22
‘=I.“Il=.\

{

\/
‘ ‘l/ \\’ ‘
:u/ ‘g\\“ﬁ

INDUSTRIAL
, MaTHEMATICS
\l'n"‘t'.'l
\e027 INSTITUTE

[|
" ““5 "i"'
\

2002:11

Fast computation in adaptive tree
approximation

P. Binev and R. DeVore

Department of Mathematics
University of South Carolina

Fast Computation in Adaptive Tree Approximation®

Peter Binev and Ronald DeVore

Abstract

Adaptive methods of approximation arise in many settings including numerical
methods for PDEs and image processing. They can usually be described by a
tree which records the adaptive decisions. This paper is concerned with the fast
computation of near optimal trees based on n adaptive decisions. The best tree
based on n adaptive decisions could be found by examining all such possibilities.
However, this is exponential in n and could be numerically prohibitive. The main
result of this paper is to show that it is possible to find near optimal trees using
computations linear in n.

AMS subject classification: 65Y20, 66N50, 41A63, 41A15, 68W40, 68W25.

Key Words: tree approximation, adaptive approximation, n-term approximation,
degree of approximation, fast algorithms.

1 Introduction

Tree approximation is a form of nonlinear approximation in which the approximants are
required to have a certain structure described by trees. It was introduced and studied
in [2] in the context of n-term wavelet approximation and the application of this form
of approximation to image compression. Wavelets are naturally indexed on the set D of
dyadic cubes which has a tree structure determined by set inclusion. In this setting, tree
approximation with n terms seeks to approximate a given target function f by a linear
combination of n wavelets whose indices from D are required to align themselves on a
tree. The tree structure gives an efficient way to encode the positions of the wavelets
appearing in the sum. This form of approximation is more restrictive than the usual
n-term approximation by wavelets where the n wavelets used in forming the approxima-
tion are completely arbitrary. Both of these forms of approximation are nonlinear since
the n-terms may depend on f. The paper [2] gives results on the error of n-term tree
approximation and shows how these can be used to build efficient encoders for image
compression.

Tree approximation also occurs naturally in the construction of adaptive methods for
approximation. Given a domain €2 and a target function f defined on {2, we approximate

*This work has been supported in part by the Office of Naval Research Contract N00014-91-J-1343,
(N00014-91-J-1076), the Army Research Office contract DAAD 19-02-1-0028, and the National Science
Foundation grants DMS 9970326, DMS 0221642.

f by dividing Q into a partition P of n cells and using piecewise polynomials (of some
fixed degree) subordinate to this partition. These cells are obtained by some adaptive
process which decides when and how a cell should be divided. Thus, the partition P can
be described by a tree which indicates the adaptive divisions that have occurred.

The usual application of this second form of tree approximation is to adaptive numer-
ical methods for PDEs. This application is quite different from image processing. Indeed,
in image processing based on wavelet expansions, the target function and all of its wavelet
coefficients can be considered to be known and the only problem is how to organize a good
approximation with the required tree structure. In the PDE setting however, the target
function is unknown and information about it can only be obtained through certain nu-
merical queries. This information is usually given in the form of bounds on the local
approximation error through the residual. In Adaptive Finite Element Methods (AFEM)
the local error bounds are called a posteriori error estimators and are a central issue in
building good adaptive solvers.

However, even in AFEM, the adaptive approximation of known target functions arises
and must be numerically handled in an efficient manner. For example, in the numerical
resolution of elliptic equations, the right hand side of such an equation is known but must
be efficiently approximated numerically. Also methods using coarsening of partitions will
encounter a similar problem. In fact, our motivation for the present paper occurred in
our study of AFEM and the results of this paper are used to build a numerical AFEM
with proven convergence rates in [1].

We could find a best tree approximation to f with n interior nodes by forming all pos-
sible trees with n interior nodes and examining the global error associated to each tree.
We would choose the tree which gives the smallest error bound. However, there are expo-
nential in n such trees so this method is computationally prohibitive when n is large. The
main point of the present paper is to show that under appropriate settings, it is possible
to create near best adaptive n term approximations using only O(n) computations.

In §3 we shall give a precise description of the setting for this paper and formulate our
main results. In the sections that follow, we shall introduce two algorithms for attaining
the performance we want. The first algorithm works under more restrictive assumptions
than the second but may be more intuitive in its structure. In the last two sections we
give examples of how to apply these algorithms in settings such as those mentioned above
for AFEM.

2 Adaptive partitioning

In this section, we shall describe the setting of adaptive refinement that arises in adap-
tive numerical methods for PDEs. We shall see that such adaptive partitioning can be
described by trees.

Let Q be a polygonal domain in IR?. By a partition P for we shall mean a collection
of simplices A such that

Ua=q, (2.1)

AeP

and
meas(A N A') =0 for any pair of different simplices A, A’ € P, (2.2)

where meas denotes Lebesgue measure in IR?.

The adaptive algorithms of interest to us are based on subdividing certain of the
simplices in P. The choice of which simplices to subdivide is adaptive and based on data
dependent criteria. However the rule for subdividing the simplices is fixed in advance.
Namely, we assume that given any simplex A, this rule gives a collection A; C A, j =
L,...,m(A), with m(A) > 2, of simplices which partition A. The simplices Ay, ..., Ay a)
are called the children of A and A is their parent. For example, in the case d = 2, one
such rule might be to subdivide a given triangle into four triangles by using the bisectors
to each side. There are many other possibilities. However, we stress the important fact
that the decision on which cells will be subdivided is data dependent but how they are
subdivided is not allowed to be data dependent in the setting of this paper.

Let P be a partition of Q. An elementary refinement P’ of P is the replacement of
one simplex A € P by the K new simplices A;, j = 1, .., K, given by the subdivision rule.
All other simplices in P remain untouched.

An adaptive partitioning consists of a series of elementary refinements. Starting with
an initial partition Py, a set of simplices M, are marked for elementary refinement. The
new partition P; is obtained by replacing each marked cell by its elementary refinement
but leaving all other cells untouched. We continue with this process of marking cells
and refining and thereby generate the partitions Pi,..., P, such that each P; is the
refinement of P;_;, j = 1,...,m. The complexity of the final partition P, is determined
by the number of marked cells, i.e. the cardinality of n := #(U;”:_OIM ;), which is the same
as the number of elementary refinements that have taken place.

Each adaptively generated partition P can be represented by a tree T = T'(P). The
nodes in this tree 1" are the simplices of P;, j = 0,...,m. The roots of the tree are the
simplices A in Py. The set £(T') of leaves of the tree T are the simplices in the final
partition P,,. Recall that the leaves of a tree T" are the final nodes, i.e. the nodes in T'
which have no children in T'.

The trees T'(P) which arise in adaptive partitioning are all finite subtrees of an infinite
tree T, which we call the master tree. The tree T, has as its nodes all of the possible
simplices A that can arise in the refinement process. This idea of a master tree which
delineates the finite subtrees that can arise in an adaptive algorithm occurs in more general
contexts such as trees that arise in numerically based wavelet methods. Therefore, in going
further in this paper, we shall consider adaptive approximation in this more general tree
setting as described in the following sections.

3 Adaptive tree approximation

In this section, we shall describe the general setting of tree approximation. We assume
that we have in hand an infinite tree T, (called the master tree) with a finite number
of root nodes and with the property that each node A of T, has m(A) children with
2 <m(A) < K. We allow the number of children to vary from node to node. Although
in most applications m(A) does not depend on A.

A subtree T of T, is a collection of nodes A € T, such that whenever A, A’ are in
T and A’ # A is a descendent of A then all of the children of A are also in T'. Notice
that this requires that whenever A is in 7" then all of the siblings of A are also in T
This condition, not always assumed for a tree, is compatible with the trees that arise in
adaptive methods.

A subtree T is said to be properif T' contains all of the root nodes of T. The set £(T')
of leaves of T" are all of the nodes in T" for which none of their children are in 7'. All other
nodes of T" are called interior nodes. The number of interior nodes of T" will be denoted
by N(T'). This is also the number of subdivisions used to create 7. We shall frequently
use the following remark:

#(L(T)) < #(T) < 24(L(T)). (3.1)
Similarly, in the case that all root nodes of T, are interior nodes of T', we have
N(T) < #(T) < (K +1)N(T) (3.2)
and
#(L(T)) < K N(T). (3.3)

The left inequality in (3.1) is obvious. The right inequality follows by induction on #(T).
Indeed, if we grow a tree T' by adding the children of one of its leaves A, then the number
of nodes in T increases by m(A) and the number of leaves grows by m(A) —1 > 1. Since
m(A) < 2(m(A) — 1) we arrive at (3.1). A similar reasoning gives (3.2) and (3.3). In
particular, one can use that for any tree T' C T,

#(T) < Ny + KN(T) (3.4)

where Ny is the number of root nodes of 7.
We assume that we are given a functional e which associates to each node A of T, a
nonnegative real number e(A). Given any proper subtree T' of T, we define

E(T):=) e(A) (3.5)

A€L(T)

The reader should think of e as a bound for the local approximation error and E a
bound for the global approximation error to a given function f . For example, in the case
of piecewise polynomial approximation on a simplicial decomposition, given a function
feLy,),1<p< oo, we could define e(A) to be the p-th power of the error of best
L,(A)-approximation to f by polynomials of some fixed degree r. Then E(T') is the p-th
power of the global error in approximating f in L,(£2) by piecewise polynomials of degree
r with no continuity assumptions on the piecewise polynomials across the faces of the
simplices of £(T'). Another setting that occurs when considering piecewise polynomial
approximation with continuity conditions across the boundaries of the simplices is that
e(A) is the p-th power of the error of best LP(A)—approximation to f by polynomials of
some fixed degree r with A alocal domain which contains A. The overlapping of the cells
A causes some difficulties which will be overcome in the theory that we develop.

Given, the functionals e and F, and an arbitrary integer n > 0, consider the class 7,

of all proper trees T' with N(T') = n and define
E, = min E(T). (3.6)
Thus, E, measures the best error we could obtain by utilizing trees generated by using
n subdivisions. The main question we wish to study in this paper is to what extent is
it possible to find adaptive algorithms which achieve approximation order like E,(P).
Since the number of trees in 7, is exponential with respect to n, finding the best tree 7
which achieves the error E, could be a very costly operation. We shall show that there
are constants! Cp,Cy > 0 and numerically effective algorithms to adaptively find trees

T € Teyn such that

E(T) < C,E, (3.7)

where the constants C; and Cs depend only on the integer K. We call such an algorithm
near optimal.

We shall measure the numerical cost of an adaptive algorithm by the number of com-
putations used in the algorithm where the cost of computing e(A) for any given A is
taken to be one. In the next two sections, we propose two algorithms to find a near best
approximant for each n in a numerically effective way. Namely, the cost of each of these
algorithms is linear in n. The first algorithm, given in the next section, is more restrictive
in the assumptions it makes on e. Also, the first algorithm depends on a thresholding
parameter which is eliminated in the second algorithm.

4 The first algorithm

In this section, we shall assume that the functional e satisfies the following
Refinement property: If A is any node of T, and Ay,. .., Apa) are its children then

Z e(A) < e(A). (4.1)

Our first algorithm will be based on a threshold parameter £ > 0. Let T, be a master
tree and let e be a functional defined on the nodes of T, satisfying (4.1) and let E be
defined by (3.5). The basic idea of the first algorithm is to subdivide those nodes A
for which e(A) exceeds the threshold t. But this procedure may fail since we are not
guaranteed that such subdivisions actually effectively decrease the error. Thus, we shall
modify the adaptive criteria to include a penalty term.

The intuitive idea behind the first algorithm can be explained by considering the
functional e as specifying a certain energy at each node. The inequality (4.1) says that
the energy decreases (strictly speaking does not increase) when a node is divided into its
children. We shall modify e to obtain a new functional € in order to guarantee that the
modified energy € lost in such a subdivision is at least t.

'We shall denote constants by the generic C' and they may vary at each occurrence. Constants that
are important in going further in the paper will be denoted by C4,cy,Co,

Given A € T,, we let S(A) denote the set of its siblings (i.e. the collection of all
A" € T which have the same parent as A). The quantity

,_ e(A)
MA) = ZA’eS(A) e(A’)

will be used in the case the denominator is positive. It measures the portion of the energy
in S(A) that is carried by A. Note that >/ ga) A(A") =1 for each A.

Let ¢ > 0 be the thresholding parameter. For each A € T} with children Ay, ..., Ay, a),
we define

(4.2)

m(A)
d(A) :=e(A) =) e(A) =t e(A) = o(A) (4.3)
and
0, if d(A) > t,
5(A) = (4.4)

t—d(A), if d(A) <t

The quantity d(A) is the amount of artificial energy we will take away at each node
subdivision.

With the above notation in hand, we now introduce a modified functional é defined
on the nodes of T, by an expression of the form

&(A) = e(A) — a(A), (4.5)

We define a(A) = 0 for all root nodes and whenever a(A) has been defined, then we
define a(A’) for each child A’ of A by:

a(A) := A(A)a(A) + A(A)S(A). (4.6)

The first term in the definition of a(A) represents the portion of the artificial energy
already removed that needs to be attributed to this node and the second term is the new
energy to be removed because of the subdivision of A. Let us observe for later use:

Remark 4.1 If A’ is a child of A then
) = (&) — a(&) = e(a)(1 - HELEES) (4.7)

so that if one of the children A" of A has é(A’) positive then all other children A" will
have é(A") nonnegative.

The first algorithm will recursively generate trees Tp,...,T; by growing. The tree
Ty consists of the set of root nodes of T,. The remaining T},; are generated from the
previous T}, by using the following criteria.

FIRST ALGORITHM: For each A € L(T}), compute €(A). Whenever é(A) > t,
we add all of the children of A to Ty. Then Ty.1 consists of T}, together with all of

these children. The algorithm terminates when Ty 1 = Ty, i.e. when é(A) < t for all
A € L(Ty). The final tree is denoted by T .

The most important property of this algorithm is that the sum of modified errors e
looses locally a quantity of ¢ each time a node is subdivided (see (4.11) bellow). To analyze
FIRST ALGORITHM, we shall need the following lemmas.

Lemma 4.2 Lett > 0 and T be the tree associated to the FIRST ALGORITHM. If
A is a node in the interior of T and Ta is the subtree consisting of all A" € T' such that
A is a descendent of A, then

L (UNTEEINEP) (4.8)

Proof: The left inequality in (4.8) is (3.2) and the right inequality is obvious since a/(A)
is nonnegative. Therefore, we need only prove the second inequality. From (4.5) and
(4.6), it follows that for each A" € T, with the children Af,..., Al 4/, we have

m(A') m(A’)
E(A) =) e(A) —a(A) = 5(4) (4.9)
i=1 i=1
and therefore
m(A) m(A’)
e(A") — Z e(A)) =e(A") —a(A") — Z e(A) +a(A")+6(A") = d(A")+6(A"). (4.10)
i=1 i=1
Since d(A') 4+ §(A’) > t, we obtain
m(A")
D EA) <ea) -t (4.11)
i=1

In other words, each subdivision reduces the energy € by at least an amount t.

We define T to be the subtree of Ta obtained by deleting from Ta all leaves A’ €
L(Tp) for which it and all of its siblings are in L(Tx).

If we apply (4.11) starting at the bottom of Yo and moving to the top root A, we
obtain

D @A) +tN(To) < E(A). (4.12)
A'eL(Yo)

The sum on the left side of (4.12) is over two types of A’. The first are those A’ which
are interior nodes in Tx. Since these are further subdivided by the algorithm, they satisty
é(A") > t. There are precisely N(Ta) — N(Yy) nodes of this type. The second type of
node satisfies €(A’) > 0 because of Remark 4.1. It follows that the sum on the left side
of (4.12) is > t(N(Ta) — N(Yy)). When this is used in (4.12), we arrive at the second
inequality in (4.8). O

Lemma 4.3 Lett > 0 and let T' be the tree associated to the FIRST ALGORITHM.
If A is a root node of T and Ta is any subtree of T with single root node A, then

Y oe(A)y< > EA)+ N(Tat (4.13)

A'EL(TA) AEL(TA)

Proof: If N(Ta) = 0, that is Ta = {A} then (4.13) is obvious because e¢(A) = é(A).
Therefore, in going further, we shall only consider the case where N(Tx) > 1. From the
definition of € in (4.5), we have

YooeA)y= > A+ > o). (4.14)

AEL(TA) A'EL(TA) A'EL(TA)

We complete the proof by showing that

> a(A) < N(Ta)t (4.15)

A'EL(TA)

by using induction on N(Tp). In the trivial case N(Ta) = 0 we have £(Ta) = {A} and
e(A) = é(A). When N(Ta) = 1, Ta consists solely of A and its children and each of
these children is a leaf of Ta. Since a(A) = 0 and for each of the children A’ of A, we
have

a(A) = MA) (a(A) +6(A)) < A(A)

because 6(A) < ¢. Summing over A’ and using that > ., A(A") = 1, we arrive at (4.15)
in this case.

Suppose now that (4.15) holds for all trees Ta with N(Ta) = k and consider a tree
Ta with N(Tx) = k + 1. Let A’ be a node whose children AY,..., AL, are leaves of
Ta. The tree T\ which is obtained from 7y by deleting all of the children of A’ satisfies
N(TA) = k and hence (4.15) holds for T\. We need only show that

m(A’)
> a(A]) <a(A) +t. (4.16)

i=1
But a(A]) = A(A})((A) +6(A)) and §(A’) < t. Since YA A(A]) = 1, we have (4.16)
and have completed the proof of the lemma. O

Theorem 4.4 Let t > 0 be any threshold parameter for which the FIRST ALGO-
RITHM gives a final tree T. Then,

E(T) < 2(K + 1)Ep, (4.17)

where m := [N(T)/2]. The algorithm uses at most #(T) < No + K N(T') computations
of e in generating T .

Proof: The statement concerning the number of computations of e is clear from (3.4).
To prove (4.17), we let T* be a tree of order m which satisfies E(T™*) = E,,. We consider
three disjoint sets Ag, A1, A2 of root nodes. The first set Ag consists of all root nodes
that are not subdivided in either 7" or T*. The second set A; consists of all root nodes
which are interior nodes in 7™ but are not subdivided in T'. The last set Ay consists of all
remaining root nodes; each of these root nodes is an interior node in 7". For each node A,
we let TA be the set of all A" € T that are descendants of A (such a tree may be empty,
if A ¢ T). We have that

E(T)=)Y eA)+ > ed)+ > Y e (4.18)

ANV A€ A€A2 ATeL(TA)

To estimate E(T'), we set E(Ag) := D> xcp, €(A) for the first sum in (4.18) and use Lemma
4.3 to each T in the other two sums to find

E(T) < E(Ao)+ > &)+ > Y &A)+N(T)t (4.19)

ATEA, A€Ay ATEL(Th)

< E(Ao) + #(A)t+ (K +1)N(T)t,
where the last inequality uses the fact that é(A’) < ¢ for each A’ € L£(T) and that the
total number of elements in Uaea, £(Ta) can not exceed K N(T') because each such A’
is a child of an interior node of T'.

To estimate E,, from bellow we consider subtrees Tx for nodes A € L£(T*)\ Ay which
are not descendants of a root node from A;. We apply Lemma 4.2 to each such Tx and
then sum over A to obtain (note that N(Ta) = 0 for all other A € £(T™))

En= Y e(A)>EM)+ Y N(Ta)t (4.20)

AeL(T*) AeL(T™)

The fact that any interior node of T', which is not an interior node for 7, will be in one
of the Th gives that the sum in (4.20) is at least N(T') — (N(T™) — #(A1)). From the
definition of m we have N(T') > 2N(T*), and therefore

E(Ao) + #(A)t + N(T)t/2 < E(Ao) + (N(T) = (N(T7) = #(M1))) t < B . (4:21)

A combination of (4.19) and (4.21) gives (4.17). O

5 The second algorithm

In this section, we present a second algorithm for adaptive tree approximation. Its main
advantage is that it weakens the subadditivity condition (4.1) by replacing it with the
following subadditivity assumption:

Subadditivity: For each A € T, and any finite tree Tao C T, with single root node A,

we have
D e(A) < Coe(A) (5.1)

A'EL(TA)

with Cy > 1 an absolute constant.

This will be important in Finite Element applications where the error functional e cor-
responds to local approximation on sets A which overlap. We shall actually show in §7
that this subadditivity condition can be weakened even further so as to be applicable in
general finite element settings.

As was the case in the first algorithm, we shall introduce a modified error functional
¢ which will drive the algorithm. Initially, for all of the root nodes of T, we define
é(A) = e(A). Now, assuming that é(A) has been defined for a A € T, we define é for
each child A;, j =1,...,m(A), of A as

8(8,) = a(A) (5.2)

where

m(A)
Z e(4;)
A)=—12____5A). 5.3
08) = Ry A (53)
In other words, € is constant on the children of A. It is useful to define the penalty terms
e(A;)
p(A;) = (5.4)
7 e(hy)

p(A;) =p(A)+1. (5.5)

which is the main property we shall need for é.
Let us note that it follows from (5.5) that for any proper subtree T' C T}, we have

> p(A) =Ny + N(T) (5.6)
AeL(T)

where N is the number of root nodes of T, and N(T') is as before the number of subdivi-
sions used to create T'. This follows by induction on N (7). Similarly if Ta« is a tree with
a single root node A* then

Y. p(A)=p(A7) + N(Ta-). (5.7)

AEL‘,(TA*)

SECOND ALGORITHM: This algorithm creates a sequence of trees T = Tj, j =
1,2,... as follows. For j =0, Ty is the collection of root nodes of T,. If T; 1 has been
defined, we examine all leaves of Tj_1 and subdivide the leaves A with largest é(A) to
produce Tj. (In the case there are several largest, we subdivide all of them.)

Remark 5.1 Note that #(1;) < K#(Tj_1) for each j =1,2,...

The following theorem which is the analogue of Theorem 4.4, analyzes the performance
of the second algorithm.

Theorem 5.2 There is an absolute constant C' > 0 such that for each j = 0,1,..., the
output tree T' =T} of the SECOND ALGORITHM satisfies

E(T) < CE,, (5.8)

whenever m < n/(2K +2) and n := N(T). To create T, the algorithm uses < C(n + Ny)
arithmetic operations and computations of e, where Ny is the number of root nodes of T,.

10

Proof: The proof of this theorem has many aspects in common with Theorem 4.4. We
consider any j = 0,1,... such that 7" = T satisfies N(T') =: n > 2(K + 1) and we let
T* be the best tree with N(7T%*) = m with m < n/(2K + 2). We shall also assume that
each root node has been subdivided in the creation of either 7" or 7. If this is not the
case, one would derive the theorem for the new master tree obtained by deleting the root
nodes not divided and then derive the result for the original tree from this.

Let ¢ be the smallest value attained by € on the interior nodes of 7. We let A :=
{A : é(A) = t} be the collection of interior nodes of 7" where é takes on the value t¢.
We derive an upper bound for E(T) = >°c.(r)€(A) by breaking T into T' = To U Ty
where T := UaeaTa and for each A, T is the subtree of T" consisting of A and all of its
descendants in T'. The tree Ty is obtained by deleting all the proper descendants of all
of the A € A (i.e. we leave each of the A € A in T but remove all of their descendants).
It follows that £(T) = Lo U £y where £; = L(T) and Ly = L(Yo) \ A. This gives

E(T)=) e(A)+) e(A) =X+ (5.9)

A€eLy A€eLy

We will bound each of the two sums appearing on the right side of (5.9). First, we
note that from the subadditivity (5.1), it follows that for each A € A, we have

D e(A) < Coe(A) = Coe(A)p(A). (5.10)
A’eL(Th)
Therefore,
=Y D)< Gy EAp(a). (5.11)
AEA A'EL(TA) Ach

Since Yo = Y acp, €(A)p(A), we have

o+ <Co > E(A)p(A). (5.12)
AeL(Yo)
We next want to note that
e(A) <t, AeL(Yy). (5.13)

This is the case for any A € A by the very definition of ¢ (note that any A € A is a leaf of
Ty). To see (5.13) for any other leaf of Ty (i.e. those not in A) consider the state of affairs
when all of the A € A have already been generated by the algorithm and the A € A are
to be subdivided. Let 7" C T be the tree representing the state of the algorithm at this
point. We claim that any A € £(Y) that is not in A is already a leaf of 7" and satisfies
é(A) < t. In fact, if €(A) > ¢, then we would be subdividing A and not the elements in
A. So é(A) < t (it cannot be equal to ¢ since otherwise A would be in A) and by the
definition of ¢, A cannot be an interior node to 7" and therefore must be a leaf of T". Thus,
we have verified (5.13). Using this in (5.12) we obtain

E(T)=S0+5 <Co 3 &(A)p(A) < Cot(No + N(To)) < Cot(No + N(T)) (5.14)
A€L(Yo)

where we have used (5.6) in the next to last inequality.

11

We shall now prove that ¢(Nog + N(T')) < CE,,. Let £* be the collection of all leaves
A* € L(T*) which are in the interior of T and for each of these A* let T« be the tree
consisting of all A € T\ L(T") such that A is a descendant of A*. For each leaf A € L£(Ta+),
we have A is in the interior of 7" and therefore é(A) > ¢ by the very definition of ¢. So
we can apply (5.1) to find

tY, pA) < D pREA) = Y e(d) SCoe(A). (5.15)

AEL‘,(TA*) AEﬁ(TA*) AEE(TA*)

We now sum (5.15) over all A* € £* and use (5.7) to obtain

tM<t Y Y p(A)<Cy) e(AT) < CoEn (5.16)
A*EL* A€L(Tax) A*eL*
where
M:=) N(Ta:). (5.17)
A*eLl*

To conclude the proof, we shall show that
No+ N(T) <2(K +2)M . (5.18)

First, let 7" be the tree obtained from T by deleting all of the leaves of T. Then, T
contains Ta- for all A* € L*.
In the trivial case N(T") < Ny we use (3.4) to receive

n=N(T)=#(T") < No+ K N(T") < (K + 1)Ny (5.19)

and therefore m < n/(2K + 2) < Ny/2. Hence there are at least No — m > Ny/2 root
nodes of T, that are not subdivided in 7™ and according to our assumption they are
subdivided in 7. Thus M > Ny/2 and returning to (5.19), we obtain (5.18).

In the case Ny < N(T”) from (3.4) we know that

No+ N(T) = No+#(T") < No+ No+ K N(T') < (K + 2)N(T"). (5.20)
Finally, we claim that
N(T') <2M (5.21)

which will complete the proof of (5.18) in this case. To see (5.21), we note that the only
interior nodes of 7" that are not interior nodes in one of the Th- are those which are
interior nodes in 7*. This means that there are at most N(7*) < m of them. Hence,

N(T) No+ K N(T')
<M
2K +2 — + 2K +2

NT)<M+m<M+ <M+NT)/2 (5.22)

where we have used the property N(T') =n > (2K + 2)m of the theorem, and (3.4). O

Remark 5.3 In the SECOND ALGORITHM the use of the largest é€(A) may require
a sorting procedure with complexity O(N log N). To keep the number of operations of
order O(N) we can use binary bins instead of sorting. Then after é€(A) is calculated, we

12

determine an integer k such that 2 < é(A) < 25%1 and place A into a bin with index k.
We now choose for subdivision the leaves from the bin with the largest possible index and
proceed as in the SECOND ALGORITHM. Theorem 5.2 remains valid for this variant
of the algorithm. The proof is the same with the following modifications. We definet = 2*
where k is the smallest index of a bin which contains an interior node of T'. The set A is
now the collection of interior nodes of T which belong to that bin. Thent < é(A) < 2t for
A € A, and subsequently é(A") < 2t for A" € T'. The only other changes are to replace t
with 2t in the upper estimates (5.13) and (5.14).

Most numerical implementations of adaptive algorithms such as those that we have
given would have the goal of producing a tree T" such that E(T") < p where p > 0 is some
prescribed tolerance. In the case of SECOND ALGORITHM this can be accomplished
simply by introducing an error check after each step of the algorithm.
THRESHOLDING SECOND ALGORITHM: Gwven an error tolerance p > 0, this
algorithm produces a tree T,, such that E(T,) < u as follows.

(i) Compute e(A) = é(A), A € Ty, and then E(Ty) for Ty the set of root nodes of T..
Define T = Ty and proceed to step (ii).

(it) If E(T) < p, then define T, := T and stop the algorithm. If E(T) > p, then proceed
to step (iii).

(iii) Given a proper subtree T' of T, compute p := maxarcrr)€(A') and subdivide all
A € L(T) for which é(A) = p thereby obtaining the new tree T'. Redefine T to be T' and
proceed to step (ii).

Corollary 5.4 There are absolute constants C1,cy > 0 such that for any error tolerance
pu > 0, the tree T,, produced by the THRESHOLDING SECOND ALGORITHM
has the properties:

(i) If T C T, is any tree satisfying E(T) < cipu then

N(T,) < CiN(T). (5.23)

(i) The number of evaluations of e and the number of arithmetic operations in producing
T, is < Ci(No+ N(T,)).

Proof: Statement (ii) is clear. To prove (i), we take ¢; = A(C + 1)~! where C' is the
constant in Theorem 5.2 and A € (0,1/4) is a constant which depends only on K and will
be prescribed in the course of the proof. Let T” be the tree before the last subdivisions are
made to produce T" := T),. Then, E(T") > u. We define T* as the best tree approximation

with m := N(T*) = N(T') subdivisions. We shall consider three cases:
CASE 1: E(T) > Au. We use Theorem 5.2 for T'. Since

E,=E(T*) < E(T)<cp< (C+1)ED),

this theorem says that m > N(T")/(2K + 2) which proves (i) in this case.
CASE 2: N(T'") > AN(T). In this case, we start with the inequality

E(T*) < E(T) <ap<aB(T) < (C+1)'E(T).

13

We now use Theorem 5.2 for 7" and deduce that m > N(T") /(2K +2) > AN(T) /(2K +2)
which proves (i) in this case.

CASE 3: E(T) < M and N(T") < AN(T'). This case is the most complicated. Let A
be the set of nodes in T which were subdivided in producing 7" from 7" and let B be
the set of all other nodes in 77 which were subdivided in producing 7. We further set
a = #(A), b := #(B). For each A € AU B we have é(A) = p := maxacg(r) €(A). We
also have N(T") > K 'b and N(T") < AN(T) = A\(b+ a + N(T")) which implies that

b<2\Ka (5.24)

provided % —A> ﬁ,
on K).

We next want to show that ¥p :=)\ e(A) is small compared with ¥4 :=) ., e(A).
For this, we introduce Ts which is the subtree of T” consisting of B and all of its ancestors
and Np which is the number of root nodes of Tg. We use (5.7) to find

which is true whenever X is sufficiently small (depending only

S = 3 pA)EA) = p(Np + N(T)) < 2N(Ti)p < 4bp, (5.25)

where the last inequality used (3.1). On the other hand,

Sa= Y e(A)=) &) =ap, (5.26)

AcA AcA

because é(A) = e(A) for root nodes. From (5.24), we obtain

Yp < 4bp < 8\Kap < 8AKY 4. (5.27)
Since
Sa+Sp > B(T') — E(T) > (1- A, (5.28)
(5.27) implies that
YA > p/2 (5.29)

provided we choose A small enough (depending only on K). We now fix A = 1/(8K + 2)
to satisfy the above restrictions. Since E(T™) < cip < A < p/4, at least one half of the
nodes in A cannot be in £(7™) and therefore were subdivided in producing 7*. That is
a/2 < N(T*) = N(T). On the other hand,

(1—=A)N(T) < N(T) = N(T') = a+b < a(l1 + 20K) < 2(1 + 2AK)N(T)). (5.30)

This proves (i) in this final case and completes the proof of the corollary. O

6 Piecewise polynomial approximation

The remainder of this paper will be devoted to giving examples of settings where the above
algorithms can be employed. In this section, we give our first example, which is quite
simple. We suppose that Py is an initial triangulation of a polygonal domain Q C IR?

14

and we have in hand a specific subdivision rule that tells us how to subdivide any given
triangle that arises during a subdivision process (i.e. we have the master tree T, for P
and this subdivision rule). We consider the problem of approximating a given function
feLy,(Q),1<p< oo, by piecewise polynomials of degree » > 0 on partitions P which
correspond to subtrees of T,. Let II, denote the space of polynomial of degree r. We
shall assume there is no continuity restrictions on these piecewise polynomials across the
boundaries of the simplicial cells which make up P.
We fix 1 <p < oo and f € L,(€2) and define

e(A)i= inf If =Pl AET. (6.1)

Corresponding to this e, for any tree T' C T}, we define

E(T):= > e(A). (6.2)

A€L(T)

We recall that the trees T" C T, are in one to one correspondence with adaptively generated
partitions P. Namely, the leaves £(T') form a partition P = P(T') which is obtained by
applying N(T') subdivisions. Let us denote by

E(P) := E(T(P)) (6.3)

which is the p-th power of the error in approximating f in the L,(€2) norm by piecewise
polynomials of degree r on the partition P. Let us further denote by P, the set of all
partitions P which can be generated by at most n subdivisions of Fj.

Because of the disjoint supports of the triangular cells A in £(T") and the set subad-
ditivity of || - |7, we have that condition (4.1) holds. This means we can employ the first
algorithm of §4. Thus, we can apply either the first or second algorithm in this setting.
Either of Theorem 4.4 or Theorem 5.2 gives

Theorem 6.1 If f € L,(Q2), then the FIRST ALGORITHM of §/ and the SECOND
ALGORITHM of §5 when applied with e of (6.1) both generate a tree T whose leaves
L(T) form a partition P = P(T) such that

E(P)<Ci inf E(P), (6.4)

P'ePm

whenever m < ¢y N(T'), where C1,c; > 0 are absolute constants.

7 Piecewise linear approximation with continuity across
boundary edges

In this section, we want to show how to apply the principles of the second algorithm in
a typical Finite Element application. We suppose that P, is an initial triangulation of
a polygonal domain Q C IR* and we have in hand a specific subdivision rule that tells
us how to subdivide any given triangle that arises during a subdivision process (i.e. we

15

have the master tree T, for Py and this subdivision rule). There are two new ingredients
that we wish to incorporate into our analysis. The first is the appearance of hanging
nodes. Given a partition P that is a refinement of F,, we let Vp denote the collection of
all vertices of the triangles which make up P. Such a vertex v is called a hanging node
for A € P if it appears in the interior of one of the edges of A. We shall say that a
partition P is admissible if it has no hanging nodes. A completion P of a partition P is
an admissible partition which is a refinement of P (using the specified subdivision rule).

The second ingredient which will cause us some difficulty is that the typical error
functionals e which arise in Finite Element Applications will typically not satisfy our
condition (5.1). The reason for this is that the Galerkin method requires that the approx-
imants have some smoothness which usually implies at least continuity of the piecewise
polynomials. Therefore the piecing together of local approximants to obtain a good global
approximation prevents e(A) from being completely localized to A and as a result (5.1)
will typically fail to hold.

We shall show how to circumvent these difficulties in this section. We shall limit our
discussion to one specific subdivision rule (newest vertex bisection) which is discussed
and utilized in the paper [1]. In principle, the results of this section could be extended
to other subdivision rules but this would require the development of specific properties of
the completion process for these rules. These properties were developed in [1] for newest
vertex bisection and required a nontrivial analysis to do so.

We first introduce and discuss the properties of newest vertex bisection that we shall
need. The proofs of these properties not given here will all be found in [1]. Given an
initial admissible partition Py of), we give each edge of this partition a label of 0 or 1 in
such a way that for each triangular cell exactly one of its edges has the label 0. That such
a labelling is possible is proved in Lemma 2.1 of [1]. The edge in A given the value 0 will
be denoted by E(A). The vertex opposite this edge is called the newest vertex for A and
is denoted by v(A). The rule for newest vertex subdivision of a cell A is to insert a new
edge connecting v(A) to the midpoint of E(A) thus producing two new cells A, Ay (the
children of A). These two new cells are given the new vertex which is the midpoint of
E(A). The three new sides produced (i.e. the new diagonal and the two new sides arising
from the bisection of E(A)) are given the label 2. Thus at this stage each cell will have
the label (1,1,0) (if it has not been subdivided) or (2,2,1) (if it is a new cell obtained
by subdivision) and the newest vertex is always opposite the side with smallest label. In
general, any cell appearing in newest vertex bisection has the label (k + 1,k + 1, k) with
newest vertex the one opposite the smallest labelled side. When this cell is subdivided
it produces two children (using the newest vertex bisection rule) which have the labels
(k+2,k+2,k+ 1) and we have the same property that the side opposite the smallest
label is the newest vertex.

In going further in this section, T, will denote the master tree for newest vertex
subdivision as described above. So T, is a binary tree. We denote as before 7, the class of
proper trees with N(7T') = n and by 7,* the class of admissible trees. Thus 7" € 7,* means
that 7' € 7, and that its leaves form an admissible partition P (i.e. P has no hanging
nodes). We have already alluded to the following fact:

Remark 7.1 Any tree T € T, can be refined to find a tree T which is admissible and

16

satisfies

N(T) < C,N(T) (7.1)
with Cy an absolute constant.

Proof: In essence, this is Theorem 2.4 of [1]. However that theorem is not stated in the
form of (7.1) so we must say a few words on how to obtain (7.1). Let Mj, denote the
set of all root nodes in T, which are interior nodes of 7' (i.e. they are subdivided in the
creation of T'). We let 7] denote the tree obtained by subdividing exactly the cells in
M. We then denote by T3 the completion of T]. Next, we let M; denote the set of all
leaves of T} which are interior nodes of 7. We let T3 denote the tree obtained from 7}
by subdividing precisely the nodes in M; and let 7> denote the completion of T3;. We
continue in this way until the smallest value of k where M;, = (). We have thus reached a
tree T := T}, which is admissible and is a refinement of 7. Theorem 2.4 of [1] proves that

#(FPo) + N(T) < #(Ry) + C(#(Mo) + - - + #(My1)) < #(R) +C N(T) (7.2

with C an absolute constant. Here, in the last inequality we used the fact that each node
in U;‘-’;é./\/lj is an interior node of 1" by the very definition of the set M. a

We want next to define the types of error functional e we shall associate to newest
vertex bisection. To do this, we introduce the minimal ring associated to a triangular cell
A € T,. Given any admissible partition P and A € P, we define

R(A, P) := Unrepanarz’ (7.3)

which is the first ring about A. This ring depends on P. However, we can find a minimal
ring about A which does not depend on P. Namely, we define

R_(A) = ﬂpR(A, P) = UAlep_(A)A, (74)

where the intersection is taken over all admissible partitions P. Here the set P_(A) is
the collection of cells from T, which touch A and make up R_(A) . The structure of the
set P_(A) has been given in Lemma 4.3 of [1].

We can now define functionals e on 7}, for which we can develop an analogue to the
results of §5. These functionals start with a function norm || - || which has a power which
is set subadditive. Examples are any of the L,, 1 < p < oo, norms, whose p-th power has
this property, or any of the Sobolev H®* = W?*(Ly(2)) norms, s > 0, whose square has
this property. We shall limit our discussion to the latter case since it is of most interest in
Finite Element applications. So, fix 0 < s <1, and let || - || denote the H*(€2) norm with
Q2 the polygonal domain corresponding to the partition Fy. We fix a function f € H*(2)
and for each A € T, we define

e(A) = i%f |f =S|

He(R_(A)) (7.5)

where the infimum is taken over all continuous piecewise linear functions S defined on
R_(A) which are subordinate to P_(A). We define E(T') for this e as we have before.
We also define the best error F,, but now the competition is restricted to admissible

partitions:
E, = inf E(T). (7.6)

We shall now modify the second algorithm so as to generate admissible partitions.
Some modifications are also made to make the proof of the following theorem proceed
without difficulty.

While we view our goal as to create partitions based on newest vertex, we shall actually

use the following subdivision rule:
NEW SUBDIVISION RULE: If A is a triangular cell, then it is subdivided into 32
children which are obtained by applying newest vertex bisection 5 times uniformly on A.
In other words, the children of this subdivision rule are all fifth generation offspring of A
obtained by the newest vertex bisection rule.

Our reason for applying so many newest vertex bisections in just one primary subdi-
vision of the NEW SUBDIVISION RULE is simply that it guarantees the following
property:

Property I: When applying the NEW SUBDIVISION RULE to a triangular cell A,
among the 32 children of A there is one child A" whose minimal ring R_(A') of (7.5)
(still defined according to newest vertezx insertion) is completely contained in A.

Indeed, take for A" any child which does not touch the boundary of A (see marked trian-
gles in Figure 7.1).

Figure 7.1: Application of the NEW SUBDIVISION RULE to a triangle

To define the modified second algorithm, we use the definition of é for the NEW
SUBDIVISION RULE.
MODIFIED SECOND ALGORITHM: Given as input a target accuracy p, this
algorithm produces an admissible tree T satisfying

E(T)<u (7.7)

as follows. For j =0, Ty s the collection of roots of T,. For each j, we do the following:
(i) Compute E(T;). If E(T;) < p/Cy, with Cy the constant of (7.1) go to (). If
E(T;) > p/Cy go to (ii).

(1) We examine all leaves of T; and subdivide, according to the NEW SUBDIVISION
RULE all of the leaves A with largest é(A) to produce Tj11. We replace j by j + 1 and
return to (i).

(iii) We define T as the completion of T;. This completion is made according to the
newest vertezx bisection completion and therefore satisfies N(T') < CoN(Tj).

18

The following theorem describes the optimal properties of this algorithm.

Theorem 7.2 There are absolute constants Cs,c3 > 0 such that such that the output T
of the MODIFIED SECOND ALGORITHM satisfies

E(T) < C3E,, (7.8)

whenever m < csn and n := N(T). Here, E,, is defined in the competition among
all admissible subtrees of the newest vertex tree T,. To create T, the algorithm uses
< Cy(n + Ny) arithmetic operations and computations of e, where Ny is the number of
root nodes of T.

It is clear at the outset that the tree T' of the MODIFIED SECOND ALGO-
RITHM is a subtree of 7, and it is admissible. The remainder of this section will be
devoted to proving this theorem which is a modification of the proof of Theorem 5.2.
We let T be an admissible tree with N(7™*) = m which attains E,,. As in the proof of
Theorem 5.2, we assume (without loss of generality) that all root nodes are interior nodes
(i.e. have been subdivided) in either T or 7%, and resolve the trivial case N(T") < Np.

We shall prove two inequalities:

(a) E(T) < Ct(No+ N(T)).

(b) t(No+ N(T)) < CE,, if m <ecn

where the constants are absolute and ¢ > 0 is the value specified as in the proof of Theorem
5.2. These two inequalities combine to give the theorem.

Proof of (a):

If we had the original subadditivity property (5.1) for e, the proof would be trivial.
Indeed, we would know (a) with N(T}) in place of N(T') as it is in (5.14). Then, we can
replace N(T;) by N(T') because of (7.1). However, this subadditivity does not necessarily
hold. Instead, we have the following weaker condition:

Modified subadditivity: For any A € T, and any admissible finite tree Ta with single
root node A, we have
D e(A) < Coe(A) (7.9)

A'EL(TA)

with Cy an absolute constant.

This property follows from the set subadditivity of || - ||* and the fact that any point
x € Q) can appear in at most ky of the minimal rings R (A'), A" € L(Ta) where kg is an
absolute constant (see the simple proof in [1] which uses the fact that T is admissible).

Let us now see how to use this modified subadditivity to prove (a). Let T' = T; be
the final partition obtained by applying the MODIFIED SECOND ALGORITHM
and let T be the completion of 7" which is obtained by additional subdivisions. We know
from (7.1) that

I

N(T) < C,N(T). (7.10)

As in Theorem 5.2, we let ¢ be the smallest value attained by € on the interior nodes
of T and let A := {A : é(A) = t} be the collection of interior nodes of T' where é takes
on the value t. We define Ty, T; and Ta, A € A, Loy, L1, Yo, and X; as in the proof of

19

Theorem 5.2. These trees and sets of leaves are defined relative to 7' (and not T'). Thus
each of the trees Th is admissible. Then as before,

E(T)= Y e(A)+) e(A)=S¢+%;. (7.11)

AEﬁO AeLly

Since Ta are admissible trees, it follows that for each A € A, we have

S e(A) < Coe(A) = Cor(A)p(A) (7.12)

A'EL(TA)

where now we have used the modified subadditivity (7.9). We can continue then with the
reasoning of Theorem 5.2 and arrive at

o+ 1 <Co Y E(A)p(A). (7.13)
AeL(Yo)

In contrast to Theorem 5.2, we do not know that é(A’) < ¢, A" € L(Ty), because
of the completion process. However we do know this inequality for all A € A where A
consists of all A that are in £(T') but are not in T for any A € A. Indeed, this is the
same as in the proof of Theorem 5.2. Now, for any A € A, we let Tx be the tree with
single root A which consists of all cells in 7' contained in A. Then, T is admissible and
the same derivation as (7.12) gives

> e(A) < CoE(A)p(A). (7.14)
A'€L(TR)

Since every A’ € L(Y) appears either in A or in one of the £(T), A € A, we obtain
using (5.6)

> e(A)<Co Y E(A)p(A)+) E(A)p(A) < Cot(No + N(T)). (7.15)

AleL(Yo) AcA AcA

This gives (a) because of (7.11), (7.13) and the fact that N(T') < N(T). O
Proof of (b):

We shall follow the same line of proof as in Theorem 5.2 until we run into a difficulty
and then we shall show how to overcome that difficulty. The proof uses T rather than T
in the constructions. We let £* again denote the set of leaves of £(7™*) which are interior
nodes of T. For each A* € A* we define Ta- as the set of all A € T\ £(T) which are
contained in A*. In Theorem 5.2 we showed that

tM < Co > e(A*) < CoEp (7.16)
A*eLl*

where

M:= Y N(Ta:). (7.17)

AreLr
We shall show this again with a new constant on the right side of (7.16) but we need a
different proof because we do not have the subadditivity used in (5.15).

20

Lemma 7.3 For each A* € L*, we have
tN(Ta+) < Cse(AY) (7.18)
with Cs an absolute constant.

Proof: In the case that {A*} = L(Ta+), we have N(Ta+) = 0 and (7.18) holds trivially.
So in going further we assume N(7Ta+) > 1 which means that the 32 children of A* from
the NEW SUBDIVISION RULE are in the interior of 7. Let A € £(Ta-) and let A
be its parent relative to the NEW SUBDIVISION RULE used to create T. Recall
that € is constant on each of the 32 children of A. From Property I, we can choose
one of these children A’ which is strictly contained in the interior of A and for which
R_(A') C A. Let us denote by A’ the set of all such A’ that we have created. We note
that for each pair Ay, Ay in A’ the sets R_(A;) N R_(A3) has measure 0. Indeed the two
parents Aj, A, of these cells are disjoint (for this property one is using the fact that when
A, is subdivided so are all of its siblings). Thus, from the set subadditivity of || - ||? we

obtain
tH(N) <) e(A) < e(AY) (7.19)
Aren’

where we have used the fact that é(A’) > ¢, A’ € A’, because these nodes are interior
to T. Now since #(A') = #(L(Ta+)/32 and N(Ta-) < 2#(L(Ta-)) (see (3.1) and (3.2)),
(7.18) follows from (7.19) with C5 = 64. O

Having established (7.18), we can sum over all A* in £* and derive (7.16) with a new
constant in place of Cj.

We can conclude the proof of Proof of (b) as in Theorem 5.2. Namely, let 7" be
the tree obtained from T by deleting all of the leaves of T. Then, T" contains Ta- for all
A* € L*. As in (5.20), we obtain (here we have K = 32)

N(T)<(K+1)N(T') and No+ N(T) < (K +2)N(T"). (7.20)
Finally, we claim that
N(T)<CM (7.21)

with C' an absolute constant, which will complete the proof. To see (7.21), we note that
the only interior nodes of 7" that are not interior nodes in one of the Ta+ are those which
are interior nodes of 7*. This means that there are at most N(7™*) < m of them. Hence,

N(Th<M+m<M+N(T)/2K+2) <M+ N(T")/2 (7.22)
where we have used (7.20) and the inequality
N(T) > CyIN(T) = Cy'n > 2(K + 1)m (7.23)

which holds provided 3 is chosen smaller than C, ' /(2K + 2). This completes the Proof
of (b) and completes the proof of Theorem 7.2. O

Finally, we remark that the properties of the MODIFIED SECOND ALGO-
RITHM can also be described in the form of Corollary 5.4.

21

Corollary 7.4 There are absolute constants C1,c; > 0 such that for any error tolerance
> 0, the tree T, produced by the MODIFIED SECOND ALGORITHM has the
properties:

(i) If T C T, is any tree satisfying E(T) < cip then

N(T,) < C,N(T). (7.24)

(ii) The number of evaluations of e and the number of arithmetic operations in producing
T, is < Ci(No+ N(T),)).

Proof: The proof of this corollary is the same as that of Corollary 5.4. O

References

[1] P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence
rates, IGPM Report # 218, RWTH Aachen, June 2002.

2] A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Tree approzimation and optimal
encoding, Appl. Comp. Harm. Anal., 11 (2001), 192-226.

Peter G. Binev

Department of Mathematics

University of South Carolina

Columbia, SC 29208

U.S.A.

e—mail: binev@math.sc.edu

WWW: http://www.math.sc.edu/~binev/
Tel: 803-576-6304, Fax: 803-777-6527

Ronald A. DeVore

Department of Mathematics

University of South Carolina

Columbia, SC 29208

U.S.A.

e-mail: devore@math.sc.edu

WWW: http://www.math.sc.edu/~devore/
Tel: 803-777-6323, Fax: 803-777-6527

22

