. We note that for functions f with slow decay of
om(f, H), Theorem 5 gives a better estimate than (3.10). Consider for example

om(f,HE)p < m™*. Then (3.10) gives

(3.11) If = Gu(f, HY)||p < (logm)d=DI/2=1pim=e ] < p < 00
while Theorem 5 gives

(3.12) If = G (f, 1) [p < (m(logm)~@=DIP2= " 11 < p < o0,

For ao < 1/p the estimate (3.12) is better than (3.11).

Theorem 3.2. Let X be a Banach space with a normalized unconditional basis W.
Let 7 = {t,,n > 1} be a weakness sequence such that the WTGA with respect to ¥
and T is convergent. Let {v,,,m € N}, be a sequence of natural numbers, v,, > m.
Then the following two conditions are equivalent.

(i) There is a constant C' such that for each pair of natural numbers n < m and
any set V C [1,vp,], |V| = vy — m + n we have the following inequality

1D will < ClIY_ tan,

JEA eV

for any two sets of indices A and B := {k;,i € V} (all k;, i € V are different)
satisfying the conditions: AN B = and |A| = n.
(ii) There is a C > 0 such that for all f € X

Proof. The implication (i) = (¢i) can be proved in the same way as Theorem 5.
We will not dwell on it here. We only note that we use (i) with A = P\ @ and
B =@\ P to get from the following analogs of (3.6) and (3.7)

(3.14) ISo\e (NIl > K~ tall Y titpw,ll, B ={ki,i €V}

eV
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(3.15) ISpv@(HIl < Kall D

neA
the inequality
1S (Nl < CK?[1Sg\p(f)]-

We now prove that (ii) = (7). Let a pair of n < m be given and let V, A, B

be any sets satisfying the conditions of (i). Let Y be such that |Y| =m —n and
ANY =0 and BNY = (. Consider

Z ¢n + Z tﬂﬁm
n€AUY i€V

We take the following realization of the WTGA. For steps i € V we take n; = k;
and for steps i ¢ V we take different n; € Y. Then we get

FO) =t + > tithy,.
ney 2%
This implies by (ii) that
1> bl = 1If = G5, (£, 0)]| < Com(f, ¥
necA eV
This completes the proof of Theorem 3.2.

Let us make some more comments on Theorems 4 and 5. From the definition
of p*(m) and ¢(m) we get immediately that ¢°(m) < Cme¢(m) and therefore
w({1},m) < Cm. Thus by Theorem 4 for any normalized unconditional basis ¥ we
have

1f = Gu(f, 9)|| < C(¥)mom(f,¥).
We will now construct an example of a Banach space X and unconditional basis ¥
such that Theorem 5 does not hold even for the TGA (7 = {1}).
Example 3.1 Let X be the space of sequences a = (@, n;n, m > 1) with the

norm
00 00 1/n
Hanﬁzjzj( n) < .
n=1 m=1

Let ¥ = {111} where ¥ i := (0(m,n),(k,); 7 m > 1). Clearly, ¥ is an unconditional
basis of X. Therefore the TGA corresponding to ¥ converges. However, observe
that there is no sequence {v,,,m > 1} for which condition (i) of Theorem 3.2 is
satisfied. To see this, consider A,, := {(k,1) : k=1,... ,m} and B, ,, = {(,n) :
l=1,...,p}. Then for each m

(k )eA,
while for each p

inf[| Y il = lim ||Z¢kn||—hmu

(k1)EBy,n

By Theorem 3.2 there is no sequence {v,,, m > 1} such that the inequality (3.13)
holds with a constant C' independent of both a € X and m.
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4. GREEDY SUBSEQUENCES OF THE MULTIVARIATE HAAR BASIS

It is well known that, for p # 2 and d > 2 the d-variate tensor product Haar
system Hg is not a greedy basis in the corresponding L, ([0, 1]%) space. However, for
some functions the Thresholding Greedy Algorithm may give an order of approxi-
mation comparable with the order of best approximation. In this section we address
the question: For what functions the TGA realizes near best m-term approxima-
tion? Let us recall that for s = (s1,...,84), the dyadic block Ug is defined by
(1.10), and the Haar functions Hy , with n € Us have the same shape of supports.

We are interested in the influence of some ”structural constrains” imposed on a
function on the efficiency of TGA with respect to the Haar system ’Hg. By 7struc-
tural constrains” we mean constrains imposed on the number of nonzero coefficients
in dyadic blocks or on the number of dyadic blocks with nonzero coefficients. These
constrains are expressed in terms of classes of sequences R(K), J(K), and G(d)
(see the Introduction). We begin with proving Theorem 6.

Proof of Theorem 6. For any sequence M the system ’Hg [M] is an unconditional
basis for L,[M], 1 < p < co. Thus by Theorem 3.1 it is sufficient to establish that
HI[M] is democratic provided M € G(d). This follows from Lemmas 4.1 and 4.2
below.

Lemma4.1. Letl < p < oo and M € R(K). Then for any differentny, ..., n,, C
M we have

m

1> Hawp

k=1

p < m!/?

with constants depending on K and p.

Lemma 4.2. Let1l < p < oo and M € J(K). Then for any different ny, ..., n, C
M we have

m

|| Z an,p

k=1

p < m!/P

with constants depending on K and p.

In the case d = 1 Lemma 4.1 with M = N was proved in [T2]. That same proof
works for d > 2 under assumption M € R(K). Let us prove Lemma 4.2.

Proof of Lemma 4.2. We recall (see Lemma 3.1) that by the Littlewood-Paley
theory we have

1Y Haypllp < Clp,dym!/® for 1<p<2
k=1

and

C(p,dym*? < | Ha,pll, for 2<p<oo
k=1
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for any different ny,...,n,,. To prove the upper estimate in case 2 < p < oo,
we use the following inequality, which is a special case of Lemma 2.3 of [T1]: for

2<p<ooand f=3}_ fswith fs =% -, ca(f)Hn

(4.1) I1£]l, < de(Z (2\sl(1/2—1/p)||fs||2)p) l/P.

S

For each s, let mg be the number of ng’s in Us. Note that

>° Hupplla = 281072l
knpcUg

and therefore by (4.1)

u“ 1/p
| Zﬂnk,pnp < Cp,d(zmgm) :
k=1 s

Taking into account that m = ) ms and ms < K by assumption M € J(K) we
get

m
H, <C dml/p for 2<p<oo
kPP p,
k=1

with the constant depending only on p and K.

To complete the proof, recall that the lower estimate in the case 1 < p < 2
follows from the upper estimates for all 2 < p < oo by duality. Using the Holder
inequality we obtain

[ Husle) By ie = [ ZHHM, Zan,p
k=1 ’

S || Z'anvp
k=1

s

m
1
|p ’ H Zan,p’Hp’ < le/p || Zﬂnk,p
k=1 k=1

which gives the lower estimate in case 1 < p < 2 with a constant depending only
on p and K.

This completes the proof of Theorem 6.

We now proceed to a discussion of in what sense Theorem 6 is sharp. We need
some more notation describing the structural constrains on functions.

Let A = {)As,s = (s1,...,84) € Z‘fr} be a sequence of integers, satisfying
(4.2) 0< A\ < #U..
Denote

V(A) i= {M : M NUs| < As}-
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For 1 < p < oo consider the following sets of functions

(4.3) Lyp(A) = U Lp[M],
MEV(A)

i.e. L,(A) consists of f € L,([0,1]%) with at most As non-zero coefficients in blocks
Us, s € Z1.

We describe a distribution of Ag’s for a given sequence A by defining for nonneg-
ative integers u, M

(4.4) apm(A):=#{s:|s|]=p and Is> M}.

Now, let A := {a,m} be a sequence of nonnegative integers satysfying the
conditions
(45) Qp, M,y S Gy, Mo for Ml Z M2

(4.6) auo=#{s=(s1,.--.,%q4):|s|=n}, aym =0 for M > max#Us.

Is|=p
Let us note that the sequence {a, r(A)} defined above satisfies these conditions
for any A.

To formulate the main result of this section, we define a type of a sequence A
and full range sequences.

Definition 4.1. Let A = {a, m} be a sequence satisfying (4.5) and (4.6), and let
A = {)s} be a sequence of integers satisfying (4.2). A is called a type A sequence
if o (A) = ap v for all p, M > 0 (where oy pr(A) is given by formula (4.4)).

Definition 4.2. Let A = {a,,m} be a sequence satisfying (4.5) and (4.6). The
sequence A is called a full range sequence if for each M > 0 we have
limsup,_, au,m = 00.

Let us take a sequence M € G(d) and define
Gt (M) = #{s 2 s =i and #(MNT) > M},
From the definition of G(d) we get that
M=M; UMz, M;eR(K;), MsecIJ(K>).

Thus for M > Ky we have a, (M) < K;. Therefore any M € G(d) has a
distribution that is not a full range sequence. It follows from the Definition 4.2
that the opposite is also true: if {a, am(M)} is not a full range sequence then
M € G(d). Theorem 4.1 below states that if constrains on the structure of a
function are given in terms of the distribution sequence {a, p/(M)} then Theorem
6 is the best possible.
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Theorem 4.1. Let A = {a, m} be a sequence satisfying (4.5) and (4.6). Letd > 2,
1 <p< oo, p#2. Then the following conditions are equivalent:

(i) A is not a full range sequence.

(ii) There is a constant C = C(A,d,p) (depending only on A, d and p) such that
for each A = {)Xs,s = (s1,...,54)} of type A we have for all f € L,(A) and m € N

Proof. The implication (i) = (i7) follows from Theorem 6. We now prove that
(7i) = (i). For any given sequence A of a full range we will construct a A of type
A such that (4.7) does not hold. We begin with a construction which will provide
us with building blocks of the counterexample sequence M. This construction is a
modification of a construction from [6,Section 4].

For a given pair of natural numbers k£ and [ such that | < k£ we consider the
following special polynomials. First, we define a set

I(k,l):={s:|s|=kd, s; >k—1, j=1,...,d}.

Then
#1(k, 1) <1971

Consider the cube [0,2!7%)4 and define
Us(k,1):={n:n e Us; and suppH, C [0,2:7F)d};
E(ka l) = UsEI(k,l)Us(ka l)

Gkl = Z Hy p.

neE(k,l)

Define a polynomial

By the Littlewood-Paley theory we have

1/2
p =10 D [ Hup@)P) 7l 1<p< oo
neE(k,l)

(4.8) 7

The supports of Y,y (1) Hn,ps s € I(k,1) cover the cube [0, 2!=F)4 and therefore
we obtain from (4.8)

(4.9) gkl = 2'/P104= 172,
The number m := m(k, 1) of terms of the polynomial g ; satisfies the inequalities
(4.10) C1(d)14=D21 < m < Cy(d)1d— V2l

Let us take a companion to the g ; polynomial

R = f; Hy, p
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such that n; ¢ E(k,l),i=1,...,m and

supp Hy, Nsupp Hy; = 0, i # ]
Then
(4.11) [l = mP.

Considering the function f := gi; + 2h,, in the case 2 < p < oo and the function
f :=2gk; + hy, in the case 1 < p < 2 we will get for an M containing E(k,!) and

{ni}i,
1f = G (f, HAMD lp/om (f, HE[M])p > (logm) =11 /p=172]

Let A be a full range sequence. Then there is an increasing sequence {u;} such
that

(4.12) @y, gta > 2C5(d)14 D2k,
We define
M = (U2, E(u, 1)) U ({nj}}?il),

where {n;}$2, is such that
(4.13) supp Hy, C [1/2, 1) and supp Hy, Nsupp Hy, =10, i # j.
It is clear that {n;}$°, with the properties (4.13) can be chosen in a way that M
will be of type A. This completes the proof of Theorem 4.1.

We note that the above argument implies even more.

Proposition 4.1. Let A = {a, v} be a full range sequence andd > 2,1 < p < oo.
Let {C(m,A,d,p),m € N} be a sequence of reals such that for each A = {A\s} of
type A, f € L,(A) and m € N

|If = G, Hy)llp < C(m, A, p)am(f, Hp)p-

Then
C(m, A, d,p) =< (logm)d=DIL/2=1/pl,

5. SOME DIRECT AND INVERSE THEOREMS IN

m-TERM APPROXIMATION WITH REGARD TO Hg

In the case d = 1 the Haar basis is a greedy basis for L,, 1 < p < oo. The
following characterization theorem has been established in [T3] (for the case p = 2
see [St], [DT]). We will use the notation

a'n(fap) = |Ckn (fa H;}l)|

for the decreasing rearrangement of the coefficients of f.
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Theorem 5.1. Let 1 < p < o0 and 0 < g < oo. Then, for any positive r we have
the equivalence relation

Z om(f)Im™ I < oo = Z an(f,p)In" 1P < o0,

Let us remind the definition of the Lorentz spaces of sequences and introduce
new spaces which provide finer (logarithmic) scale. Let for a sequence {z;}32, a
sequence {T,x)}5—; be a decreasing rearrangement

|$P(1)| > |xp(2)| > ...

For r > 0, 0 < ¢ < oo denote
0= {2y 0 Y [ | TR < oo}
k=1

or, equivalently,

1978 < oo},

= {{zr}iey Z | (29
s=0

Forr > 0,b e R, 0 < g < oo define

o0

0= {{an iy 0 (Jzpee)27s") < oo}

s=1

It is clear that E’;O =Ly
The proof of Theorem 5.1 was based on the following two lemmas.

Lemma 5.1. For any two positive integers N < M we have

an (f,p) < C(p)on(f, H)p(M — N)~H/P,

Lemma 5.2. For any sequence my < my < ... of nonnegative integers we have

Omg, (f7H)p < C(p) Z Am; (fvp)(mi-f-l - mi)l/p'

We will prove in this section the following multivariate analogs of the above
lemmas.

Lemma 5.3. For any two positive integers N < M we have
an(f:p) < Clp,d)on (f, H)p(M — N)HP, 2 <p < oo;

an (f,p) < Clp,d)on(f, H)p(M — N)~/2(log M)"PD 1 <p<2
with h(p,d) == (d —1)[1/2 —1/p|.
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Lemma 5.4. For any sequence mg < my < ... of non-negative integers we have

T, (F, 1Y)y < Cp,d) Y am, (f,p) (i1 —mi)/P(logmig)" @D, 2 < p < oo;

Om, (faHd)p < C(p,d) Zami(fap)(mi-‘rl - mz’)l/pa I<p<2

Proof of Lemmas 5.3 and 5.4. These two lemmas follow from the well-known in-
equalities

Cip, d) (X lleaHalZ) ™ < IS caHullp < Ca(p, d) (3 leaHalZe) /"

where 1 < p < 0o and p; := max(2,p); p, := min(2,p), and from Lemma 3.1.

Using Lemmas 5.3 and 5.4 one can establish the following embedding theorem
in the same way as Theorem 5.1 was deduced from Lemmas 5.1 and 5.2 in [T3].

Theorem 5.2. Let 1 < p < co. Denote

o(f)p = {om(f,H)pl =1 and  a(f,p) = {an(f,0)}Ls-

Then we have the implications:

(5.1) o(f)p€ly® = alf,p) ey 2<p<oo;
(5.2) o(f)pet® = a(f,p)ett/pb=red g <p <2
(5.3) a(f,p) € £/ = g(f), € (ptTMPD 9 < p < oo
(5.4) a(f,p) € LT/ = o(f), et 1<p<2

Let us discuss in more detail the implication (5.1). We want to understand what
smoothness classes are natural for m-term approximation with regard to the basis

H? which is a tensor product of the univariate Haar basis H. We consider the

relation a(f,p) € €2+1/p’b for a special choice of b = 0 and ¢ = £ := (r +1/p)~ L.

Then a(f,p) € KZH/p is equivalent to Y., a,(f,p)* < oo or

(5.5) > llea(f)Hal§ < oo where f =" ca(f)Hn.

Next, we have for n € Uy

||Cn(f)Hn||p = ||Cn(f)Hn||$2—\S|(1/p—1/$) _ ||Cn(f)Hn||£2_r|S|'
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Thus (5.5) is equivalent to

(5.6)

S @Y Jlealf) Halle)© < oo

s neUsg

The above relation is the same as to say that f belongs to the mixed smoothness
Besov class M B{(L¢). Thus we conclude that the multivariate classes with mixed
smoothness are natural for studying nonlinear m-term approxmation with regard to
a basis which is a tensor product of univariate bases. There is an extensive literature
in approximation theory on function classes with mixed smoothness. For the linear
theory see [Tel], [Te2] and for some results in nonlinear m-term approximation see

[T4] and [T6].
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