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ABSTRACT. We continue to study efficiency of approximation and convergence
of greedy type algorithms in uniformly smooth Banach spaces. Two greedy type
approximation methods the Weak Chebyshev Greedy Algorithm (WCGA) and the
Weak Relaxed Greedy Algorithm (WRGA) have been introduced and studied in
[T1]. These methods (WCGA and WRGA) are very general approximation methods
that work well in an arbitrary uniformly smooth Banach space X for any dictionary
D. It turned out that these general approximation methods are also very good for
specific dictionaries. It has been observed in [DKT] that the WCGA and WRGA
provide constructive methods in m-term trigonometric approximation in Ly, p €
[2,00) which realize optimal rate of m-term approximation for different function
classes. In [T2] the WCGA and WRGA have been used in constructing deterministic
cubature formulas for a wide variety of function classes with error estimates similar to
those for the Monte Carlo Method. The WCGA and WRGA can be considered as a
constructive deterministic alternative to (substitute for) some powerful probabilistic
methods. This observation encourages us to continue thorough study of the WCGA
and WRGA.

In this paper we study modifications of the WCGA and WRGA that are motivated
by numerical applications. In these modifications we allow to perform steps of the
WCGA (or WRGA) approximately with some controlled errors. We prove that the
modified versions of the WCGA and WRGA perform as well as the WCGA and
WRGA.

We give two applications of greedy type algorithms. First, we use them to provide
a constructive proof of optimal estimates for best m-term trigonometric approxima-
tion in the uniform norm. Second, we use them to construct deterministic sets of
points {¢1,...,¢€™} C [0,1]¢ with the L, discrepancy less than CpY/2m~1/2 Cis an
effective absolute constant.

1. INTRODUCTION

The purpose of this paper is to continue investigations of nonlinear m-term ap-
proximation. We concentrate here on studying m-term approximation with regard
to redundant dictionaries in Banach spaces. This paper is based on the paper [T1]
which in turn is a combination of ideas and methods developed for Banach spaces
in a fundamental paper [DGDS] with the approach used in [T3] in the case of
Hilbert spaces. The papers [DGDS]| and [T3] contain detailed historical remarks
and we refer the reader to those papers. Two greedy type approximation methods
the Weak Chebyshev Greedy Algorithm (WCGA) and the Weak Relaxed Greedy
Algorithm (WRGA) have been introduced and studied in [T1]. These methods
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(WCGA and WRGA) are very general approximation methods that work well in
an arbitrary uniformly smooth Banach space X for any dictionary D (see below).
Surprizingly, it turned out that these general approximation methods are also very
good for specific dictionaries. It has been observed in [DKT] that the WCGA and
WRGA provide constructive methods in m-term trigonometric approximation in
L,, p € [2,00) which realize optimal rate of m-term approximation for different
function classes. In [T2] the WCGA and WRGA have been used in constructing
deterministic cubature formulas for a wide variety of function classes with error
estimates similar to those for the Monte Carlo Method. It looks like the WCGA
and WRGA can be considered as a constructive deterministic alternative to (sub-
stitute for) some powerful probabilistic methods. This observation encourages us
to continue thorough study of the WCGA and WRGA.

In Sections 2 and 3 we study modifications of the WCGA and WRGA that are
motivated by numerical applications. In these modifications we allow to perform
steps of the WCGA (or WRGA) approximately with some controlled errors. We
prove that the modified versions of the WCGA and WRGA perform as well as the
WCGA and WRGA.

In Section 4 we use the WCGA and WRGA to build a constructive method for
m-~term trigonometric approximation in the uniform norm. It is known that the case
of approximating by m-term trigonometric polynomials in the uniform norm is the
most difficult. We note that in the case of Ly-norms with p < oo the corresponding
constructive method has been provided in [DKT].

In Section 5 we study a slight modification of incremental type algorithm from
[DGDS]. We apply that algorithm for constructing deterministic sets of points with
small L, discrepancy and also with small symmetrized L, discrepancy.

Let X be a Banach space with norm ||-||. We say that a set of elements (functions)
D from X is a dictionary if each g € D has norm less than or equal to one (||g|| < 1),

g€ D implies —ge€D,

and spanD = X. We note that in [T1] we required in the definition of a dictionary
normalization of its elements (||g|| = 1). However, it is easy to check that the
arguments from [T1] work under assumption [|g|| < 1 instead of ||g|| = 1. In
applications in Section 5 it will be more convenient for us to have an assumption
llg]| <1 than normalization of a dictionary.

We will study in this paper two types of greedy algorithms with regard to D.
For an element f € X we denote by Fy a norming (peak) functional for f:

1Eell =1, Fe(f) = lIf]]-

The existence of such a functional is guaranteed by Hahn-Banach theorem. Let
T := {tx}72, be a given sequence of nonnegative numbers t;, <1, k =1,.... We
define first (see [T1]) the Weak Chebyshev Greedy Algorithm (WCGA) that is a
generalization for Banach spaces of Weak Orthogonal Greedy Algorithm defined
and studied in [T3] (see also [DT2] for Orthogonal Greedy Algorithm).
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Weak Chebyshev Greedy Algorithm (WCGA). We define f§ := f3" = f.
Then for each m > 1 we inductively define
1). ¢S, := %7 € D is any satisfying

Fye  (¢5,) > tmsup Fre _ (g).
geD

2). Define
= @y, == span{y§}i,

and define G, := G%7 to be the best approximant to f from ®,,.
3). Denote

Jo = Im" = — G
We study here the following modification of the WCGA. Let three sequences
T={te}21, 0 = {0k}, 7 = {me}3>, of numbers from [0, 1] be given.

Approximate Weak Chebyshev Greedy Algorithm (AWCGA). We define
fo:=15 97 .— f. Then for each m > 1 we inductively define
1). F,, 1 is a functional with properties

[Fmall <1, Fno1(fm—1) = [[fm-1ll(1 = 6m—1);
and @, := 7% € D is any satisfying

Fm—l(gpm) > tm sup Fm—l(g)-
g€D
2). Define
P, := span{ep; }724,

and denote
E,, := inf —ol|.
(f) c,DIEI}Pm If =«

Let G,,, € ®,,, be such that

If = Gl < Em(f) (1 + 1m)-

3). Denote
fm 1= F07 = | = Gon.

The term approximate in this definition means that we use a functional F,,_1
that is an approximation to the norming (peak) functional F, , and also we use
an approximant G,, € ®,, which satisfies a weaker assumption than being best
approximant of f from ®,,.

The following Weak Relaxed Greedy Algorithm has been studied in [T1].
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Weak Relaxed Greedy Algorithm (WRGA). We define f§ := f3’" := f and

=Gy :=0. Then for each m > 1 we inductively define
1). ¢l =™ € D is any satisfying

Fffn,l(‘PTm —G,1) 2 tm sup Ffr (g —Gr_1).

g€D
2). Find 0 < \,,, <1 such that
IF = (@ = Am)Grny + Amgi )| = Inf 1f = (1= NGy + A
and define
G, =GrT = (1= Mn)Gr 1 + A,
3). Denote

S = Im" = — G
We will study here the following approzimate version of the WRGA.

Approximate Weak Relaxed Greedy Algorithm (AWRGA). We define

§r=fo " o1 .= f and Gir .= Gy 97 .= (), Then for each m > 1 we inductively
define

1). F2", is a functional with properties

I1Fnall <1, Foly (1) 2 [ —all(1 = dm—1);
ar,T,0

o= T € D is any satisfying

Fol o (om — G 1) 2 tmsup F (g — G q)-

g€D
2). Find 0 < \,;, <1 such that
1f = (L= Am)Gh1 + Ampm )| <
min (|| f7,_1 1], 0<1§f<1 [f = (1 =NGh_1 + Aep) (1 +7m))
and define
G = GEPTOMN = (1 — A\ )GE_y + Aol
3). Denote

-— b 76, Py—
fol = formom = f— Gy

We study in Sections 2 and 3 the questions of convergence and the rate of con-
vergence for the two methods of approximation AWCGA and AWRGA. It is clear
that in the case of AWRGA the assumption that f belongs to the closure of convex
hull of D is natural. We denote the closure of convex hull of D by A;(D). It has
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been proven in [T3] that in the case of Hilbert space both algorithms WCGA and
WRGA give the approximation error for the class A; (D) of the order

m

1+ )72

k=1

We consider here approximation in uniformly smooth Banach spaces. For a Banach
space X we define the modulus of smoothness

1
plu) = Wl Gllz+uyll+ iz —uyl)) = 1).
x||=||Y]||=

A uniformly smooth Banach space is one with the property

lim p(u)/u = 0.

u—0

It is easy to see that for any Banach space X its modulus of smoothness p(u) is an
even convex function satisfying the inequalities

(1.1) max(0,u — 1) < p(u) <wu, u € (0,00).

It has been established in [DGDS]| that the approximation error of an algorithm
analogous to our WRGA with ¢, = 1, k = 1,2,..., for the class A;(D) can be
expressed in terms of modulus of smoothness of Banach space. Namely, if modulus
of smoothness p of X satisfies the inequality p(u) < ~yu?, ¢ > 1, then the error
is of O(m'/91). We proved in [T1] that both algorithms WCGA and WRGA
provide approximation for the class A; (D) in a Banach space X with modulus of
smoothness p(u) < yu?, 1 < q¢ < 2, of order

m

(1.2) LSy p= L

k=1 q—1

It also has been proved in [T1] that WCGA converges for any f € X and WRGA
converges for any f € A;(D) if T satisfies the condition

(1.3) > tmém(p, 7,60) = 0.
m=1

The sequences {&,,(p, 7,0)} are defined in Definition 2.1 of Section 2. In a particular
case of p(u) < u?, 1 < g <2, the relation (1.3) is equivalent to

(1.4) th =00, pi=—1_,
k=1
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In [T1] we gave an example which showed that (1.4) is sharp for Banach spaces
with modulus of smoothness of power type q.
It is well known (see for instance [DGDS], Lemma B.1) that in the case X = L,
1 < p < oo we have
» .
(15) RS R
(p—1Du?/2 if 2<p<oo.

It is also known (see [LT], p.63) that for any X with dim X = oo one has
plu) > (1+u?)/? —1

and for every X, dim X > 2,
p(u) > Cu?, C >0.

This limits power type modulus of smoothness of nontrivial Banach spaces to the
case 1 < g < 2.

We prove in Sections 2 and 3 that under some reasonable assumptions on se-
quences d and 7 the AWCGA and AWRGA are as good as the corresponding WCGA
and WRGA. As an example we formulate here only one result (see Corollary 2.3 in
Section 2 below).

Theorem 1.1. Let X be a uniformly smooth Banach space. Assume that T =
{t}, t € (0,1]. Then for any two sequences §,n € co the corresponding AWCGA
converges for any f € X.

We remind that cg is the space of all convergent to 0 sequences.

In Sections 4 and 5 we demonstrate power of the WCGA and WRGA in classical
areas of harmonic analysis and numerical integration. The first problem concerns
the trigonometric m-term approximation in the uniform norm. Let 7(N) be the
subspace of real trigonometric polynomials of order N and let 7 be the real trigono-

metric system

1 .
i,sm x,cos x, sin 2z, cos 2z, . . .

Denote for f € L,(T)

m
o T)p = inf — ciQ;
LTI S [o ST
the best m-term trigonometric approximation of f in the L,-norm. It is clear that

one can get an upper estimate for o9,,+1(f,7), by approximating f by trigono-
metric polynomials of order m. Denote

En(f, T)p = t€i7r_1(fm) |l f — th'
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The first result that indicated an advantage of m-term approximation over ap-
proximation by trigonometric polynomials of order m is due to R.S. Ismagilov [I]

(1.6) om(|sinz), Teo < Cem™5/5%€ for any > 0.

Let us compare it to the well known result due to de la Vallée Poussin and S.N.
Bernstein

(1.7) En(|sinz], T)e xm™t.
V.E. Maiorov [M] improved the estimate (1.6):
(1.8) om(|sinz], T)oo = m™3/2,

Both R.S. Ismagilov [I] and V.E. Maiorov [M] used constructive methods to get
their estimates (1.6) and (1.8). V.E. Maiorov [M] applied a number theoretical
method based on Gaussian sums. The key point of that technique can be formulated
in terms of best m-term approximation of trigonometric polynomials. Using the
Gaussian sums one can prove (constructively) the estimate

(1.9) Om(t, T)oo < CN32m=Y|t]l1, te T(N).
Denote
N N
lao/2 + ) (ak coskx + by sinka)||a = |ao| + Y _(lax| + [bx])-
k=1 k=1

We note that by simple inequality
[tlla < 2N+ Ditll, ¢ T(N),
the (1.9) follows from the estimate
(1.10) Tt T)oo < C(NY2/m)||t]| .
Thus (1.10) is stronger than (1.9). The following estimate is known (see [DT1])
(1.11) Om(t, T)oo < Cm™'2(In(1 + N/m))/?|t]] a.

In a way (1.11) is much stronger than (1.10) and (1.9). However, the existing proof
of (1.11) (see [DT1]) is not constructive. The estimate (1.11) has been proved in
[DT1] with the help of a nonconstructive theorem of Gluskin [G]. In Section 4 we
give a constructive proof of (1.11). The key ingredient of that proof is the WCGA
(or WRGA). In the paper [DKT] we already pointed out that the WCGA provides
a constructive proof of the estimate

(1.12) om(t, T)p < C(p)m 2|t 4, p € [2,00).

The known proofs (before [DKT]) of (1.12) were nonconstructive (see discussion in
[DKT, Section 5]).
We formulate here a general result from Section 4 (see Theorem 4.6).



8 V.N.TEMLYAKOV

Theorem 1.2. Let ¢ := {gbj};-";l be a uniformly bounded orthonormal system
defined on a bounded domain. Assume ® has the (VP) property. Then there ezists
a constructive algorithm A(®,N,m) such that for any ¢ € ®(N) it provides a
m-term ®-polynomial A(®, N,m)(p) with the following approrimation property

16 — A(®, N,m)(9)]loc < Cm™2(ln(1 + N/m))!/?||¢]| 2

with a constant C' which may depend on .

The (VP) property is a property that guarantees existence of a sequence of the
de la Vallée Poussin operators. See Section 4 for precise definition.

In Section 5 we apply greedy type algorithms for constructing points with small
discrepancy and small symmetrized discrepancy. Let 1 < p < oco. We will define
first the L, discrepancy (the L,-star discrepancy) of points {¢!,...,&™} C Q4 :=
[0,1]%. Let x[4,p)(+) be a characteristic function of the interval [a,b]. Denote for
x,y € Qq

d
B(z,y) := H X[0,z,](Y5)-
7j=1

Then the L, discrepancy of £ := {¢',...,&™} C Q4 is defined by

1 m
D(gamad)p = || o B(may)dy - E ZB(-’E,SH)HLP(Qd)-
d

p=1
We are interested in £ with small discrepancy. Consider

D(m7 d)p = 1I£1fD(§, m, d)P

The concept of discrepancy is a fundamental concept in numerical integration.
There are many books and survey papers on discrepancy and related topics. We
will mention some of them as a reference for the history of the subject: [KN], [BC],
Ma], [C], [NW], [T2]. For 1 < p < oo the following relation is known (see [BC,p.5])

(1.13) D(m,d), < m ™ (Inm)@-H/2

with constants in =< depending on p and d. The right order of D(m,d), for d > 3
is unknown. Recently, driven by possible applications (see [NW]) in numerical
integration the tendancy to control dependence of D(m,d), on both variables m
and d has appeared. Very interesting results in this direction have been obtained
in [HNWW|. They proved the estimate

(1.14) D(m,d)os < Cd*?m=1/2.

It is pointed out in [HNWW] that (1.14) is only an existence theorem and even a
constant C' in (1.14) is unkown. Their proof is a probabilistic one. There are also
some other estimates in [HNWW] with explicit constants. We mention one of them

(1.15) D(m,d)os < C(dInd)/?((Inn)/n)/?



with an explicit constant C'. The proof of (1.15) is also probabilistic.

In Section 5 we provide a constructive algorithm which consists of maximizing
(approximately) certain functions of d variables at each step. For a given p € [2, 00)
after m steps of this algorithm we obtain a set £ = {¢!,...,™} C Qg4 of points
with small L, discrepancy

D(fama d)p S Cpl/zm_1/2

with effective absolute constant C'. The above algorithm is a greedy type algorithm
which is a slight modification of the corresponding procedure from [DGDS]. Here
we do not assume that a dictionary D is symmetric: g € D implies —g € D. To
indicate this we will use the notation D% for such a dictionary. We do not assume
that elements of a dictionary DT are normalized (|lg|| = 1 if g € D) we only
assume that ||g|| < 1if g € DT. By A;(D") we denote the closure of the convex
hull of DF. Let e = {€,}2° 1, €, >0, n=1,2,... .

Incremental Algorithm with schedule ¢ (IA(e)). Let f € A;(D*). Denote
fo© = f and G§° := 0. Then for each m > 1 we inductively define
1. b € Dt is any satisfying

Ffi,e ((p:;,f - f) Z _Em.

m—1

2. Define .
G o= (L— 1/m)G  + i /m.

3. Denote
foe=f—Gpr.

Let us make a brief comparison of the above three types of greedy algorithms.
The AWCGA contains a step of finding an approximant G,, € ®,, that provides
approximation close to the best approximation. The corresponding steps of the
AWRGA and IA(e€) are simpler: optimization over A € [0,1] in the AWRGA and
simple convex combination in the IA(e). Next, the AWCGA can be applied to any
f € X. The AWRGA can be applied only to f € A;(D) (in other words to f such
that || f|| 4,(py < 1). TheIA(e) can be applied only to f € A1 (DF) (|| fl|.a4,(p+) = 1)-
In some cases (like in Section 5) a problem itself implies || f|| 4,p+) = 1. However,
if the condition ||f||4,(p+) = 1 (or [[f]|a,(p) < 1) is not satisfied automatically
then it could be a difficult problem to find || f|| 4, (p+) and even estimate || f|| 4, (D)
In such a case we would recommend to use the AWCGA. Clearly, the AWCGA is
the only option if || f[| 4, () = o0.

2. CONVERGENCE AND RATE OF APPROXIMATION OF AWCGA

We begin this section with a known theorem on convergence of WCGA [T1]. In
the formulation of this theorem we need a special sequence which is defined for a
given modulus of smoothness p(u) and a given 7 = {tx}32 ;.
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Definition 2.1. Let p(u) be an even convez function on (—oo,00) with the prop-
erty: p(2) > 1 and

lim p(u)/u = 0.
u—0

For any 7 = {t}32, 0 <tr <1, and 0 < 0 < 1/2 we define &y, = En(p, 7,6) as a
number u satisfying the equation

(2.1) p(u) = 0t u.

Remark 2.1. Assumptions on p(u) imply that the function
e(u) := p(u)/u, u#0, €0)=0,

is a continuous increasing on [0,00) function with €(2) > 1/2. Thus (2.1) has a
unique solution 0 < &, < 2.

The following theorem and a corollary have been proved in [T1].

Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that a sequence T := {t}}3>, satisfies the condition: for
any 0 > 0 we have

(2.2) > tmém(p, 7, 0) = 0.
m=1
Then for any f € X we have
lim ||f:7|| = 0.
m—r0o0

Corollary 2.1. Let a Banach space X have modulus of smoothness p(u) of power
type 1 < ¢ < 2; (p(u) < yul). Assume that

(2.3) Zt{;l:oo, p:L.
m=1

Then WCGA converges for any f € X.
We will prove the following theorem for convergence of the AWCGA.

Theorem 2.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that sequences T, 0, n satisfy the conditions: for any
0 > 0 we have

(2.4) S bk, 7,0) = 0
m=1
and
(2.5) Om = 0(tmém(p,7,0)) and N = o(tm&m(p, 7,0)).

Then for any f € X we have

] 7-76777 —
T |70 = 0.
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Corollary 2.2. Let a Banach space X have modulus of smoothness p(u) of power
type 1 < q < 2; (p(u) < yul?). Assume that

o
Y oth =00, p=—to
m=1

and
Om =o0(th)) and nm = o(th).
Then AWCGA converges for any f € X.
Corollary 2.3. Let X be a uniformly smooth Banach space. Assume that T =

{t}, t € (0,1]. Then for any two sequences §,n € co the corresponding AWCGA
converges for any f € X.

Lemma 2.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). For a finite-dimensional subspace L of X and an elemnt f € X
denote

EL(f) = inf [If - 1.

Assume that an element g € L and a functional F satisfy the following conditions

(2.6) 15 < Bo(f)1+a), fYi=f-g, ac|0,1];
(2.7) F(H > I/ 1 -b), [IF<1, belo,1].
Then

F(g)| < inf(a+b+2(30llf]))/v.

Proof. For any A we have from the definition of p(u) that

A
(28) 175 = Al + 175 + Agll < 2] £211(1 +p(||J|f|§||||)).

Next, assume |F(g)| = f > 0. Then either F/(g) = f or F(—g) = B. We will carry
out the proof under assumption F(g) = 8 and note that the case F(—g) =  is
similar. We have

(2.9) IfE +Agll > F(f* + Ag) > [ F1(1 —b) + A8
and by (2.8)
(2.10) 1F5 — gl < IF41 (1 +b+2p(%)) Y

On the other hand for any A
175 =gl = Er(f) 2 IFA1Q+a)™t > 1511 — ).
Therefore for any A

A3 3l
— b+ 2 ;
oy S et 2

This proves the lemma.

We will need the following simple lemma (see [T1]).
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Lemma 2.2. For any bounded linear functional F' and any dictionary D we have

sup F(g) = sup F(f).
geD fEAL(D)

Lemma 2.3. Let X be a uniformly smooth Banach space with modulus of smooth-
ness p(u). Take a number € > 0 and two elements f, f¢ from X such that

If = fll<e

and
f/A(e) € A(D),
with some number A(e). Then for the AWCGA with T, 6, n we have form =1,2,...

Bm—l + €

] ))

Eon(f) < [ fom 1 ECL+ 6y~ M A() (1= G 1 )+ 20(

A
[l

where
Bm—l = 11)r>lf(‘)(5m—1 + NMm—1 + 2p(31}||f||))/’l}

Proof. We have for any A

(2'11) ||fm—1 - )\QOmH + Hfm—l + )‘(Pm“ S 2||fm—1||(1 + p(

A
il

and by 1) from the definition of AWCGA and Lemma 2.2 we get

Fm—l(tpm) 2 tm SUp Fm_l(g) -
geD

tm sup Fm—1(¢) Z th(e)_lFm—l(fe)'
¢e A1 (D)

By Lemma 2.1 we obtain
Foi(f) =Fna(f+ [ = f) =2 Fno1(f) —e=

Fro—i(fm—1+Gm-1) —€> Fp_1(fm-1) = |Fin—1(Gm-1)| —€ >
[frn—all(1 = Om—1) = B — €.
Thus similarly to (2.9) and (2.10) we get from (2.11)

o 2 [[0E(L + G 1 — M A(€) 1 (1 — 6 3 — D=1 €y gy ),
A | frn—1ll

A
[ frm -1l
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what proves the lemma.

Proof of Theorem 2.2. The definition of { E,,(f)} implies that it is a nonincreasing
sequence. Therefore we have

lim E,,(f) =«

m—00

We prove that o = 0 by contradiction. Assume the contrary that a > 0. Then for
any m we have

We set € = a/4 and find f€ such that
If =l <e and [f/A(e) € A(D)

with some A(e). It is clear that lim,, ;. Bm = 0. We choose M such that for all
m > M we have

Om—1+ (Bm-1+¢€)/a<1/2.

Then by Lemma 2.3 we get
B(£) < | frrall (14 8yt — M A ™/2 + 20(A ).
Let us specify 6 := SAL(E) and take A = a&,,(p, 7,0). Then we obtain

and
||fm|| S ||fm—1||(1 + 5m71 - 29tm§m)(1 + nm)'

Using the assumption (2.5) we get for big enough m that

(1 + 6m—1 - 29tm§m)(1 + nm) S 1- etmgm

The assumption
D tmém = o
m=1

implies that
lfmll =0 as m — oo.

We got a contradiction which proves the theorem.

We now proceed to the rate of convergence of the AWCGA. The following theo-
rem has been proved in [T1] for the WCGA.
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Theorem 2.3. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yul, 1 < q¢ < 2. Then for a sequence T := {tx}7>, tr < 1,
k=1,2,..., we have for any f € A;(D) that

m

| <Clam@+Y @) tr, p= L

c,T
[ 2 p—y

with a constant C(q,~y) which may depend only on q and .
Remark 2.2. [t follows from the proof of Theorem 2.3 in [T1] that

Clg,7) = (2(dy)T7)V/P < Oyt

with absolute constant C'.

We prove here the same rate of convergence for an adaptive AWCGA where
adaptive means that sequences  and 7 are determind by the AWCGA applied to a
given element f € Ay (D).

Theorem 2.4. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yu?, 1 < q¢ < 2. Let a weakness sequence T := {tx}7> 1, tr <1,
k=1,2,..., be such that

- q
Zti = 00, p=_——
k=1 1=
For a given f € A1 (D) apply the AWCGA with
Om—1:= 10 || frm—1lP37P(164,)"",  m=1,2,...;

Nm—1 = 2 Ep_1(f)P37P(164,) 71, m=2,...,

where .
Ay i=4(8y)a 1.

Then we have

| <YL+ Y )R, pi= 4
k=1

[FASK

with absolute constant C'.

Proof. By Lemma 2.3 with ¢ = 0 and A(e) = 1 we have for f € A;(D) that

(2.13) En(f) <

A
1 fm 1l inf (14 O 1 = M (1 = G 1 = B 1/ i all) + 29 )).
) [fmal
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We estimate (3,,_1 by choosing
v = frn1||TTETP/A,.
We have
Bt < (Bt + M)/ + 273900 < (1/16 + 1/16 + 1/4) | frns || = g||fm_1||.

Using d,,—1 < 1/16 we get from (2.13)

9
(2.14) Ep () < 1fm-allinf (1 + 01 — 7= X + 2(

A e
16 ||fm—1||) )

We choose A from the equation

A q
L

1
what implies that

A=t [TT () "7t = 4t | frm 1P /A

With this A using the notation p := _Z; we get from (2.14)

Bn(£) < o a1+ 61 = 2o 2n) < o all(L = 28, 1 ]P/4,) <

Em1(f)A + 15, Em 1 (f)7/(249)) (1 = 87, | fm—1 [P/ Ag) <
Enea(£) (L = £, By (£)7/(24,)).
Raising both sides of this inequality to the power p and taking into account the
inequality 2" < z for r > 1, 0 < z < 1, we obtain

En(f)" < Em1(f)"(1 =5, Em1(f)"/(24,))-

By Lemma 3.1 from [T3] using the estimate ||f||P <1 < A, we get

En(f)P <244(1+ itﬁ)‘l
n=1

what implies

Ifmll < YA+ ) 8R) P,

n=1

Theorem 2.3 is proved now.

We discussed above performance of AWCGA. The AWCGA is defined in a way
of controlling relative errors of approximation of norming functional and best ap-
proximant (see the definition of AWCGA). We now discuss a modification of the
AWCGA with control of absolute errors of approximation. Let three sequences
T={tr}2q, € ={er}2g, @ = {o}32, of numbers from [0, 1] be given.
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Approximate Weak Chebyshev Greedy Algorithm (a) (AWCGA (a)). We
define fo := f3’““ := f. Then for each m > 1 we inductively define
1). Fy,—1 is a functional with properties
||Fm—1|| S ]-7 Fm—l(fm—l) Z ||fm—1|| — €m—1;
and @, := 2% € D is any satisfying

Fm—l(@m) Z tm sup Fm—l(g)-
geD

2). Define
®, := span{yp;}iLy,
and denote
E,, = inf —oll.
(F) = inf If = el
Let G,,, € ®,, be such that
1f = Gmll < En(f) + o
3). Denote
Jm =150 = = G
The following analog of Theorem 2.2 holds for AWCGA (a).

Theorem 2.5. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that sequences T, €, a satisfy the conditions: for any
0 > 0 we have

Z tm&m(p, 7,0) = 00
m=1

and
o0 (e.@)
Zem<oo and Zam<oo.

Then for any f € X we have

| = 0.

3 T,€,Q0
Jim [ 7

The proof of this theorem is similar to the proof of Theorem 2.2. We will not
present this proof here and remark that the only new ingredient of the proof of
Theorem 2.5 is the following simple lemma.

Lemma 2.4. Let
Z’ym:oo, Zam<oo, Qm, Tm € [0,1].
m=1 m=1

Assume that a nonnegative sequence {xy}32 , satisfies the relation
T < Tm—1(1 —Ym) + m, m=1,2,....

Then

lim =z,, =0.
m—r 00
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3. CONVERGENCE AND RATE OF APPROXIMATION OF AWRGA
The following two theorems on WRGA have been proved in [T1].

Theorem 3.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that a sequence T := {t}32, satisfies the condition: for
any 6 > 0 we have

Z tmfm(pa T, 0) = 00.
m=1

Then for any f € A;1(D) we have

| =0.

: r,T
lim [ £}

Theorem 3.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yul, 1 < q¢ < 2. Then for a sequence T := {tx}72, tx < 1,
k=1,2,..., we have for any f € A1(D) that

1fm"
m

S py—1/ _ 4
|§01(Q77)(1+Ztk) p, p'_q—l’
k=1
with a constant C1(q,~y) which may depend only on q and .
Remark 3.1. It follows from the proof of Theorem 8.2 in [T1] that

Ci(g, ) < Cya

with absolute constant C.
We prove here analogs of Theorems 2.2 and 2.4 for the AWRGA.

Theorem 3.3. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that sequences T, 0, n satisfy the conditions: for any
0 > 0 we have

(3.1) > tmm(p,7,6) = 00
m=1
and
(3.2) Om = 0(tm&m(p,7,0)) and My = o(tmém(p,7,0)).

Then for any f € A;1(D) we have

: ar,T,6,n
T |

| = 0.
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Corollary 3.1. In the particular case of T = {t}, t > 0 the assumption (3.1) is
satisfied and the assumption (3.2) takes a form 6, = o(1) and Ny, = o(1). Thus in
the case T = {t}, t > 0 the AWRGA converges for each f € A1(D) if §,n € cp.

Lemma 3.1. Let X be a uniformly smooth Banach space with modulus of smooth-
ness p(u). Then for any f € Ai1(D) we have for m =1,2,...

2A
ar|| < ar : . . )
||fm || > ||fm—1||0§1§f§1(1+5m—1 )‘tm(l 5m—1)+2p(|| ;Lnr_ln))(l_i_nm)

Proof. We have
For = = (L= Am) Gy 4+ M) = F2 = Al — G )

and
ar|l < inf ar A\ (%" — o 1 ).

Similarly to (2.11) we have for any A

(3-3) 11 = AMem = G DIl + 1 + Al = Go)l <

Al — Gl
1l

2|l = 11+ p( ))-

Next we get for A > 0
| fr—1 + Apm — Gl = F o (f o1 + Men — Go1)) 2

| fa (L = Om—1) + AF 4 (e — Goq) =

| o1 [[(1 = dm—1) + Aty sup Fii”_1 (g — Gr_y).
geD

Using Lemma 2.2 we continue

= [fm—all(X = 0m—1) + Atm sup F" (¢ — G5 y) >
¢€A1(D)

[ ll(T = 0m1) + M [ f 1 [ (T = G 1)

Therefore, by a trivial estimate ||@% — G, || < 2 we obtain from (3.3)

(3.4) [ fm—1 = Ao — G|l <
ar 2\
||fm—1||(1+5m_1 _Atm(]' _5m—1)+2p(||far ||))7
m—1

which proves Lemma 3.1.
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Proof of Theorem 3.3. By the definition the sequence {||f%"||} is nonincreasing. Let

. ar|| __
Tim_[|f ]| = a.

Similarly to the proof of Theorem 2.2 we will use the contradiction argument.

Assuming a > 0 we get from Lemma 3.1 for big enough m

2\
. oI < || for inf (1 -1 242
3:5) IS Il B (0 Gy = Ab/2 4 200 e

DL+ 7m).-

Specifying # = a//16 and taking A\ = a&,,,(p, 7,60)/2 we obtain from (3.5)
(3-6) o I < =1 [[(X + Ot — 208m&m) (1 + nim).-

The remaining part of the proof repeats the arguments from the proof of Theorem
2.2.

Theorem 3.4. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yul, 1 < ¢ < 2. Let a weakness sequence T := {ti}32, ty < 1,
k=1,2,..., be such that

For a given f € A;1(D) apply the AWRGA with
6m—1 :77m = tfn||f7?bT—l||p(2Bq)_17 m = 17277

where )
B, :=8(8y)a12P.

Then we have

m
_ q
Ifarmoml < Oy 3 B) 7 pi=
k=1 q
with absolute constant C'.
Proof. Using that 6,,—1 < 1/2 we get by Lemma 3.1
2
ar || 11 LI 1 nf (14 Gyeq — Mo /2 4+ 29(—a )Y (1 4 1,1,
1570 < Al 08 (1 By = M /2 4+ 20D+ )

Choosing A from the equation

2\

)\tm/4 = 27(m
m—1

)q
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we find
A= (8y) e Dgmpy [ la=b)|| par (P <
and
I | < M= [+ Om1 — 260 || fr—1 1P/ Bg) (1 + nim)-

Using the definition of d,,—1, 1m, and B, we obtain
I | < I = 1 £ 117/ Bg)

and complete the proof in the same way as in the proof of Theorem 2.4

Let us compare Theorem 3.3 with Theorem 3.4 from [DGDS] (see Theorem 3.5
below). We remind some definitions from [DGDS]. An incremental sequence is any
sequence ai,as, ... of X so that a; € D and for each n > 1 there are some g,, € D
and A\, € [0, 1] so that

an = (1 = A\p)@n—1+ Angn, (ap=0).

We say that an incremental sequence aq,as,... is e-greedy (with respect to f) if
(ag = 0)

3.7 —anl| < inf n-1+A n =12,....
3.7 S —aall Ae[o,?];gep“f (L=A)an—1+Ag)l| + €n, m

Theorem 3.5([DGDS]). Let X be a uniformly smooth Banach space, and let
e = {en}52, be such that

oo

(3.8) Z €n < 00.

n=1

Then any e-greedy (with respect to f) incremental sequence {a,}S2 | converges to
f-

In order to find a sequence {a,} satisfying (3.7) one should solve a sequence of
optimization problems:
3.9 inf — (1 =XNap—1+29)||+€,, n=1,2,...
B9 it I~ (1= Naw +2g)]
within accuracy e, satisfying (3.8). It is clear that the most difficult part of (3.9)
is an optimization over ¢ € D. The most important advantage of the WRGA
and AWRGA is that they provide a way of obtaining a good element ¢! (or ¢2r)
from the dictionary by checking much weaker condition that being optimal within
accuracy €,. In the AWRGA the way of obtaining a ¢¢" consists of two steps: first,
we find an approximation of the normlng (peak) functional of the residual f2" ;
with high accuracy (F% (f% ) > ||If% ,]|(1 — dm_1)); second, we look for @2
satisfying a very weak (comparing to belng optimal) condition

Fo (e — Gm_y) = tmsup Fiy (g — Gii_y).
geD
Other place in the AWRGA where we need high accuracy is the optimization over
A € [0,1]. Clearly, the above two tasks with high accuracy are much easier than
the above selection of a dictionary element 2"
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4. CONSTRUCTIVE NONLINEAR TRIGONOMETRIC m-TERM APPROXIMATION

We describe the approximation method in detail in the univariate case. Consider
the real L,(T) space with

1]l = (= / F@)Pde)/?, 1< p< oo
T™JT

||f||oo ‘= mnax |f($)|, f — continuous.
zeT

Let 1 < p < 00. Denote 7T, the real trigonometric system normalized in L,
2*1/p,cp sinx,cpcosz,. ..

where

1
cp = (—/|sinw|pdm)_1/p.
T Jr

It is clear that C! < ¢, < C? with two absolute constants C' and C?. Let T(N)
denote the set of trigonometric polynomials of order N.

We discuss first a simpler construction based on the particular case of p = 4 in
order to illustrate the idea of the construction. For a trigonometric polynomial

N
t(x) = ap/2+ Z(ak cos kz + by, sin kx)
k=1

denote

N
Itl]a = laol + ) (Jak| + [bi]).
k=1

Then by Theorems 2.3 (or 2.4) and 3.2 (or 3.4) each of the algorithms WCGA (or
AWCGA), WRGA (or AWRGA) with 7 = {1/2}, ¢ = 2 provide a constructive way
of approximation in the Ls-norm: for any ¢ € 7(N) we get a m-term trigonometric
polynomial G,,(t) € T(N) such that

(4.1) [t = Grm(t)]la < Cim™2[t]|
with absolute constant C;. By Nikol’skii’s inequality this implies
(4.2) It = G (t) oo < CoNY4m™2t]| o
with absolute constant Cs.
We will build our constructive approximation operators A*(N,m) inductively
from level £ = 1 up to arbitrary level k. We begin with the level £k = 1. We set for

teT(N)
ALY N, m)(t) := Gp(t).
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Then (4.2) implies for m < N
(4.3) It = AHN,m)(O)]loo < CoNYAm ™2 [t 4 < ALNYA(N/m)2m= 2 4.

We continue the construction inductively. Suppose we have built operators A* (N, m)
such that for any ¢t € T(N)

g—k—1

(4.4) It — AR(N,m)(t) oo < AN (N/m)"2m 28] 4.

We will build operators A*+1(N,m) and will control the constant Az, ;. We will
carry on the construction for even numbers m.
Step 1. Let t € T(N). We approximate ¢ using (4.1)

It = G2 (®)la < Crm™ 2t

Denote
h:=(t = Gpy2(1)/ It = Gmy2(t)]|a-

Step 2. Take a positive number D and decompose

h(z) if [h(z)] < D,

h=h"+hp; hp(z):=
b p(2) { 0 otherwise.

We need the following simple well known lemma.

Lemma 4.1. Assume p € [2,00) and ||f||, =1. Then

Ifolle <D and ||fP|y < D' P2,
By Lemma 4.1 with p = 4 we get
lhpllse <D and |AP|]z < D1

We would like to work with trigonometric polynomials instead of working with
hp and hP. Let Vi be the de la Vallée Poussin operator. Consider Vy(hp) and
Vn (hP). We have

h = VN(h) = VN(hD) + VN(hD)

and
IV (hp)llso < 3D; VN (hP)la <D [V(hP)||la <2N'/2D .

Step 3. We approximate Vy(h”) € T(2N) using operators from level k. By (4.4)
we have

Vi (hP) = AR (2N, m/2) (Vi (hP)) oo < AR(2N)* " 3(N/m)"/2m =22 ||V (BP) .
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For t € T(N) define
AMFY N, m, D)(t) = Grya(t) + It = Gnypa () 44" (2N, m/2) (Viv (R7)).
Taking into account that h € T(N) we get
t — AMY N, m, D)(t) = hllt = Gpnpa(t)]la = It = Grnpa(8) 4 A" (2N, m/2)(Viv (7)) =
[t = Gja(®) |4 (h — A*(2N,m/2) (VN (b)) =

1t = G2 (t)lla (Vi (hp) + Vv (hP) — A¥ (2N, m/2)(Vy (RP))).

Therefore,
(4.5) [t — AFY (N, m, D)(t)]|00 <
[t — G2 (8)]|4(3D + Ax(2N)* " 6(N/m)/2m~1/2NY2D~1) <

(3D + Ax(2N)? " 6(N/m)D™)Cim 2|t a.
Step 4. Choose

D = D(N,m, k) := (24,2N)2" 7 (N/m)) ">
By (4.5) we obtain
(4.6) It — AFY N, m, D)(t)]loo < Ajyy N* (N/m) /2m ™22t 4
with
(4.7) 1= 60121202 P AL < cp AP

We remind that we have proved (4.6) with the constant Aj_, from (4.7) under
assumption that m is an even number. We complete the construction by setting

AFFY(N,m) == AN, 2[m/2], D(N,2[m/2],k)), m > 2.
Clearly (4.6) implies
(4.8) [t = AN, m, D) () oo < Apsa N (N/m) !/ 2m =22 8] 4

for all m with Ay = 245 ;. The relation (4.7) combined with A; = Cy (see
(4.3)) implies that Ay < C4 for all k.

Let N be given. Choose k satisfying 2¥*! > InN. Then (4.4) gives for any
t € T(N) the estimate

(4.9) It = AR(N,m) (1) oo < C5(N/?/m)|t]] 4

for any m.
We now proceed to a more elaborate construction that gives the following esti-
mate.
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Theorem 4.1. There exists a constructive algorithm A(N,m) such that for anyt €
T (N) it provides a m-term trigonometric polynomial A(N, m)(t) with the following
approximation property

(4.10) It — AN, m)(t)l|oo < Cm~*2(n(1 + N/m))*/?|t] 4

with an absolute constant C.

Proof. We will construct an analog of the sequence of operators {A¥(N,m)} con-
structed above. A new ingredient of this construction is the following. We will now
approximate ¢ in the L,-norm, p € [4,00) instead of the Ls-norm and will optimize
over p.

Let N and m be given and let ¢t € T (V). We use either the WCGA (AWCGA)
or the WRGA (AWRGA) with 7 = {1/2}, ¢ =2, Dy =T, T(N) to approximate
t by m-term trigonometric polynomial in the L,-norm, p € [4,00). By Theorems
2.3 (2.4) or 3.2 (3.4) with X = T(N), where T (), is the T(NN) equipped with
the L,-norm we get

(4.11) It = GE.(O)lp < CsC(2,7)m2[t]] -

Let us estimate the constant C(2,v). By (1.5) we obtain 7 = (p — 1)/2. Thus by
Remark 2.2 or Remark 3.1 we get

(4.12) CsC(2,7) < Crp*/2.
We define the level k = 1 algorithms AL(N,m) by
(4.13) AL(N,m)(t) = GE,(t), teT(N).

We note that by construction AL(N,m)(t) € T(N). By Nikol’skii’s inequality we
get from (4.11)—(4.13)

(4.14) It — Ap(N,m)()loo < Csp'2NYPm= 12|t 4 <
Cep'/2NY4(N/m)7=m=2||t|| 4, m < N.

We note here that taking py := In N we get from the first inequality in (4.14)

(4.15) [t = Ap(N,m) ()]l < C(InN)V2m /2 t]| 4

with an absolute constant C'. Thus the rest of the proof will be devoted to replacing

In N by In(1 4+ N/m) in (4.15).

As in the case p = 4 we continue the construction by induction. Suppose we
have built operators AZIZ (N, m) such that for any t € T(N), p € [4,00)

—k—1 I
(4.16) [t — AE(N,m)|loo < AZNZ T (N/m)7=2m ™2 |t] 4.
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We will make steps similar to those from above.
Step 1. Let t € T(N) and let m be an even number. We approximate ¢ using
(4.11), (4.12)

(4.17) It =GP, @)l < Cop*/2m ™2t 4.

Denote
hlp] == (t — G}, ,,()/[It = G}, )5 ()llp-

Step 2. Take a positive number D and decompose
hlp] = h”[p] + hp[p].
By Lemma 4.1 we get
Ihpplllec <D and [|hP[p]||z < D'7P/?
and, therefore,
IVn (hp[p))lleo < 3D; [V (RP[p))]l2 < DY #/2 |[Va(RP[p]) ][4 < 2N/2D P72,

Step 3. We approximate Vi (hP) € T(2N) using operators from level k. By (4.16)
we have

Vv (P [p]) — A (2N, m/2)(Viv (7 [p]))lloo <

AP(2N)
For ¢t € T(N) define

(4N/m) 722 2m =2 || Viy (hP) | a.

APFH N, m, D)(t) == G, ,(8) + It = GY, 5 ()]l A5 (2N, m/2) (Vv (R [p])).
Similarly to the case p = 4 (see (4.5)) we get
(4.18) It — AFFH(N,m, D)(8)]| 0 <

—k—1 P -
It = Gh /s (O),(3D + A7 (2N)? ~ 6(N/m) &= D' P/2),
Step 4. Choose
D, = Dp(N,m, k) := (242 (2N)2™ 7" (N/m) 7o) /7.

By (4.17) we obtain from (4.18) for even m

(4.19) It — AU N, m, D) (1) oo < ADE N (N/m)72m V2|t 4
with
(4.20) APl < Ciop'/?(AD)?P, AR < Crp/2.
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We note that (4.20) implies
(4.21) AP < Cyop?oD,
We set
ASTH(N, m) := AFTH(N, 2[m/2], Dy(N, 2[m/2], k)

and obtain (4.16) with k replaced by k 4 1 and a constant A}, = 2A£il.

Let N and m be given. First we choose k satisfying 2*T1 > In N. Next we choose
p=2+1In(1+ N/m). Then (4.16) and (4.21) give for any ¢t € T(N) the estimate

(4.22) It = A (N, m)()l|oo < Cram™?(In(1+ N/m))"/2|t]| 4

for any m. This completes the proof of Theorem 4.1.

The same technique can also be used in the multivariate case. Let L,(T¢) be
the real Banach space with

1
1l = (— / F@)Pde)/?, 1< p< oo
71' Td
||f||oo ‘= max |f($)|, f — continuous.
reTe

Denote 7% := T x --» x T (d times) the real multivariate trigonometric system.
Let N = (Ny,...,Ng). Denote T(IN) the space of trigonometric polynomials with
degree N, in the variable z;, j = 1,...,d. Let v(N) be the dimension of 7 (IN).
We formulate a generalization of Theorem 4.1 for the d-dimensional case and note
that the proof repeats the proof of Theorem 4.1.

Theorem 4.2. There exists a constructive algorithm A(N, m) such that for anyt €
T (N) it provides a m-term trigonometric polynomial A(N, m)(t) with the following
approximation property

(4.23) It = AN, m)(t) oo < C(d)ym > (In(1 + v(N)/m))*/2||t]].o

with a constant C(d) which may depend on d.

This theorem can be applied to studying m-term trigonometric approximation
of function classes. We will consider here some examples. In the paper [DT1] the
following two types of function classes were studied from the point of view of best
m-~term trigonometric approximation. We begin with the first class. For 0 < a < 00
and 0 < g < oo, let 7' denote the class of those functions in L1 (T¢) such that

Flre o= (3 (max(L, [kal, .., [ka)*2(F(R)9) 2 < 1.

keZd

The following theorem has been proved in [DT1].
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Theorem 4.3. Ifa >0 and A := a/d+1/q—1/2, then for all 1 < p < co and all
0<g<

Cim > < am(}";,Td)p <Com ™, a>d(l-1/q)4,
with C1,Cy > 0 constants depending only on d, «, q.

The second class is defined as follows. Let @ > 0, 0 < 7,5 < oo and B$(L,)
denote the class of functions such that there exist trigonometric polynomials 7;, of
coordinate degree 2" with the properties

F=Y T 2Tl ool < 1.
n=0

The following theorem has been proved in [DT1] for these classes.
Theorem 4.4. Let 1 <p<o0, 0 < 7,5 < o0; and define
d1/t—=1/p)y, 0<7<p<2 and 1<p<7<x
alp,7) = { max(d/T,d/2), otherwise.
Then for a > a(p, T), we have
Crm ™+ < o(BH(L.), T, < Com™*, 1= afd— (1/7 — max(1/p, 1/2)),
with Cy,Cy depending only on a,p, T, and d.

It was proved in [T4] that in the case 1 < p < 2 the rate of best m-term ap-
proximation in Theorem 4.3 can be realized by the Thresholding Greedy Algorithm
Gm(-, T9), that is by a constructive method. It is well known that for approxima-

tion by trigonometric polynomials of degree m'/? in each variable one has
(4.24) Em(BX(Ly), TYy = sup  En(f, T, =< m~/d+0/7=1/p)+
feBg(Lr)

provided o/d— (1/7—1/p)4+ > 0. Comparing (4.24) with Theorem 4.4 we conclude
that in the case 0 <7 <p < 2or 1 <p <7 < oo the rate of 0,,,(B2(L,), T%),
can be realized by approximation by trigonometric polynomials of degree m!/? in
each variable. Thus in the case 0 < 7 < p < 2o0orl1l < p <7 < o there is a
simple constructive method that realizes o,,,(B*(L,), T%),. The remaining case is
1<7<p<oo, 2<p<oo Ina subcase of the remaining case when p < oo
it has been shown in [DKT] that the WCGA (or WRGA) can be used to build a
constructive method of realizing o,,(B%(L,),T¢%),. It was done in the following
way. In [DT1] the only nonconstructive step of the proof of Theorems 4.3 and 4.4
in the case 2 < p < oo was hidden in the following inequality (see [DT1, Corollary
5.1])

d
(4.25) O (AL(T), T e < Cm~V2(1 4 ™ )12,
m
where 7% denotes the subsystem of the trigonometric system 7¢ which forms a basis
for the space of trigonometric polynomials of coordinate degree n. The inequality
(4.25) was proved in [DT1] with the help of the following Gluskin’s theorem [G].
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Theorem 4.5. There exist absolute constants Cy and 0 < § < 1 such that for any
finite collection V' of M wvectors from the unit Euclidean ball BY of RN | there is a
vector z € RN with |z;| =0,1,i=1,...,N, |2]ley = 6N, and

M
< - 1/2‘
rvneax|<v,z>| Ci(1+1In )

It was pointed out in [DKT] that in the case 2 < p < oo the Weak Chebyshev
Greedy Algorithm with the weakness sequence {t}, ¢t € (0, 1] provides a constructive
way to get an analog of (4.25). This follows immediately from Theorem 2.3: for
f € Ai(T,%) we have

(4.26) 175 lp < Clp,tym ™2, 2 < p < co.

Thus the only nonconstructive step in the proof of upper estimates in Theorems
4.3 and 4.4 was made constructive for p < oo.

In the same way as in [DKT] one can use Theorem 4.2 instead of (4.26) to
make the proofs of Theorems 4.3 and 4.4 ([DT1]) constructive in the case p =
00. Therefore, we now have constructive proofs of Theorems 4.3 and 4.4 in all
cases. It is interesting to compare this situation with the situation on finding a
constructive proof for Kolmogorov’s widths of the above function classes. We will
make a comment only on classes B (L, ) in the case 7 = 2, p = co. We remind the
definition of the Kolmogorov width

dm(F,X):= inf sup inf ||f—ZCj‘Pj||-
7j=1

P15 Pm feF Cly---9Cm
By Kashin’s [K] result
(4.27) dpm(BY(La), Log) = m™%4, o > d/2.

The estimate (4.27) is only an existence theorem and it is an interesting open
problem to find a constructive proof (constuct ¢1, ..., ¢, ) of (4.27).

One can check that the proof of Theorem 4.1 works in the following more general
situation. Let ® := {¢;}32; be a uniformly bounded orthonormal system defined
on a bounded domain. Denote

®(N) :=span{¢1,...,dn}

and assume that the system ® admits a sequence of the de la Vallée Poussin
operators:

(VP) There exist two positive constants Ky and K such that for any N there is
an operator Vf,’ with the properties

Va (#;) = An,jbj,
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Av;=1 for je€[I,N], Ay;=0 for j> KN,

(4.28) VallL,—1, <Kz, for 1<p<oo andal N.

For a system ® having the (VP) property we can easily derive from (4.28) and
uniform boundedness of ® that

V¥ lLosz., < ONV2.

By interpolation theory of operators we get from here and from (4.28) with p = oo
that

The last inequality implies the Nikol’skii inequality

¢lloc < CN'YP|@llp, ¢ € B(N), pe(2,00).
Thus the ® has all properties needed in the proof of Theorem 4.1. Therefore, we
have the following generalization of Theorem 4.1. Denote

N

N
1Y cidilla ="l
=1

7=1
Theorem 4.6. Let & = {@};’il be a uniformly bounded orthonormal system
defined on a bounded domain. Assume ® has the (VP) property. Then there exists
a constructive algorithm A(®, N,m) such that for any ¢ € ®(N) it provides a
m-term ®-polynomial A(®, N, m)(¢) with the following approzimation property

I6 — A(@, N,m)(¢)l|oc < Cm™/2(n(1+ N/m))*'||¢]| o

with a constant C' which may depend on .

We note that the decomposition technique used in the proof of Theorem 4.1
is a standard tool in the interpolation of operators. The idea of combining the
decomposition technique with inductive way of constructing approximations is also
known in approximation theory. For instance, it has been used recently in [Da].

5. THE DISCREPANCY ESTIMATES

Let 1 < p < co. We remind the definition of the L, discrepancy (the L,-star
discrepancy) of points {¢,...,&™} C Q4 :=[0,1]%. Let x4 (-) be a characteristic
function of the interval [a, b]. Denote for z,y € Q4

d
B(wa y) = H X[0,z;] (yj)

Jj=1
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Then the L, discrepancy of & := {¢!,...,£™} C Q4 is defined by
1 m
D(f,m, d)p = || o B(may)dy - E Z B(.’E, SN)HLP(Qd)'
d H:]_

It will be convenient for us to study a slight modification of D(§,m,d),. For
a,t € [0,1] denote
H(a,t) == X[0,q)(t) = X[a,1) (),

and for z,y € Q4
d
H(may) = HH(mjayj)'
j=1

We define the symmetrized L, discrepancy by
S 1 =
D (Emd)y = | [ @)y = -3 H@. &) s,
d p=1

The L, discrepancies D(&,m,d)s and D*(§,m,d) are defined in the same way
with the L,-norm replaced by the L.,-norm.
Using the identity

0.0, (3) = 5 (I (L,5) + H(z,55)
we get a simple inequality
(5.1) D(&,m,d)so < D?(&,m,d)so-
We are interested in £ with small discrepancy. Consider

D(m7 d)p = Hng(éa m7 d)p7 Ds (m7 d)p = Hgf Ds (67 m7 d)p

For 1 < p < oo the following relation is known (see [BC,p.5])
(5.2) D(m,d), < m~(Inm)@-1/2

with constants in =< depending on p and d. The right order of D(m,d), for d > 3
is unknown. As we mentioned in the Introduction the following estimate has been
obtained in [HNWW].

(5.3) D(m,d)se < Cd*/?m=1/2.

It is pointed out in [HNWW] that (5.3) is only an existence theorem and even a
constant C' in (5.3) is unkown. Their proof is a probabilistic one. There are also
some other estimates in [HNWW] with explicit constants. We mention one of them

(5-4) D(m, d)s < C(dInd)/?((lnn)/n)!/?



31

with an explicit constant C'. The proof of (5.4) is also probabilistic.

In this section we apply greedy type algorithms to obtain upper estimates of
D(m,d),, 1 < p < oo in a style of (5.3) and (5.4). The important feature of
our proof is that it is deterministic and moreover it is constructive. Formally the
optimization problem

D(m,d), = irgf D(&,m,d),

is deterministic: one needs to minimize over {£!,... 6™} C Q4. However it is not
constructive. It is known (see [DMA]) that simultaneous optimization over many
parameters ({£1,...,£™} in our case) is a very difficult problem. We note that

e . 1 -
D(m,d), =05, (J,B), ;==  inf . () — - ;guHLP(Qd)

gis---s9m

where

J(z) = /Q B(z,y)dy

and
B = {B(xvy)a Yy € Qd}

It has been proved in [DMA] that if an algorithm finds best m-term approximation
for each f € RN for every dictionary D with the number of elements of order
N, k> 1, then this algorithm solves an N P-hard problem. Thus, in nonlinear m-
term approximation we look for methods (algorithms) which provide approximation
close to best m-term approximation and at each step solve an optimization problem
over only one parameter (£# in our case). In this section we will provide such an
algorithm for estimating o7, (J, B),. We call this algorithm ”constructive” because
it provides an explicit construction with feasible one parameter optimization steps.

We proceed to the construction. In this section we do not assume that a dic-
tionary D is symmetric: g € D implies —g € D. To indicate this we will use the
notation DT for such a dictionary. We do not assume that elements of a dictionary
DT are normalized (||g|| =1 if g € DT) and assume only that ||g|| < 1if g € DT.
By A;(D*) we denote the closure of the convex hull of DT. We will use in our
construction the IA(€) which is a slight modification of the corresponding procedure
from [DGDS]. For convenience we repeat here the definition of the IA(€) from the
Introduction. Let € = {¢,}32;, €, >0, n=1,2,... .

Incremental Algorithm with schedule ¢ (IA(e)). Let f € A;(D*). Denote
o= f and G§° := 0. Then for each m > 1 we inductively define
1. ph¢ € DT is any satisfying

Fric (¢ = f) > —em.

2. Define . . .
Gre = (1—-1/m)Gy5 | + ops /m.
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3. Denote _ .
foe=f—Gyr.
We note that similarly to Lemma 2.2 we have for any bounded linear functional
F and any DT

(5.5) sup F'(g) = sup F(f).
geD+ fEAL(DT)

Therefore, for any F and any f € A;(DT)

sup F(g) = F(f).
geD+

This guarantees existence of ¢!:c.

Theorem 5.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yul, 1 < q < 2. Define

€n = K1y an= /v, w=—— n=12....
Then for any f € A1(DT) we have

150 < C(K)YYam~ Ve, m=1,2....

Proof. We will use the abbreviated notation f,, := fu¢, om = ©h¢, G, = GEE.
Representing

fm — fmfl - ((Pm - Gmfl)/m

we get immedietly the trivial estimate

(5.6) [ fmll < | fm-1ll +2/m.

Representing

(5.7) fm = (1 =1/m)fm-1 = (pm — f)/m = (1 =1/m)(fm-1— (pm — f)/(m —1))
we obtain in a similar to (2.10) or (3.4) way

(5.8)

1 fm-1=(m =)/ (m =) < || fm-1ll1+2p2((m = D] fr—1l) ") +em(m—1)"".

Using the definition of ¢, and the assumption p(u) < yu? we make the following
observation. There exists a constant C'(K7) such that if

(5.9) |1l = C(E1)yY 4 (m — 1)1/

then

(5.10) 20(2((m = Dl frm—1l) ™) + €m((m = 1)|[ frnal) ™" < 1/(4m)
and, therefore, by (5.7) and (5.8)

(5.11) [fmll < (1 =3/(4m)) | frnll-

The following lemma is known ([T5]).
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Lemma 5.1. Let three positive numbers o < v < 1, A > 1 be given and let a
sequence of positive numbers 1 > a1 > ay > ... satisfy the condition: if for some
v € N we have

a, > Av™“

then
Ay41 S au(l - V/V)

Then there exists B = AC(«,y) such that for allm =1,2,... we have

an, < Bn™%.

Remark 5.1. It is easy to check that the proof of Lemma 5.1 from [T5] works if
we replace the assumption a,, < @ym—1 by

Am, S Am—1 + C(m - 1)—a

Taking into account (5.6) we apply Lemma 5.1 and Remark 5.1 to the sequence
an = ||fnll, n=1,2,... with @« = 1/w, 7 = 3/4 and complete the proof of Theorem
5.1.

Corollary 5.1. We apply Theorem 5.1 for X = L,(Q4), p € [2,00), DT =
{H(z,y),y € Qa}, f=J°(x), where

J*(x) = . H(z,y)dy € Ai(DY).

Using (1.5) we get by Theorem 5.1 a constructive set £1,... ™ such that

Ds(gama d)p = ||(Js):7,1€ L,(Q4q) < Cpl/zm_1/2

with absolute constant C'.

Corollary 5.2. We apply Theorem 5.1 for X = L,(Q4), p € [2,00), DT =
{B(z,y),y € Qa}, f=J(x), where

J(z) = /Q Bla,y)dy € Ai(D*).

Using (1.5) we get by Theorem 5.1 a constructive set £1,... €™ such that
D(f,m, d)p = ||J:.T7L€||Lp(Qd) < Cp1/2m_1/2

with absolute constant C.
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Corollary 5.3. We apply Theorem 5.1 for X = L,(Qq4), p € [2,00), DT =
(B(,0)/|BCwIzy 0, ¥ € Q) [ = J(x). Using (1.5) we get by Theorem

5.1 a constructive set £',..., €™ such that
1 m D 4 d
B,d——g— 1— &4~YP)B(z, &* <
| o, (z,y)dy m“_l(p+1) (31;[1( fJ) ) (z,& )||Lp(Qd) S
P \d 172, —1/2
O(—2—
() v

with absolute constant C.

We note that in the case X = L,(Qq), p € [2,00), DT = {H(z,y),z € Qa},
[ = J?(y) the implementation of the IA(€) is a sequence of maximization steps
when we maximize functions of d variables. An important advantage of the L,

spaces is a simple and explicit form of the norming functional Fy of a function
f € L,(Qq). The Fy acts as (for real L, spaces)

Fy(g) = /Q 1FIE21£ P2 fody.

Thus the TA(e) should find at a step m an approximate solution to the following
optimization problem (over y € ;)

[ 1@ i @A~ ma

Let us discuss possible application of the AWRGA instead of the IA(e). An
obvious change is that instead of cubature formula

=y e

p=l1

in the case of IA(e) we have a cubature formula

m m
S wrH(z,er), Y || <1,
pn=1 p=1

in the case of the AWRGA. It is a disadvantage of the AWRGA. An advantage of
the AWRGA is that we are more flexible in selecting an element ¢%:

Foo o (om — G 1) 2 tmsup Fl (g — G q)
geD

than an element (%

Fric (¢ = f) > —ém.

We will now derive an estimate for D(m, d), from Corollary 5.2.
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Proposition 5.1. For any m there exists a constructive set € = {&,..., ™} C Qq
such that
(5.12) D(&,m,d)se < Cd*?*(max(Ind,Inm))2m=2  d,m >2

with effective absolute constant C.

Proof. We use the inequality from [NTT]

(5.13) D(¢,m,d)o < c(d,p)d(3d + 4)D(&,m, d)2/ @+
and the estimate for ¢(d, p) from [HNWW]

(5.14) e(d, p) < 3Y/3g1+2/(+r/d)

Specifying p = dmax(Ind, Inm) and using Corollary 5.2 we get (5.12) from (5.13)
and (5.14).
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