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POLYSPHERICAL COORDINATE SYSTEMS ON ORBIT SPACES
WITH APPLICATIONS TO BIOMOLECULAR CONFORMATION

DANIEL B. DIX

ABSTRACT. The group G, of rigid motions, i.e. the semidirect product of
R™ (translations) and SO(n) (proper rotations), acts on R™. Let N be a set
with N elements. Let (R™ )N denote the set of all mappings ¢ — R; from
N to R™. G, also acts on (R*)V by the diagonal action (g- R); = g - Ri.
Let B consist of those R € (R™ )N whose isotropy subgroup consists only
of the identity in Gq. When N > n > 2 we study a particular atlas of
polyspherical coordinate charts in the orbit manifold G4 \B and a related atlas
of local trivializations of the principal bundle B — G4 \B with structure group
Gqo. The coordinate charts are indexed by new combinatorial structures we
call Z-systems T' = (T'L,...,T'?), defined as follows. Let (k{\(l) denote the set
of all abstract k-simplices, i.e. subsets of N with exactly k+1 elements. Define
ro = (/;/) For each k = 1,...,n we assume that I'* C (k/_\‘_/l) such that the

pair (Fk_l,Fk) is a tree hypergraph, where I'*~1 is the set of vertices and I'*
is the set of edges, and where a k — 1 simplex (vertex) v and a k simplex (edge)
e are incident if v C e. Furthermore if vi,v2 € I'*=1 such that v Uve € Tk
then we require that v1 Nvg € T¥~2, T'? is a set of oriented n-simplices, whose
set of underlying unoriented n-simplices is I'".

If e € I* and R € (R*)V then let Re = {R; | i € €} be the associated
geometrical simplex. Each element {4, 3} of I'! is associated with the Euclidean
distance in R™ between points R; and R; of the mapping R € (R YN. Each
element e € T*, k = 2,...,n — 1 is associated with an angle (taking values in
(0,7)) between Ry, and R,, associated to the two k—1 simplices v1,v2 € rk-1
on which e is incident, as measured in a plane perpendicular to the affine
subspace of dimension k& — 2 spanned by Ry; nv, and within the affine subspace
of dimension k spanned by R.. Each element e* € I'?? is likewise associated
with a signed angle (taking values in (—m, 7]), where the sign of the angle and
the orientation of the underlying abstract simplex e € I'™ are compatible in a
certain natural fashion. Coordinates are assigned to those mappings in (R™ )N
for which every element e € I'"*~1 determines a geometrically independent n—1
simplex R, in R"; such mappings are said to be in the coordinate domain
D¢ (T). We prove that our coordinate system establishes a diffeomorphism
between the orbit space Go\D¢c(T') and an explicitly given parameter domain
Dp(T) of dimension Nn — n(n + 1)/2. We also prove that B is the union of
the coordinate domains D¢ (T'), where I' ranges over all Z-systems on N.

When n = 3 our results give an axiomatization of and rigorous mathemat-
ical theory for what chemists call valence coordinates, or Z-matrix internal
coordinates. Z-systems can be simply manipulated like n-dimensional build-
ing blocks; such manipulations are quite complex if one uses Z-matrices. We
briefly discuss applications of Z-systems to the study of biomolecular confor-
mation.

Date: February 1, 2002.

Key words and phrases. molecular conformation, conformational analysis, Z-matrix, Z-system,
abstract simplex, spanning tree, line graph, iterated line graph, polyspherical coordinates, internal
coordinates, valence coordinates, orbit spaces, diagonal action, principal bundle.
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1. INTRODUCTION

Perhaps the reason molecular geometry has not received much attention from
mathematicians is that it was perceived that not much new mathematics was to
be found there. Also, despite the long history of study by chemists and molecular
physicists, very little rigorous work has been done formalizing internal coordinate
systems, especially those suitable for biological macromolecules. Perhaps this is
because it was thought to be either “obvious” how such systems were to be con-
structed or too complicated or unprofitable to discuss in general. In this work we
study a new combinatorial and geometric structure called a Z-system, which is nat-
urally associated with polyspherical coordinate charts in conformation or “shape”
spaces, i.e. orbit spaces under the diagonal action of the group of rigid motions on
Cartesian products of Euclidean space. In the first five sections we develop from
the basic definitions the abstract theory in the n dimensional context. Then in
the last section we discuss the applications of our theory to concrete issues in 3
dimensional molecular geometry. In that section other references to previous work
will be given. It is through this interplay of theory and application that we hope
mathematicians will see the potential for even more new mathematics waiting to
be discovered.

2. Z-SYSTEMS

Suppose R” is equipped with the standard Euclidean inner product, and with
the usual orientation. The standard basis I = (&4, ..., &,) is positively oriented and
orthonormal. SO(n) denotes the group of all n x n real matrices A such that ATA =
AAT = [ and det(A) = 1. (AT denotes the transpose of the matrix A.) Define
G, = R" x SO(n) to be the group with the binary operation (by, A;)(bs, A2) =
(by + A;ba, A1 Ay), identity (6, I), and inverse operation (b, A)~! = (—=ATb, AT).
The group G, has a left action on R” by the rule (b, A)-x = b + Ax. G, is called
the group of n-dimensional rigid motions; the subscript a stands for active. Define
an n X (n + 1) matrix (eg,e1,...,e,) to be a pose if eg € R* and (ey,...,e,)
is a positively oriented orthonormal basis of R™". Every pose defines a Cartesian
coordinate system in R™ with origin ey in the usual way. Let P denote the set
of all poses. G, acts on P on the left by the rule (b, A)(eg,e€1,...,€,) = (b +
Aey, Aeq,...,Ae,). This action is transitive and fixed point free. Since A =
(e1,-..,en) € SO(n) we see that there is a natural identification of G, with P; we
will mostly ignore it however. Define G, to be the group of all (n + 1) x (n+ 1)
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T
matrices of the form b OA > , where @ € R™ is the zero (column) vector, and where
(b, A) € G,. G, is a group under the operation of ordinary matrix multiplication.
In fact the groups G, and G}, are isomorphic in the obvious manner. G}, acts on P
on the right by ordinary matrix multiplication. This group action is also transitive
and fixed point free. We call G}, the passive group of coordinate transformations.
The left action of G on P commutes with the right action of Gp. If A and B are
sets then let AP denote the set of all mappings from B to A. Let N be a set of N
elements. G, acts on (R")V via the diagonal action, i.e. if g € G4, R € (R")V,
and ¢ € N then (¢- R); = g R;.

If S is any set define (‘Z) to be the set of all subsets of S with exactly &k elements.
We call an element of (kﬁ_fl) an abstract k-simplex. An element of (,E:l) is called a k-

simplex. A k-simplex {Rg, R1, ..., Ry} is called geometrically independent if the set

1 1 1
H H 3 3 n+1 n N
{ (Ro) , <R1> ey <Rk> } is linearly independent in R***. If R € (R®)*V and

s ={ip,1,...,1k} is an abstract k-simplex then define Rs = {R;,,R;,,...,R;, } to
be the associated simplex. If there is no possible confusion we will sometimes call
an abstract simplex a simplex. An oriented abstract n-simplex S* is an abstract n-
simplex S together with an equivalence class [a] of bijections a: {0,1,...,n} — S,
where two such bijections o and o/ are equivalent if o’ = o o p for some even per-
mutation p: {0,1,...,n} — {0,1,...,n}. If S* = (S,]a]) is an oriented abstract
n-simplex, then we also write S* = [a(0),a(1),...,a(n)] with the understanding
that [a(0),a(1),...,a(n)] = [a(p(0)),a(p(1)),...,a(p(n))] for all even permuta-
tions p.

A hypergraphis a triple H = (V, E, ) where V and E are finite sets and « C VX E.
Elements of V are called vertices and elements of E are called edges; we write
V = vert H and E = edge H. If (v,e) € ¢ then we say the vertex v and the
edge e are incident. The hypergraph (V, E, ) is a graph if the mapping e — {v €
V | (v,e) € ¢} takes E into (4) and is one-to-one. This means that every edge

of E is incident on exactly two vertices, and every unordered pair {vi,v2} € (‘2/)
corresponds to at most one edge. If (V4, Ey,t1) and (Va, Eq,19) are hypergraphs
then a pair of mappings (f,g) is an isomorphism of hypergraphs if f: Vi — V;
and g: Fy — FE, are bijections such that (f x g)(¢1) = t2. Consider an ordered
list t = (vo,€1,V1,--sVm—1,Em,VUm) Where vy,..., v, are distinct vertices of V" and
€1,...,6mn are distinct edges from F, such that e; is incident on both v;_; and v;
forall i =1,2,...,m. tis called a path of length m in (V, E, ) connecting vy to vy,
if vy is distinct from each of vy,...,v,,. tis called a cycle if v9 = v,, and m > 3.
The hypergraph (V, E, ) is said to be connected if for any two distinct vertices v, v’
of V there exists a path connecting v to v’. If a hypergraph contains no cycle it is
said to be acyclic. A connected acyclic graph is said to be a tree. A vertex v is said
to be a leaf if there is only one edge e incident on v. A graph is said to be rooted if
a distinguished vertex r of V' has been chosen; r is called the root vertex, or simply
the root, and the quadruple (V| E,,r) is called a rooted graph.

If (V, E,¢) is a hypergraph then define the line graph L(V, E, 1) to be the graph
(E, L,¢), where

E
L= {{61,62} € <2) | there exists v € V such that (v,e;) € ¢ and (v,e3) € L} )
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and e represents the incidence relation where a vertex e and an edge [ are incident
if e € 1, i.e. € is represented by the set {(e,l) € E x L | e € l}. Since every
edge in L is a two element subset of the vertex set ¥ and the incidence relation
is set membership it is clear that this construction always yields a graph. As an
example, consider the hypergraph (I' "1, I'°, ¢), where I'"! = (/B/) = {0}, 1° = (j;/)
and o represents the incidence relation where a vertex v is incident on an edge e if
v C e. There is only one vertex, namely v = (), which is a subset of any set. Hence
L(r1,1r%¢) = (1° (F;),e). This graph is called the complete graph on the set
I'Y It is isomorphic to the graph (I'?, (AQ[),U) via the isomorphism (1, /), where
1: T — I' is the identity mapping, and where 3; : (F;) — (j;/) {{i} {5~ {i, 5}
is a bijection. Clearly the set membership incidence relation € is carried into the
subset incidence relation o. Suppose (Vi, E1,t1) and (Va, Eg,t2) are graphs. We
say (V1, E1,t1) is a subgraph of (Va, Ea,12) if Vi C Vo, By C Es, and ¢1 C t3. The
subgraph (Vi, Eq, 1) is said to be spanning if Vi = V. The subgraph (V4, Eq,¢1) is
said to be induced if E1 = {e € Ea | {v € Va | (v,€) € 12} € ()} and 11y = {(v,e) €
to|v € Vi,e € By} If (V, E ¢, r) is a rooted tree then a leaf-picking order for this
rooted tree is an ordering of the elements of the set V = {vy,vq,..., v} such that
r = v and for every 2 < k < m the vertex vy, is a leaf of the subgraph of (V, E,¢)
induced by the set {vy,...,vr}. Such leaf-picking orders are known to exist for any
rooted tree.
Now we are ready to give a definition of Z-systems.

Definition. An n-dimensional Z-system on the set A/ is an n-tuple (I'!,..., "1,
'), where I'* C (kj_\ll) is a set of abstract k-simplices, k =1,...,n, and I'} is a set

of oriented abstract n-simplices, i.e. a choice of orientation for each of the abstract
n-simplices in I'*. These sets are required to satisfy the following properties: for
each k = 1,...,n the hypergraph (I'*~! T'* ) is a tree, and whenever vy, vy € T'*~1
are such that v; Uwvs € T'* then we have vy Nvy € TF—2,

In the above we are using the notation from the previous paragraph, i.e. ! =
(%/) ={0}, %= (/}[) and o is the subset incidence relation.

It is not entirely obvious that Z-systems exist in higher dimensions. Thus we will
now give an inductive construction proving this existence and showing the degree of
flexibility in the concept. In any connected graph it is possible to choose a spanning
tree. Furthermore the line graph of any connected graph is always connected. To

begin, note that the complete graph (I'°, (on), €) is connected. So choose a spanning

tree 7, as a subgraph of (T, (F;),e). Let I'! denote the image under the mapping
B1 of the set edge 71 of edges of 71. Thus (I'°,T'!, o) is a tree isomorphic to the
tree 71. Notice that if e € I'! is incident on the two vertices vi,vs € I'° then
vy Nwy = () € T~L It is always possible to choose one of the two orientations for
each of the abstract 1-simplices in I'! to form I'l. Thus a 1-dimensional Z-system
necessarily exists. Now suppose for n > 2 that an n — 1-dimensional Z-system
'Y, ...,I™~! has been chosen. Thus, in particular, (I"~2,I"~! o) is a tree. Thus
L(I'"2,T" 1 o) is a connected graph. The general construction depends on the
following result.

Lemma. Suppose (I*~1 % o) is a tree for k =1,...,n — 1. Define the mapping

Bn: edge L(IIm 2,11 o) — ( N

n+1): {e1,ea} — e1 Uea. Then B, is an injection.
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Proof. From the definition of the line graph we see that

n—1
edge L™ 2 I 1 0) = {{61,62} € <F2 > |exNeg € I‘"z}.
Let {e1,e2} be an edge in L(I™~2,T"~! o) and define S = e; Uey = B, ({e1, e2}).
Since both e; and e; are n element sets which intersect in an n — 1 element set
it is clear that S is an n + 1 element set. Now define for each £k = 0,1,...,n —1
the sets 't = {s € ['* | s C S}. The injectivity of 3, will follow if we show that
2! = {e1,e2}. Clearly {e1,e2} CT% 7!, 50 [['%7"| > 2. Nowforallk =1,...,n—1
we claim that (F'g_l,f"g,a) is a graph. To see this suppose e € F’g c I'k. Since
(I'*=1 T* ) is a graph there are exactly two vertices vy, vo € I'*~! on which e is
incident. Since both are subsets of e C S, both v; and vy are in F’gfl. Clearly there
cannot be in 1"’;71 any other vertex incident on e. Thus e is incident on exactly
two vertices in F’g_l. Also if vy,vy € F’g_l are distinct but otherwise arbitrary
then there can be at most one vertex e € I'* incident on them. Since any edge in
F’§ incident on v; and vy is necessarily an edge in I'* we see that there can be at
most one such edge. Therefore our claim is demonstrated. Hence (Fgfz,f‘gfl, o)
is a subgraph of the tree (I'"~2,T"~1 o), and hence is acyclic. The connected
components of this subgraph are all trees, and hence have one more vertex than
the number of edges. Consequently |Fg_2| > 3. By a similar argument we show
that |Fg7k\ >k+1forall k=1,...,n. Therefore n+1 < [['% < |S]|=n+1.
Since (I'%,T'L, o) is a subgraph of a tree with n + 1 vertices, it can have at most
n edges. Thus n < [T'y| < n. By a similar argument [T'%| = n — k + 1 for all
k=0,1,...,n— 1. Therefore since [T%"!| = 2, we must have T2 ! = {e,e2}. O

Now if one chooses a spanning tree 7, in L(I'™~2,T""1 o) and defines I'" =
Bn(edge 7,) then (I™"1,I'™ o) is a tree isomorphic to 7, via the isomorphism
(1,8,). An n-dimensional Z-system can then be found by choosing one of the
two orientations for each of the n-simplices in I'". Thus an n-dimensional Z-system
can always be found from an n — 1-dimensional Z-system by choosing a spanning
tree in the line graph of the highest level tree, and choosing orientations for the
n-simplices.

It is also true that every Z-sytem can be obtained by means of the inductive
procedure just described. This observation is trivial for 1-dimensional Z-systems.
Also for n > 2 suppose I'',... , T~ of a Z-system of dimension n or higher are
obtained by the above inductive construction. By the previous Lemma the map
Brn: edge L(I™2,T" 1 o) — (nj_\{l) is an injection. Since (I"~!,I'*, ) is a graph,
each edge e € I'" is incident on exactly two edges vi,va € I™~!. Because we
have a Z-system we know that v; Nvy € I'"2, and hence {v1,v2} is an edge in
L(I'™ 2, T""1 o) which 8, maps to e. Thus every edge in I'" determines a unique
edge in L(I™ 2,I™ ! o), and the fact that (I 1, I, ) is a tree implies that a
spanning tree 7, in L(I'~2,I™ !, o) is thereby determined. Thus in fact, T't,..., T
are obtained from the inductive construction.

The n-tuple (I'!,...,T™) can be put in one-to-one correspondence with the n-
tuple (71, ...,7,), where 71 is a spanning tree in the complete graph on N and 7441
is a spanning tree in the line graph of 7 for all £k = 1,...,n — 1. A specification
of (I'l,...,I™) is to look at a Z-system in the poset picture. A specification of
(1,...,7n) is to look at a Z-system in the iterated line graph picture. These pictures
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FIGURE 1. A 3-dimensional Z-system I' for Methanol. The set
{C, Hy, H3, H3,0, H} contains the atom names. The tree for
(k=1 T* C), k = 1,2,3, is indicated on the part labeled T'*~1,
where the edges are indicated by heavier lines of various styles.
Above each such line is the element of I'* which is the edge, and it
is connected to its two vertices by lighter lines of the same style.

can be used to visualize a Z-system. For example in Figure 1 we give a 3-dimensional
Z-system for the molecule methanol in the poset picture. Figure 2 is the same Z-

system, but given in the iterated line graph picture. (See section 6 for a discussion
of dihedrals and impropers in the 3-dimensional case.) Although the diagrams are
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FIGURE 2. The iterated line graph form (used by IMIMOL) of the
same Z-system I' for Methanol as in Figure 1. Bonds (1-simplices,
or edges of 1) are indicated by solid lines. Triangles (2-simplices)
are in one-to-one correspondence with angles (edges of 72), and
are indicated by dashed lines from one vertex bond to the other.
Tetrahedra (3-simplices) are in one-to-one correspondence with un-
ordered pairs of angles (edges of 73), and are indicated by curved or
straight dotted lines from one vertex angle to the other. Improp-
ers must be given a direction; dihedrals assume their canonical
orientation (see section 6).

easier to draw in the (3-dimensional) iterated line graph picture, the set theoretical
nature of the vertices and edges involved become quite complex for the higher
level trees. Furthermore, the “orientations” of the edges of 7,, are more correctly
described as orientations of the corresponding n-simplices. So we commonly use
the iterated line graph picture to display Z-systems, but use the poset picture for
theoretical discussions.

A “top down” construction of a Z-system satisfying certain geometrical con-
straints will be given in the proof of the second theorem of section 4.

As a mathematical concept Z-systems are related to abstract simplicial complexes
[67], and in fact are special types of skeleton complexes [4]. However the concept
is not mentioned in [30].

3. POLYSPHERICAL COORDINATES

As natural combinatorial objects as Z-systems might be, their true nature is
revealed when they are considered as defining polyspherical coordinate systems.
Let (T'%,...,T7?) be an n-dimensional Z-system on the set A" = {1,..., N}. Define

Do (T) = {R € (R")V | for all s € I"™~! the associated simplex R,

is geometrically independent}.

This is called the coordinate domain corresponding to the given Z-system. If the
Z-system T' is understood we will write Do (I') = De. Notice that if R € D¢
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and (b,A) € G, then (b,A)- R € Dc. Let R € D¢ be given. Then for every
e ={i,j} € T'! we define

Le(R) = |[Ri — Ry
Note that the associated simplex R, must be geometrically independent, and hence
L.(R) > 0.

For any k = 2,...,n suppose e = v; Uvy € I'* where vy,vy € T*~! and s =
v1 Nvy € T*2. Define II, to be the orthogonal projection onto the subspace of
R" spanned by the set of vectors {R; — R; | j € s\ {i}}, where i € s. When
k = 2 so that s = {i} we have that II; maps every vector to the zero vector. For
larger values of k we have that II; does not depend on i € s, as is easy to see. Now
suppose i € s, {j1} =v1 \ s, and {ja} = v \ s. Then define

_ (-T)Ry, —Ry) - (1 -TL) (R, —Ri)
IO - Ry, — Ryl (1 - IL)(Ry, — Ry

Since the associated k — 1-simplices R,, and R,, must each be contained in a
geometrically independent n — 1-simplex, we see that each of the denominators
must be positive. However, we must show that each of the unit vectors in the
above expression is independent of ¢ € s. To see this suppose i’ # ¢, i’ € s. Then
Rj — Ri = Rj — Ri/ + (Rll — Rz) Since HS(RZ'I — Rz) = (Ril — Rl) we have
that (1 —II,)(R; — R;) = (1 — IL;)(R; — Ry), as desired. If 2 < k < n — 1 then
the asociated simplex R, must be geometrically independent, and hence C.(R) €
(—1,1). We will use the coordinate C.(R) rather than the angle § = cos™! C.(R).

Now suppose e* = [ig, i1, ..,i,] € I'?, where e = {ig,01,...,in}, s = {0,%1,-- -,
ino}, v1 = 8U{in 1} € T ! and vy = sU {i,} € T"~!. Tt is always possible
to arrange this. C.(R) is defined as above except now we do not know R, is
geometrically independent, so we only have that C.(R) € [-1,1]. Since R,, is
geometrically independent there is a unique unit vector e, which is orthogonal to
the span of {R;; — R;,,...,R;,_, — R;,} and such that (R;; — R;,,...,R
R;,,e,) is positively oriented. We define

(1 -IL)(Ri, — Ryy)
(1 - 1) (Ri, — Ryl

Since R,, must be geometrically independent, the denominator in the above ex-
pression is positive. Since R is geometrically independent there exists a unique
orthonormal set (eq,...,e, 2) of vectors from R"™ and a unique upper triangu-
lar (n — 2) x (n — 2) matrix U with positive diagonal entries such that (R;, —
Ri,,...,Ri,_, —R;,) = (e1,...,e,_2)U. This is simply Gram-Schmidt orthogo-
nalization, or QR factorization [29]. The entries of the vectors e and of the matrix

U are smooth functions of R. It follows that II; = ZZ;% ekef. Define

Ce(R)

Tn—1

Sex(R) = e, -

in

_ (1 B HS)(Rin—l B Rio) _ (]- - Hs)(Rin — Rio)
€,_1 = , and v= .
(1 = TL)(Ri,_, — R )| 1(1 = TL)(Ri, — Ry, )|
It follows that (ey,...,e,) is a positively oriented orthonormal basis of R”. From

the definitions above we see that C.(R) = e,_1 -V, Sex(R) = e, - v, and hence
v =Cs(R)e,—1 + Sex(R)e,. Thus

det(er,...,en_1,V) = Sex(R).

This proves that Se- (R) is a smooth function of R. See figure 3 for the 3-dimensional
case.
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(1 - HS)(Riz - Rio)

Rio (1 - HS)(Ri:s - Rio)

FIGURE 3. The geometry of wedge angles in dimension n = 3.
In this case e* = [ig,41,12,%3], s = {i0,%1}, v1 = {lo,%1,i2}, and
vy = {ig,%1,%3}. The square lies in a plane perpendicular to the line
through R, and R;,. Both of the vectors (1 —1II,)(R;, — R;,) and
(1 -1I,)(R;; — R;,) lie in this plane since 1 — II; is an orthogonal
projection into this plane. C,(R) = cos(f) and S« (R) = cos(8') =
sin(#) > 0 in this picture.

Lemma. The number S.-(R) does not depend on the representative (ip,1,...,0n)
of the chosen orientational equivalence class e*, provided s = {ig,i1,...,in—2}-

Proof. So suppose [ig,%1,---,in] = [jo,J1,--->Jn), Where s = {jo,J1,---,dn-2}
Then {in_1,in} = {jn_1,Jn}, and there are therefore two cases: (ip_1,%,) =
(jn—lajn) and (in—lain) = (jnajn—l)- In the first case, (in—lain) = (jn—lajn)a
which cannot happen in a nontrivial way in dimensions 2 and 3, we see that
(Jo,J1,- -+ »Jn—2) is an even permutation of (ig,%1,...,%,_2). Hence (Jo, 1, -, Jn—1)
is an even permutation of (ig,iy,...,%,_1). Let P be the n x n permutation matrix
such that (jo,-..,jn—1) = (i0y---,in_1)P. Let u” = (0,1,...,1) € (R*)*, and
G =1 —é&,u” an n x n Gauss transformation; note that G~! = I + &;u”. Then
we have that

< 1 0 0 0>
Rjo le — Rjo e Rjn—l — Rjo (S7%%
1 1 ... 1 0\[/G @
:<Rj0 R; ... R; _, en> <0T 1>
1 1 ... 1 0\(P 6\(G o
:<Ri0 Ri, ... Ri , en> <0T 1> <0T 1>
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(1 0 0 0\ (G™* 6\ (PG 6
“\R;, Ri,-R; ... R;, ,—R; e,/ 67 1)\67 1

Since det(G~1PG) = det(P) = 1 we see that

det(R;, ~ Rjq,...,R; _, — Ry, en) = det(Ri, — Riy,...,Ri,_, — Riy,en) > 0.
Also eT (I +&u”)P(I —é&u”) = (e +u”)P(I —eu”) = (& +u”)(I —&u”) =
el +ul — (efe))ul’ — (uTeé;)ul = &T. Therefore G 1PG = ! 0T>, where H

H
isan (n — 1) x (n — 1) matrix with unit determinant. Since

1 o7
(RjoﬂR]d _Rj07"'7Rjn71 - Rjo) = (RiovRil _Ri()’""Rinfl - Rio) <V H>

we see that

(R;, - Rj,,...,R;,_, - Rj,) =(R;, - R;,,...,R -R,,)H,

Trn—1 70
and hence the same vector e, works for both representatives of the orientational
equivalence class. Since we have already seen that (1 — II,)(R;, — Rj,) = (1 —
II;)(R;, — R;,), we have that Se~(R) is independent of the representative of the
orientational equivalence class in this case.

Now consider the case where (i,,—1,%,) = (jn, jn—1)- Therefore (jo, j1,...,Jn—2)
is an odd permutation of (ig,%1,...,in—2). Let B = (R;; —R;,,...,R;, _, — R;,).
Using an argument similar to that given in the first case we have that there is an (n—
2) x (n—2) matrix K such that det K = —1 and (Rj, -R;,,...,R;,_,—R;,) = BH.
There exists a vector z € R*~! such that R;, —R, = Bz. Therefore R;, , —R
R;, —R;,+Bzand R; —R;, =R;, , —R;,+Bz. Consequently (1-1II,)(R;, , —
R,) = (1 1L,)(Ra, - Riy) and (1 1L)(Ry, — Rj) = (1 IL)(Rs, , - Ryy),
and hence &, ; = v, and Vv = e, ;. Since &, 1 = v = Cs(R)e,_1 + Se-(R)e,
it is reasonable to define &, = S« (R)e,_1 — Cc(R)e,, since then we would have
é, 1€, =0and &, -V = [Sex(R)ep_1 — Ce(R)ey] - €41 = Sex(R) as desired.
Since €,, - €, = Sc+(R)? + C.(R)? = v-v = 1 we see that &, is a unit vector. To
finish showing that this choice for €, has all the properties specified for it in the
definition, we compute

Jo

in

(le - Rjo" . '7Rjn—1 - Rjoaén)
K 0 6
= (Ri, —Riy,---,Ri,_, —Ri,Rj,_, —R;j,8,) [ 07 1 0
0T 0 1
U 6 6 K 6 0
=(e;,.-.,e, o, R, , —R;,&,) (0" 1 o||6" 1 0
T 0o 1/ \6T o 1
I y 6\ (UK 6 6
= (91, ‘e .,enfz,énfl,én) OT l 0 OT 1 0
0T 0 1 0T 0 1
I 0 UK y 6
=(e1,.-.,€n 2,€,_1,€,) 0T C.(R) Se(R) o 1 o],
6" S.-(R) —C.(R)) \ 6" 0 1
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—Rj,, y = (e1,...,e,-2)Tx, and | = ||(1 — IL)x||. Thus
—Rj,,&,) is positively oriented. O

where x = R,
(R;, —Rj,,...,Rj,_,

Thus we define Z.«(R) = Ce(R) +iSe<(R) € S' = {2z € C | |z| = 1}. Clearly
if e* is replaced by the opposite orientational equivalence class —e* with the same
underlying n-simplex e then S_.«(R) = —S.-(R). We will use the coordinate
Z.«(R) rather than choosing a branch for the angle ¢, where Z.«(R) = e'*. We
consider S* to be a one dimensional real manifold.

We define the parameter domain Dp(T') to be

Dp(I) = (0,00)" x [Tﬂ(l,l)rk] x (S
k=2

When the Z-system T is understood we write Dp(T') = Dp. When R € D¢ is
given, then taken together all the coordinate functions we have defined determine
an element

((Le(R) [ e €T), (Ce(R) | e €T?),..., (Ce(R) | e € T 1), (Ze+(R) | " € TY))

in Dp. Thus we can think of elements of Dp as being a labelling of each of the edges
of each of the trees of the given Z-system (I'!,...,T'?) with appropriate numerical
coordinate values. Thus an element of Dp will be called a labelled Z-system.

Suppose r = (ig,.-.,in_1) € N™ is such that si(r) = {io,...,ir} € I'* for
kE=0,...,n—1. We call r a site of the Z-system. The simplices s¢(7),. .., sp—1(7)
are said to be associated to the site r. Given a site r and R € D¢ we can define the
pose at the site r as follows:

Ri, — R S G eie])(Ri, —Rig)
[Ri, — Ry, ||’ 1(1 —erel)(Ri, — Ri)[|"
—2
o (1 - EZ:l ekez;)(Rin71 B Rio)
= = ,
11— >2k=1 enel)(Ri,_, — Ry
e, = the unique unit vector in R" perpendicular to eq,...,e, 1 such that

€y = Rio, €; =

€n—1

(eq,...,ep) is positively oriented.

Each of these vectors is well-defined since the simplex R, () is geometrically
independent for R € Dg. Let E.(R) = (ep,e1,...,€,) € P denote this pose.
Notice that II,, () = ch;ll exel, forj=1,...,n—1. If (b, A) € G, then it is clear
that E.((b,A) - R) = (b, A)E.(R).

Let vert S(T') denote the set of all sites for the Z-system I' = (T'1,..., 7). Let
edge S(T') denote the set of all two element subsets { (%o, ... ,%n—1), (Jo,-- -+ Jn—1)}
of vert S(T') such that (jo,...,jn—1) can be obtained from (ig, ...,%,—1) by a single
transposition of adjacent entries. Taken together the data (vert S(I'),edge S(T'),€)
forms a graph, called the site graph S(I'). Let G(I') be the set of all ordered
pairs ((i0,.--,in—1), (Jo,---,dn—1)) of sites in vert S(T') such that (ig,...,in_2) =
(Jo,--+5Jdn—2). Let this set G(T') be equipped with the following partially defined
binary operation: (ry,r3)(re,73) = (r1,73). Thus the operation (ry,72)(rs,r4) is
undefined unless ro = r3. With this definition, G(I') becomes what is called a pair
groupoid. The pair (S(T'),G(T")) is called the site network of I' (see Figure 4).

The site network associated to a Z-system may seem to be an unnecessary con-
struct, but it greatly illuminates the features of the coordinates we have defined.
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To see this, define the following (n + 1) X (n + 1) matrix-valued functions:
1 0 6" o
|l -1 6" o _
Ty (L) = o 0 I ol L > 0;
0 0 6" -1
L 6, 6, © 6
6 C S 6; 0
w(C)=|6" s —c 6 o |,
@T 92 02 I 02
6 o o 6} -1
where I is a (k — 1) x (k — 1) identity matrix,
for Ce(-1,1),S=vV/1-0%2<k<n-1,;
I 6 6
T.(Z2)=|6" ¢ -S|, zZ=C+iSes
6" 5 C

Note that each of the mappings T}, takes values in G}, and is injective for all
1 <k <n,and T;' = Ty whenever 1 < k < n. The mapping T,,: S* — G, is a
group homomorphism.

Now suppose R € D¢ is given. To each site r € vert S(I') we assign the pose
E.(R) at that site. Thus the vertices of the site graph become labelled with poses.
Now for every edge e = {r,r'} of the site graph, or for every pair e = (r,7’) of
the pair groupoid, there is a unique matrix A.(R) € G, such that E.(R)A.(R) =
E..(R). Because of the special structure of the poses this matrix always turns out
to be one of the above three types.

Theorem. Suppose I' is a Z-system and R € Dg(T'). Suppose r,r' are sites of T.

(1) [fT‘ = (io,il,ig, - .,Z'nfl) and T" = (il,io,iz, ... ,infl), and if@ = {io,il},
then E..(R) = E.(R)Ti(L.(R)).
(2) If for 2 < k < n —1 we have that r' is obtained from r by interchanging

the k — 1st and kth elements, and e = si(r) = si(r'), then E.(R) =
E,(R)T(Ce(R)).
(3) [fT' = (io, . ,infz,infl) and r’' = (io, . ,infz,l’n) and e* = [io, “eey Z'nfz,

in_1,in] € 7, then E.(R) = E,(R)T\(Ze+(R)).

Proof. (1) We begin by considering an edge such as e = {r = (i, 41,92, -, in-1),
" = (i1,%0,02,-..,in—1)}, where r,r’ € vert S(I'). Define s = {ig, %1}, which de-
termines an edge in the tree (I'°,I'!, o) between the O-simplices {io} and {i;}. If
E.(R) = (eg,e1,-..,€e,), then
E,-(R)Tl (LS(R)) = (eo + LS(R)el, —e1,e2,...,€e,_1, —en).

Our definitions immediate imply that this is the pose E,/(R).

(2) Now suppose e = {r = (ig,...,in—1),7 = (Jo,---,Jn-1)} € edge S(T") where
for some 2 < k <n — 1 we have

(G0y---yik—2) = (Jos---»Jk—2),
(ik-i—la .. '7i’n—1) = (jk+17 s 7jn—1)7 and
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Hy
(H27N7H1)
(N>H1>H2‘),»..
(H17N7H2)QP & P:,/’ (N7H27H1)
s o - T
H, : N
(HlaNa H3) I : (,: (N’ H3aH1)
(N, Hy, H3)
(H?nHa Hl)
Hj

FIGURE 4. The site network for ammonia, superimposed on
the molecular graph for the molecule. The Z-system has
N - {N, Hl,HQ,Hg}, Fl = {{N, H]_},{N, Hz},{N, H3}}, F2 =
{{Hl, N, HQ}, {Hl, N, Hg}}, and Fi’ = {[N, Hl, HQ, Hg]} Sites
are indicated by dark circles, and labeled with the corresponding
ordered triples of atom names. Edges in the site graph are indi-
cated by solid and dashed lines. Elements of the pair groupoid are
indicated by dotted curving arrows.

(ik—1, %) = (Jis Jr—1)-
sk(r) = {io,-.., ik} is equal to si(r') = {jo,..-,Jk}, and corresponds to an edge
s in the tree (I'*~1,T'* o) with vertices v; = s_1(r) and vo = sp_1(r') in T*71,
Let u = v1 Nvy = s _o(r) = sp_o(r') € T*2. Let E.(R) = (eg,ey,...,e,) and
E,. (R) = (ep,€},...,e,). Then for C'= Cs(R) note that

E.(R)T(C) = (eo,---,er 2, 1C +erS,ex 1S —erC,epy1,..., €4 1,—€p).

Since (i, .. -,%k—2) = (jo,---,Jk—2) it is clear that e[, = eq,...,€}_, = €x_2. We
claim that e},_; = e;_1C +e;S. To see this, note that 1 —1II,, = (lfek_lefil)(lf
IT,). Therefore e is the unit vector in the direction of (1 — I, )(R;, — R;,) =
(1 —ex_ref ;)(1 —I,)(Ri, — Ryy). Since jr_1 = iy it follows that e} _, is the
unit vector in the direction of (1 — II,)(R;, — R;,), and thus that ey is the unit
vector in the direction of (1 —ex_jef )e)_,. Thus there is a positive constant «
such that exa =€), | —eg_1(ex_1-€,_,). But ex_1-€;, ; = Cs(R) = C. Thus
€,_; = e,_1C +ega. Since ej,_, is a unit vector and {ej_1,ex} is an orthonormal
set we have that C?2 + a? = 1. Since o > 0 we have « = v/1 — 02 = S. Thus
e,_, = e,_1C+eiS, as claimed. In the same vein we claim that ), = e;_15—e;C.
To see this, note that 1 —11,, = (1 —e}_, (e}, ;)T)(1—1L,). €}, is the unit vector in
the direction of (1 —1IL,,)(R;, — Rj,) = (1 — €} ,(e},_1)T)(1 —IL,)(R;, , — Ryy),
or of (1 —e},_,(e}_;)")er_1. Hence there is a positive constant 3 such that e}3 =
er_1—€ (e, ;-ex—1) = ex_1—e),_,Cs(R). Using our known expression for e,
we can easily derive the claim from this. Since (igy1,..-in-1) = (Jrt1s--+,In-1)
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and s;(r) = s;(r') for j = k,...,n — 2, we see that €}, = exy1,...,€, | =€, 1.
. . . . c S
Finally, e/, is either e,, or —e,,, and it must be the latter since det ( > =—1.

S -C
Thus we have shown that E,.(R)T;(C) = E,(R).

(3) Now consider a pair (r,7') € G(T') of the form r = (ig,...,in—2,in—1), 7’ =
(io, ey Z'nfg,in), where e* = [io, Ce ,Z'nfl,l.n] € ].-‘z}, v = {io, . ,in,Q,infl} €
=1 o = {ig,...,in 2,0n} €M™ L e=vUv €™ and s = vNov' € T2 Let
E.(R) = (eo,€1,---,€,) and E./(R) = (ej,€],...,e}). Clearly we have e = e
for K =0,1,...,n — 2. Then our definitions show that C.(R) = e,_1 - €],_; and
Sex(R) = e, - €],_;. Since €],_; is in the two-dimensional space perpendicular to
the span of {ey,...,e,_2}, and {e,_1, e, } is an orthonormal basis of this subspace,
then we have that e],_; = e,_1C(R) 4+ €,S.-(R). Also the vector —e,_1Se-(R) +
e,C.(R) is a unit vector perpendicular to the span of {e},...,e], 5, e, _;} and

det(e],....el,_o, €, _1,—€,_15.-(R) + e,C.(R))
=det(e,...,en—2,8,_1Ce(R) + €, 5+ (R), —€p—_1Sex (R) + €,Ce(R))

_ Ce(R) _Se* (R) _
= det(ey,...,e,)det <Se*(R) C.(R) )—1

Hence €], = —e,,_1S.<(R) + €,C.(R). We have shown that E,(R)T,(C.(R) +
iSe(R)) = Ev(R). O

Since the numbers L,C, and Z can be uniquely recovered from the matrices
Ti(L), T(C), and T,,(Z), and every element of T'¥, 1 < k < n, can be associated
with at least one pair of sites, this theorem gives an alternate way to define the
coordinate functions L.(R),Ce(R), and Z.«(R).

Thus given R € D¢ (') we can label each edge e € edge S(I') with an element
A.(R) € G, such that E, (R)Ac(R) = E,,(R) as follows. The edge e = {r,r'},
where ' is obtained from r by interchanging the first two entries, should be labelled
with A.(R) = T1(Ls(R)), where s = s1(r) = s1(r'). When »’ is obtained from r
by interchanging the k — 1st and the kth entries, where 2 < k < n — 1, then
we label the edge e = {r,7’} in the site graph with A.(R) = T%(Cs(R)), where
s = sk(r) = sg(r’). Since A.(R) = A.(R)™" this means it will also be true that
E, (R)Ae (R) = Er’(R)'

Part (3) of the above theorem also tells us how to label certain pairs (r,r’)
of the pair groupoid G(I') with an element a,,/(R) = Z.«(R) of the group S!,
so that E,.(R)T,(ar(R)) = E.(R). The pair (r,7') and the oriented n-simplex
e* € T must be related as specified in part (3) of the theorem. However, this
turns out to be exactly the information we need to uniquely extend this labelling
to a mapping a.(R): G(I') — S': (r,7') = a,. (R) such that E.(R)T,(a.(R)) =
E,/(R) holds for all (r,r") € G(T'), or equivalently, a,,,,(R) = ayyry(R)Cryry (R)
for all (ry,72), (r2,73) € G(I'). Mappings a.(R) with this property are said to be
Sl-valued cocycles, or groupoid homomorphisms.

To see how this extended labelling should be done we proceed as follows. We
should label all pairs (r,r) with the number 1, i.e. a,,.(R) = 1. Furthermore, if
(r,7") € G(T) is one of the special pairs related to an oriented n-simplex e* € I'}
as above, then we should define a,.(R) = a,, (R)"!. But these instructions might
not label all the pairs in G(T'), although they do suffice for the pair groupoid of
ammonia (see Figure 4). So suppose (r,r’) € G(T') is one of the pairs not yet
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labelled. Let r = (ig,...,%n-2,%), ' = (ig,...,in—2,4'); since r and r’ are sites
we have v = {ig,...,in 2,5} € T" 1 o = {ig,...,in 2,7’} € "1 and s =
{ioy---yin_2} € T™72. We are assuming that v Uv’ ¢ T and i # 4’, so that
s =vNv'. We need the following result when k = n.

Lemma. Suppose I is a Z-system, 1 < k < n, and v and v' are distinct vertices
in the tree (T*~1.T% o), where v Uv' ¢ T* and s = v N’ € TF2. Let (v =

Vs €1, U1y -+« s Um—1,Em, Um = V') be the unique path (m > 2) connecting them.
(The distinct vertices v; € T*~1 and the distinct edges e; € T are such that e; is
incident on vj_q and v;.) Thenv; 1 Nv; =s forall j=1,...,m.

Proof. If k = 1 then I'"! = {0}, and so the assertion of the lemma is trivial. So
suppose k > 2. Consider the list (vg N v1,v1 N V2, ..., Vm—1 N Um,s) of simplices
in T*~2. Suppose by way of contradiction that this list contains a simplex other
than s. Define hy = min{1 < h < m | vp_1 Nvy # s}, and recursively hj, 1 =
min{h; < h < m | vp_1 Nwp # va,—1 Ny, } for all j > 1 for which the set over
which the minimum is taken is nonempty. Let h, be the last one defined; clearly
p < m. Define s; = Up;—1 N Vn;. Upy-1 18 incident on s (since either h; = 1 or
s =wvyNvy =+ = vy, _2MNup,_1) and on sy # s. Also vy, is incident on sp,
since {h, < h <m | vp_1 Ny # va,—1 Nwp, } = 0 can only happen if h, = m (in
which case s, = v, 1 NV, = V-1 NVp) or if h, < m and (taking h = m) s, =
Vh,—1 N Vh, = Um—1 N Vp. Also vy, = v is incident on s. Thus if p = 1 then vy,
would equal v, because both would be incident on s and sy, which contradicts the
fact that the vertices (vg, v1,. .., U, ) are distinct. Therefore p > 2. vy, 1 is incident
on s; and on sy. sy # s because otherwise vy, 1 = vy, 1 (both being incident on
s and s1), again contradicting distinctness. In general Up;—1 is incident on both

sj—1 and s; (# sj_1). s; # sj_o by distinctness of the vertices (vo,v1,...,Vm).
Furthermore s; for j > 3 cannot cannot equal any of s;_3,s;_4,...,5 because
otherwise there would be a cycle in the tree (I*~2,T*~1 ¢). In particular sp #
s. Hence (s,vhl_l,sl,vhrl,...,vhp_l,sp,vm,s) constitutes a cycle in the tree
(k=2 1*k=1 o). This contradiction shows that the list (vo Ny, v1 Nv2,.. ., Vpm_1 N
Um, §) cannot contain a simplex other than s, which finishes the proof. O

Each vertex v; in the list vg,v1,...,v,, determines a site 7; = (ig, ..., in—2,%(j))
where {i(j)} = v; \ s. Furthermore, for each j = 1,...,m, the label a,, ,,,(R) has
been previously assigned, since e; = v;_1 Uv; = {ig,...,in_2,i(j — 1),i(j)} € I

Therefore we define

ar 1 (R) = argry (R)aryry (R) - .- Op, o, (R)-

This is a complete and unique way to define the labels so that the result is a
groupoid homomorphism.

Thus a labelled Z-system induces a labelling of the edges of the site graph and
of the pairs of the pair groupoid with appropriate elements of G,. This pattern of
labelling is consistent with a labelling of the sites with poses arising from a choice of
R € D¢. But if R is replaced by (b, A) - R, the poses which are assigned to the sites
change accordingly but the elements of G, assigned to the edges of the site network
are unchanged, since G, acts on poses on the left whereas G, acts on poses on the
right. The labelled site network is a natural—albeit elaborate—structure which has
other properties which we will not discuss here. It provides a convenient formalism
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for the detailed mathematical study of molecular conformations. It is compactly
coded by and most easily manipulated in terms of its underlying Z-system.

If a distinguished site 7 is chosen for a Z-system T' it will be called a root of T,
because sj(r) is thought of as a choice of root vertex for the tree (T*, T**1 o) for
al k=0,...,n—1.

Definition. Suppose I' = (I'},...,I'?) is a Z-system and r is a root for I'. Then
define the mapping n: Do — P X Dp by the rule:

R (E.(R),(Le(R) | e €TY),(Ce(R) | e € TF, 2 <k <n—1),(Ze(R) | e* €TT)).
We will call this the polyspherical coordinate mapping associated to (I, r).

7 is clearly a smooth mapping. In fact it is algebraic. Now suppose (b, A) € G,
and (E,v) € P x Dp. Define (b, A)(E,v) = ((b, A)E,~). With this convention
in place we claim that the mapping 7 satisfies n((b, A) - R) = (b, A)n(R) for all
R € Do. We will refer to this property of n by saying 7 is left G,-equivariant. This
property reduces to the already established fact that each of the mappings L., Ce,
and Z.« are invariant with respect to the action of G,.

It is not yet clear why we use the term “polyspherical coordinates” to describe
this mapping. This will become clear in the next section where we learn how to
invert the mapping 7.

4. THE MAIN THEOREMS

A comparison of the dimensions of Do and P x Dp suggests that the mapping
7 defined in the previous section might be invertible. D¢ is a dense open subset of
(R*)V and so has dimension nN. P is diffeomorphic to R* x SO(n), and so has
dimension n + n(n —1)/2 = n(n+ 1)/2. (SO(n) has the same dimension as its Lie
algebra, namely the set of all n x n real antisymmetric matrices.) Since [I°] = N
and (T T! o) is a tree we have that |[T''| = N — 1. Similarly [T*| = N — k, for
k=1,...,n. Thus Dp has dimension > ;_,(N —k) = nN —n(n+1)/2. Therefore
P x Dp also has dimension nN, as claimed.

Main Theorem. Suppose N > n > 2, I = (I'},...,I?) is an n-dimensional Z-
system on the set N', r = (ig,...,in_1) 18 a root for T, and n: Dc — P x Dp is
the polyspherical coordinate mapping defined in the previous section. Then n is a
diffeomorphism. Furthermore n induces a diffeomorphism 7: G,\Dc — Dp, which
is independent of the root r.

Proof. We will proceed by constructing the inverse (: P x Dp — D¢ to 7 via
induction on N. We start with the case N = n. So let (E,v) € P x Dp be given,
where E = (eg,e1,...,e,) € P and
y=((Le|e€l?),(C.lecT*2<k<n-1))€Dp.

When N = n we have I'™ = (), so we have not included any coordinates of type Z,-
in the definition of v. Let r = (ig,%1,...,%,_1) be the root site. Define R;, = ey,
and R;; = R, + e1Ly;,,,}- Because v € Dp we have Ly, ;3 > 0, and hence
the 1 simplex {R;,, R;, } is geometrically independent. Now suppose R;; has been
defined for all 0 < j < k — 1, where 2 < k < n — 1. Assume that the k — 1 simplex
{Ri,...,Ri,_,} is geometrically independent. s} = si(r) = {io,i1,...,ix} € I'*
is incident on two k — 1 simplices in T*~1, one of which is s_, = sx_1(r) =
{i0,..-,3k—1} and the other we will denote by s,lc_l; the intersection of these two
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being denoted by s , € I'* 2. Define ji_1 by the relation s ;|\ s% , = {jr_1}.
Notice that s ; \ sp o = {ix}.

1 1 1 1 1 1
Sp 42 Sp_q & Sp_g & ... & 53 4 s] &S
0 0 0 0 0

Sh_1 & Sp_e & Si_s & ... & s] & s

If the smallest simplex in this array is a 0-simplex then we stop, otherwise we

continue as follows: s; ; is incident on s? , and one other k — 2 simplex, call it

s,lc_2 € T*=2, The intersection of s%_Q and s,lc_2 is a k — 3 simplex called 52_3 €
I'*=3. Define jj,_» such that s_,\ s%_, = {jx_2}. Notice that s}_,\ s%_5 = {ir}.
When this process stops we will have that s) and s} = {i;} are O-simplices. Let
59 = {jo}. Then s9 = {jo,...,jn} and s, = {jo,---,jn_1,ik}, for h = 0,..., k.
Thus {jo,...,jk—1} = s>, = {io,...,ik—1}, and hence R;,,...,R;, , are already
defined. Thus the following are sites of our Z-system:

TL = (j07 s 7jk—27jk—17ik7ik+17 . '7in—1)
The1 = (J0s o3 Jh=2 Ty Jh—1> Tkt 1y -+ - > In—1)

72 = (J0s 1, ks J25 - ooy kel Tkt 1y -+ s n—1)

= (joaikajla' .. ajk*laikJrla .. '72'71*1)

70 = (k> J0, J1s - - s Jh—1) Ukt 1y - - In—1)

Each one is obtained from its predecessor by a single interchange of adjacent entries.
! ! /
Define E,, = (ep,€},...,€,_1,€k,...,€,_1,tey), where

(1 - Hsh—l(Tk))(th - Rjo)
(1 =T, (k) (Ry, — Ry ||

and where the sign is chosen to assure that this is indeed a pose. Note that

I . ro_
eO_R]m €p =

h=1,...,k—1,

span {e},...,e,_,} =span {R;, —R;,,...,Rj, , —Rj,}
— Span {Rzl — Rim “eey Rik_1 — Rio}
= span {e1,...,ex_1},
and hence ey, ..., e, are perpendicular to this span. Consider the product
E,, = ET‘kA"'k"'k—l s AT‘zﬁAﬁToa
where A,,,, = T1i(La) and A,,,, , = Th(Ca), h = 2,...,k. This should be a

1

h
pose whose origin is located at R;,, the quantity we are trying to define. Thus
R;, = E,,(1,0,...,0)T or

1

0
Ry, = EwTi(Cot)Teo1(Cp ) - To(Coy)Ti(Lyr)

1
k
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1
CalLg
Oy Sy Lisy
ro /

= (e07 e17 e 7ek717 ekv .- 7en717 ien) CS,{:SSi71 b SS%LS%
Sskssk L SS%LS%

0

0

In the above, we are using the notation S = /1 — C2. Because v € Dp
it follows that the component of e is nonzero, which implies that the simplex
{Riy,---,R;, } is geometrically independent. Clearly R;, does not depend on the
vectors €x41,...,€e, at all. This formula also explains why we describe our coor-
dinates as polyspherical coordinates, for this is exactly how R;, is located relative
to the pose E,,. Thus by induction all n points (R;,,...,R;,_,) have now been
defined and the resulting n — 1 simplex is geometrically independent. This list of
n points defines the value of the mapping ¢ on the argument (E,~). Clearly ¢ is a
smooth function. We have defined ( by inverting the formulae for 5 at every point,
so no ¢ and ¢ on are identity mappings.

Now suppose for N > n + 1 that a smooth inverse ( exists for the polyspherical
coordinate mapping 7 for all n-dimensional Z-systems on any set of IV — 1 elements.
Suppose N' = {1,...,N} and I' = (T'},...,T%) is an n-dimensional Z-system on
N, with its coordinate domain D¢ = D¢(I'), parameter domain Dp = Dp(T'), root
site r = (ig,...,in—1), and smooth left G,-equivariant polyspherical coordinate
mapping 7: Dg — P x Dp. The tree (™1, I, 7) has leaves, which are vertices
with degree one (having only one edge incident on them). Since N > n+ 1 we
have [["7!| = N — (n — 1) > 2. Thus, since every tree with at least two vertices
has at least two leaves, we can choose a leaf vertex s} _; € I'"~! which is not the
root vertex s,_1(r) = {ig,...,in—1} € [ L. Let sl € I'™ denote the single edge
incident on this leaf, and let s_; € ™! denote the other vertex on which this
edge is incident. Define s , = s%  Nsl ; € I"~2. Note that s} ; is an edge
in the tree (I™~2,I™~1, o) incident on the vertex s®_,; hence there is exactly one
other vertex sl _, € I'""2 on which it is also incident. If the smallest of these
simplices is a 0 simplex then we stop the process, but otherwise we continue the
process by defining s , =352 ,Nsl , € ™2 and noting that s’ _, is an edge in
the tree (I™=3,T"~2, o) incident on the vertex s¥_,, and therefore also on exactly
on other vertex s, _, € 3. Continuing this process until the smallest simplices
are 0 simplices we obtain the following scheme:

1

sk sl e sk, 0 sl o st o s
) 1 ) ) 1
0 e 8, e S e — sy 8

Suppose si_; is a leaf vertex in the tree (I*~1,T* ) for some 2 < k < n .
We claim that s} , is a leaf vertex in the tree (I'* "2, I'*~1 7). Suppose by way of
contradiction that 5,16_2 is a vertex of degree at least two in the tree (I'* =2, T*~1 &),
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i.e. there is an edge s € I'*~1 which is incident on s} , and is distinct from s} ;.
Suppose s = s) ;. Then s) , = s) ,Ns, | =sNsp | = s o, which is a
contradiction. So s # sg_l. If sU s,1€_1 € T* then s,1€_1 would have two distinct
edges incident on it, namely 5,1c and s U Si,l, contradicting the assumption that
sk_, is a leaf. Therefore s Usi_, ¢ T*. Consider the unique path in the tree
(P*~1T* &) connecting s to s} ;. This path must have length at least two, and
must contain the edge s;. By the second lemma from section 3 the intersection of
the pair of vertices for each edge of this path must be the same element of T'*~2.
This element can be computed as the intersection of the two vertices of the edge
st, namely s) ; Nsp | = s ,. But this would require that s , C s, i.e. sis
incident on s? ,, which is impossible, since s would coincide with s}, _,, both being
incident on s9 , and s} ,. This contradiction shows that s; ., has degree one as a
vertex in (I'*=2, T*~1 o), as claimed.

Thus each of s ;,...,sl,s} are leaf vertices in their respective trees. Define
[V =17\ {sjl} for all j =0,1,...,n. In each case we have deleted a leaf vertex and
the single edge which was incident on it, so (f‘j’l, fj, o)isatreeforallj=1,...,n.

If v1,vo € T971 satisfy vy Uvy € TY then vy Nvy € T9~2. Since vy # s;_l and
vy #£ s}_l and s}_l is the only simplex in IV~! which is incident on s}_Q, we have
that vy N vy # 331-72 and hence vy Nvy € I¥=2. Thus [ = (f‘l,...,ff) is an n-
dimensional Z-system on the set N = N\ sp. If s C sp—1(r) then one, say §,_2, of
the two n—2 simplices in I'~2 on which Sn—1(r) is incident must satisfy 5(1) C Sp_o.
Continuing this sort of argument, we show that s} C 3§, C --- C &, 2 C 8, _1(7).
Since the only 1 simplex in I'! incident on s} is s1 we must have 3; = s}. Since the

only 2 simplex in I'? incident on s! is si we must have §; = si. Continuing this

argument we find that s, _1(r) = s_;. This contradicts our original choice of the

leaf sL_; # s, 1(r). Therefore s} ¢ s,_1(r). Thus for all 0 < j < n — 1 we have
sj(r) # sjl-, since s} C 5} but s} ¢ s;(r). Therefore r is a root for the Z-system T
Define D (T') = {R: N'— R" | for all s € "1 the simplex R, is geometrically
independent}. The restriction mapping maps (R™)N — (R? )/\7 R~ R. If
R € D¢ then clearly its restriction R is in Do. Define Dp(L) = (0,00)" x
[ 2;21(71, 1T | x (81T, Clearly the restriction mapping v — ¥ maps Dp onto
Dp(T). If 7: De(T) — P x Dp(T) is the polyspherical coordinate mapping for the

rooted Z-system (I',r) then we claim the following diagram commutes:
Dc L) P x Dp
restrictionl lrestriction

De(l) —1— P x Dp(T)

This is because the only simplices which contain s} = {i} as a subset are the ones
which are excluded from I'V. Hence the labels of all the simplices in [V can be
computed without knowing R;, and these computations are performed in exactly
the same manner, whether by n or by 7. By the induction hypothesis there is a
smooth inverse (: P x Dp(I') = D(I) to the mapping 7.

Let (E,~) € P x Dp be given, where

y=(LeleeT),(Ccleel",2<k<n—1),(Z~|e" €I?)) € Dp.
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We wish to define {(E,v) € D¢ such that the mapping ¢ is a smooth inverse to
the polyspherical coordinate mapping 7. Define the site r,, = (jo, j1,..-,Jjn—1) such
that {jo,...,jk} = s € [* forall k =0,1,...,n — 1. 7, is a site of the Z-system
I[.IfR= f(E,’y), then the pose E, (R) = (&,84,...,8,) is well-defined, and a
smooth function of (E,~). To define R = ((E,~) we augment R by defining R;.
Note that s; = {jo,...,jk—_1,i} for all k = 0,1,...,n. Thus we have the sequence
of sites:

T'n = (j07j17j27j3a B 7jn727jn71)

Thn—1= (j07j17j27j37 .. 7jn727i)

ro = (j07j17 ivj?v ce 7jn737jn72)
™ = (jOa i7j17j27 s ajn—37jn—2)

To = (i’j07j17j25 s 7jn—3ajn—2)

Define E”'O = Ern(R)Arn"'n—l "'AT‘2T1AT1T‘07 where Aﬁro = TI(LS%)a ATk""k—l =
Tk(Csi)v k=2,...,n—1,and A, ., , = T,((Z(s1)-)*), where

a= 1 if [j07"'7jn727jn*177:] = (S’fl’L)*7
-1 if [jOa s 7jn—27iajn—1] = (3717,)*-

Since R; = E,,(1,0,...,0)” we have

1
CouL.
2 1
CaSaLa
R; = (&p,&1,...,€,) .
Ci1Sqa  ...Sa1La
n n—1 2 1
aS(SL)*SSLl ...SS;LS%

This is clearly a well-defined smooth function of (E,v). We need to check that
R . is geometrically independent. Certainly Rso_2 is geometrically independent,

since s0_, € T2 and R € D¢. The parts of the above expression for R; which
depend on €y, ..., €, o describe a point on the codimension two hyperplane in R"
containing Roo . Thus R is geometrically independent if and only if the sum
of the squares of the last two components of the above column vector is positive,
ie. S2 ...SE;LLE% > 0. This follows from the fact that v € Dp. Thus, finally,

the smgol‘ch map ( is defined on all P X Dp and takes values in De. Furthermore
it is immediate that ¢ is the inverse of n: certainly this is true for 5 and 77, but also
the above expressions for the Cartesian coordinates of R; in terms of polyspherical
coordinate exactly invert our definitions of those polyspherical coordinates in terms
of Cartesian coordinates. This finishes the proof that 7 is a diffeomorphism.

The map 7 certainly induces a bijection 7: G,\Dc — Dp, which is independent
of the choice of the root site r. Since the left action of G, on D¢ is fixed point free
and proper, G,\D¢ is a smooth manifold, and the projection mapping p: Dg —
Go\Dc as well as the mapping 77: G,\Dc — Dp are smooth (see Proposition 4.1.23
on page 266 of [2]). A smooth inverse to # can be found by composing ¢ and the
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projection map, and then factoring this through the projection P x Dp — Dp.
Thus 7 is a diffeomorphism. O

Thus the orbit space G,\D¢ acquires the structure of a principal fibre bun-
dle with abelian structure group (S')'~, a fact which is not so obvious from the
definition of D¢.

The mapping 7 of the previous theorem is the composition of the two upper
mappings from the following commutative diagram.

Do) - P [G\De ()] —22s P x Dp(T)

Pl lﬂ'z lﬂ?
G \Dc(T) —— G, \Dc(I) —1— Dp(I)
The left rectangle shows that choice of a root site r determines a local trivialization
in the principal bundle p: Da(T') = G,\D¢(T'). (Here we identify G, and P in the
obvious way.)

Let B C (R” )N consist of those R whose isotropy subgroup is trivial, or equiv-
alently, the mapping G, — (R®)V: g — g - R is one-to-one (necessarily surjective)
onto the orbit G, - R. Let p: B — G,\B: R — G, - R be the projection mapping.
p will define a principal bundle with structure group G, provided the base space
G, \B is a manifold and we can cover B with smooth G,-equivariant local trivial-
izations. To begin, we assert that Do (I') C B for every Z-system I'. To see this,
suppose R € D¢ (T'). Since N > n > 2 there is at least one s € I, Also R, is
geometrically independent. Let g = (b, A) be in the isotropy subgroup of R. Then
b+ AR; = R, foralli € s. Thus for4,j € s, i # j, we have A(R; —R;) = R; —R;.
Thus the eigenspace of A for the eigenvalue 1 is at least n — 1 dimensional. If
(e1,...,ep) is a positively oriented orthonormal basis of R” such that Ae; = e; for
1=1,...,n—1 then we must have Ae,, = e,,. Thus A = I and consequently b = 6.
Since the isotropy subgroup of R is trivial, we have that R € B.

If we define B, = {R € (R")N | R,, ,(») is geometrically independent}, where
r € N is nonredundant (i.e s,—1(r) € (/7\{)), then by a similar argument as given
above B, C B, and the mapping (E,, p): B, = P X [G,\B:]: R — (E.(R),G, - R)
defines a smooth G,-equivariant local trivialization of the principal bundle p: B —
Go\B. When (T',r) is a rooted Z-system, we certainly have D¢(T") C B,.

Thus our results so far provide us with a family, indexed by T', of smooth co-
ordinate charts 7 on G,\B, and a family indexed by nonredundant n-tuples r of
G.-equivariant local trivializations. It remains to see if the domains of these charts
and trivializations cover all of B.

Theorem. Suppose N > n > 2 and R € B. Then there exists an n dimensional
Z-system T' on the set N such that R € D¢ (T).

Proof. Without loss of generality let N' = {1,2,...,N}. Let V = span{Rg —
Ri,...,Ry — Ry}. If the dimension of V is less than or equal to n — 2 then

let (e1,...,e,) be a positively oriented orthonormal basis of R™ such that V C
span{ei,...,e, 2}. By defining a nontrivial rotation in the plane span{e,_1,e,},
and extending it to be the identity on span{ej,...,e, 2}, we obtain a nontrivial

A € SO(n) which is the identity on V. Then (R; — ARy, A) is a nonidentity element
of the isotropy subgroup of R. Thus when R € B we have that the dimension of

V is greater than or equal to n — 1. Hence there is a n — 1 simplex s, € (/:L/)
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such that R is geometrically independent. Without loss of generality assume
that s, = {1,...,n} and {Ry,...,R,} is geometrically independent. We intend
to define T"~! = {s,,,5,11,---,5n}, and then extend it to an entire Z-system; if
N = n then I'"! is now defined; otherwise we have only defined the first element
of "1,

If s is any n — 1 simplex such that R, is geometrically independent, and if for
any k simplex ¢t C s we denote by span (R;) the k dimensional affine subspace of
R"™ containing R; (and span (f) = (), then we claim that span (R;,) N span (R:,) =
span (R, nt, ). Clearly we have span (Ry,n¢,) C span (R, ) N span (Ry,). Now sup-

- . 1 1 1
pose R € span (Ry,) N span (Ry,), i.e. <R> =D ict, Qi (Ri> = D ict, Bi <R1>

1 1 1 0 .
Then ;e \s, @i (Rz) +2ietyne, (@i =5i) <R1> —icts\t, i <Rz> - <9> Since

1 . .. .
t1 Uts C s, the set {<R> | i € t1 Uta} is linearly independent, and hence we have
(3

that «; = 0 for 7 € t; \tg, ﬂz =0 for € ty \tl, and o; = 61 for ¢ € t1 Nty. This
implies that R € span (Rt,nt,), and hence the claim is established. An immediate
consequence of the claim is that N;c, span (Ry ;1) = 0.

Suppose N > n+1 and n—1 simplices S, Sp+1, - - -, SN—1 have been defined such
that R, Rs,.,,..., Rsy_, are all geometrically independent, and {j} = s; \ s;_1
for all j = n+1,...,N — 1. Since Njcsy_, span (Ryy ,\(i3) = 0 there is an i €
sy-1 such that Ry ¢ span(R,,_,\(i3)- Thus define sy = (sy-1\ {i}) U {N}.
Clearly R;, is geometrically independent, and {N} = sy \ sy_1. Furthermore
$iN(sip1\s1) =0 foralln < j <1 < N — 1. Define n simplices Tp41,...,7n
by the rule: 7; = s;_1Usj, j = n+1,...,N. Define "' = {s,,...,sn} and
I' = {7yt1,...,7n}. (I"71,I", o) clearly defines a linear tree.

We need to show that these can be extended to a Z-system I'. For this we will
use the following construction. Let 7y,..., 7, be k simplices and sg, s1,...,5n be
distinct k£—1 simplices, where 7; = s;_1Usj for j = 1,...,m, and s;N(s;41\s1) =0
forall 0 < j <1 < m— 1. We call this family (sg, 71, 51,---,Tm,Sm) a fence of
order k and of length m (see Figure 5). A fence of order k and of any length
will be called a k-fence. If this k-fence of length m > 1 consists of simplices
from a Z-system and if £ > 2 then the Z-system would also contain the k& — 2-
simplices s;_1 N's; for all 5 = 1,...,m, but these need not all be distinct. So
define kg = 1 and kj; = min{k; <1 <m|sp, 1 Nsg; #s-1Ns), forallj >0
for which the minimum is over a nonempty set. Let k; be the last one defined

in this manner. Define ¢; = sg, 1 N sy, for j = 0,1,...,J. Then we claim that
(to, Sky—1>%t1,---sSk,—1,t7) is a k — 1-fence of length J, where 0 < J < m — 1. First
we need to check that tg,t1,...,t s are distinct k — 2-simplices. Since s;_; and s

are distinct & — 1-simplices contained in the k simplex 7;, we see that s; 1 N s; is
a k — 2 simplex. Suppose 1 < j < I < m are such that s;_; Ns; = 5,1 N s;.
Then we claim that s;_1Ns; =s;Nsj41 =+ =8-2MN8_1 = 5-1MNs. To see
this, suppose i € sj_1 N's; = s;_1 N s;. Since s;—1 N (s;-1 \ $i—2) = 0 and both
i € sj_1 and i € s;_; it follows that i € s;_». In a similar way ¢ is a member of
all the intervening sp,. Thus s;_1 Ns; C spr—1 N s for all j < k' < 1. Since both
sets have k — 1 elements, they must be equal as sets. Thus tg,t1,...,ts are distinct
k —2-simplices. Next we show that t;Ut;,1 = sg,;,, 1 for j =0,1,...,J—1. To see
this note that by definition ;41 = sk, , 1 N sg;,, so clearly t; 11 C sg,,, 1. Also
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/\/\/\/\/\/\

FIGURE 5. A k-fence of length m = 6 with its k — 1-fence. In this
example we have kg = 1,k =2,ks =4,k3 =5,J = 3.

from the definition of k;,; we have t; = sy, 1M sk; = Sk;,, 2N Sk, ,, 1, and hence
tj C sk —1- Thus t; Ut 1 Cosgj,y -1 Since both ¢; and ¢;;1 have k — 1 elements
and are distinct, the union must have at least k elements. Thus ¢; Utj11 = sg;,, -1
as claimed. Finally we check that ¢; N (41 \ &) =0 forall 0 < j <1 < J — 1L
Suppose by way of contradiction that ¢ € ¢; N (¢;41 \ ;). Since kjy1 > ki+1 > k;j+1
we have ¢ € sg; 1 and 7 € sg,,, 1 but ¢ & Sp—1 N sk, = Skyy1—2 M Sk, —1. Thus
i & Sk, 2, and hence i € s, 1M (Sg,,, 1\ Sk, 2), contradicting the assumption
that (8o, 71,81, Tm,Sm) is a k fence. Thus if a Z-system contains a k-fence of
length m then it also contains a k — 1-fence of length 0 < J < m — 1 by the above
construction.

If s, 81,. .., Sm are the k-simplices of a k+ 1-fence then we know that s; N (s;41\
s;))=0forall 0 <j <l<m-—1. However a reflected disjointness condition also
holds: (s;j—1\s;j)Ns; =0 forall 1 < j <1 <m. The statement is trivial when [ = j,
and when | = j+1 we have (sj_1 \ sj) Nsj41 C sj—1 N (sj4+1\8;) = 0. The general
case is proved by induction on [, for if (s;_1 \ s;) Ns; =0 and a € (sj_1\ ;) Nsi41
then a € s;_1 N (s141 \ 1) = 0, a contradiction.

We have already seen that (s, Tn+1,8n+1,---,7N,SN) is an n-fence of length
N —n. Using the above construction we can inductively define a sequence of fences
of decreasing orders and lengths. Each of the k-simplices in these fences will be
members of T'* for k = 1,...,n. The last fence in this sequence is either of order 1
or of length 0 (or possibly both). For example when N = n we have a single n-fence
(sn) with length 0. Let (DY~ T¥) denote the fence of order k, where T} is the
set of k — 1-simplices and I'f is the set of k-simplices. If the last fence (Fz_l,Fﬁ)
is of order k£ and of length 0, then 1"271 has a single element N} and Fﬁ = 0.
It is always possible to choose sets '), 'L, .. .,I“z—Q such that (T'},.. .,I‘ﬁ_l,f‘z)
is a k dimensional Z-system on a set Nj of k elements, where I') = (A{’“) and
Fﬁﬂ = {Nj}. (This can be done by choosing spanning trees in line graphs as in
section 2.) Of course if k = 1 there is nothing to do. If £ = 2 then N}, = {a,b} is a
1 simplex, and T') = {{a},{b}}. If £ > 3 then there are some choices to make.

Our strategy beyond this point is to extend the sets Fg,F}C, .. .,Fﬁ by adding
leaves to each of the trees involved to obtain the sets T}, 1, T% 4, .., F’,j_H. Then

we adjoin the set in} to this list, so that the top level tree is a linear chain. We

assume that NV}, = Useros C {1,...,N} and I‘i C (jﬁfrkl), j=0,1,...,k. We also

assume that (1"{;1, Fi, o) is a tree for j = 1,...,k and whenever s,s’ € Fi are such
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that s Us' € Fiﬂ then sN s’ € Fiil. This situation arises when the last fence has
order k and length 0 as in the previous paragraph. It also makes sense when the last
fence has order k = 1. But it also represents any of the intermediate stages of our
construction of the Z-system I'. This extension involves using information from the
k+1-fence (F’,j_H, F’,zﬂ) There is a mapping g: F’,g+1\F’,§ — F£71 defined as follows.
Let F’,zﬂ = {50,51,-.-,8m}; we use the notation introduced above to define the
fence of one lower order. sg € F’,§+1 \T¥ and it gets mapped to g(so) = to = s0M 5.
Also s, € F’,jﬂ \ I'¥, and it gets mapped to g(s,,) = t; = Sm—1 M Sp. Also if
0<j<J-1lissuchthat kj;1 —2>k;and k; <! <kjy; —2thens € F’,§+1\F£,
and it gets mapped to g(s;) = t;. If s € I’} | \I'}, then we always have t = g(s) C s.
Let s\ g(s) = {i(s)}. We will be able to insure that we are always adding leaves
provided we can show that i(s) is not a member of N, and furthermore the elements
i(s), s € Tf, \ T, are all distinct from one another.

This is a consequence of the disjointness of our fences. To see this suppose

s0\g(so) = {¢}. Then 7 is not a member of g(sg) = soNs1 or of s; for j =1,...,m.
Thus certainly it is not a member of Ny. A similar argument works for s,,. If
Sm \g(sm) = {i} then ¢ is not a member of s, _1Nsp, norof s; for j =0,1,...,m—1.

Thus again ¢ ¢ N}. Finally suppose 0 < j < J — 1 is such that kjt1—2 2> k; and
kj <1< kjy1—2, and s;\ g(s;) = {¢}. Since g(s1) =t; = si-1 Ns; = 51N sp41
we have that ¢ ¢ ¢;, and ¢ ¢ s; for all j # I. Thus ¢ ¢ Nj. The above disjointness
arguments are also strong enough to show that the elements i(s), s € F’;_H \ 1'",;,
are all distinct from one another.

So for any s € I}, \ '} and t*71 = g(s) € ¥~ we can choose (in an arbitrary

manner) a sequence t° C t! C ... C t*7! such that ¢/ € F{: forj=0,1,...,k— 1.
(Let us agree that t =1 = ).) If s\t*~! = {4} then {i} C t°U{i} C --- C tF72U{i} C s
is a sequence of simplices which are distinct from any in Fi, j=0,1,..., k. Thus
we define

Id,, =T U{t/ P U{i(s)} | s € Dhyy \ L),
Nier1 = Nie U{i(s) | s € T, \ TE}.

When the new tree (Fijrll,l"iﬂ) is compared with the old tree (I,~',T%) we see
that new vertices /=2 U {i(s)} have been added, and new edges t/ ! U {i(s)} have
also been added connecting the new vertices to the old vertices t/~! (which depend
implicitly on arbitrary choices made for each s). Thus the addition of these new
simplices are in every case the addition of leaves, with the consequence that after
these additions we have trees at each level. Hence 1"2 FRTRO ,F’,:ﬂ is an extended
system of sets satisfying the same hypotheses that I'{,..., 1"’,2 satisfied.

Thus we ascend the hierarchy of fences, using each one as the basis of an extension
as we have described. When completed we have the sets % T'L ... T" which is
a Z-system (orient the n simplices in an arbitrary manner) on the set A,,. Since
1 =171 and I'" = I'", we must have A,, = {1,..., N}. Clearly then we have

defined a Z-system I' such that R € Do (T). O

Thus Z-systems index coordinate charts in the manifold G,\B, over which B
is a principal bundle with structure group G,. General arguments could have
been given to show that G,\B is a smooth manifold, so the main interest here
is the explication of the domain of applicability of the totality of Z-system style
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polyspherical coordinates. For other mathematical results on the principal bundle
p: B — G, \B see [25], [42].

5. Z-MATRICES

Z-systems are mathematical objects which contain the minimal amount of in-
formation to specify a polyspherical coordinate system on its coordinate domain
(provided we do not require an ordering of the coordinates). In order to store a
Z-system in a computer, additional information must be specified which is extra-
neous to defining the coordinate system and which if retained will lead to objects
with complicated rules of manipulation. Nevertheless, these objects can be easily
stored and displayed, and so are important.

Definition. An (unlabelled) n-dimensional Z-matriz on the set N is a mapping
a: {(4,j) €72 |0<j<n,j<i< N} =N,
where N = |[N| > n, with the following properties:
(1) N={a(i,0) |1 <i< N}

(2) For every 1 < k < n and for every k < ¢ < N there exists k¥ < ¢’ < i such
that {a(i,j) [1<j <k} ={a(@,j) [0<j<k-1}

An example of an unlabelled 3-dimensional Z-matrix on the set N' = {C, O, H;,
H,, Hs, H} is as follows.

j=0 j=1 j=2 j=3

1=1 C

1=2 0] C

1=3 H C 0]

1=4 Hj C (0] H,
t=5 Hj c 0 H,
1=6 H 0 C H,

This Z-system is for the molecule methanol, so refer to Figures 1 and 2. Z-matrices
were first used in the 3 dimensional case by the chemist J. Pople as a means of
entering a molecular geometry into quantum chemistry computer programs [36],
[56], [24], [14]. The precise mathematical definition of the n dimensional Z-matrix
(even the 3 dimensional case) is apparently new to this work.

The question naturally arises about the exact relation between Z-matrices and
Z-systems.

Theorem. Every Z-matriz o on N determines a Z-system ['(a) by the rule:

(o) = {{a(i,j) |0<j <k} |k+1<i< N}, 1<k<n,
I'?(a) = {[a(i,0),...,a(i,n)] | n+1< i< N}

a also determines a site ro, = (a(1,0),®(2,0),...,a(n,0)) in T, and a leaf-picking
order \, in the rooted tree (™ 1(a), (), C, sn—1(r(x))). Conversely, if (I'yr, \)
18 a triple where I is a Z-system, r is a site of I', and X is a leaf-picking order in the
rooted tree ([, T", C, s,,_1(7)), then a Z-matriz (T, r, \) is uniquely determined
such that TF = T*(a(T,r,\)) for all 1 < k < n, r = r(a(T,r,N)), and A\ =
Aa(T,r, ). Also a(T(a),r(a), \Ma)) = a for every Z-matriz o.



26 DANIEL B. DIX

Proof. Assume that « is a Z-matrix. To demonstrate that I'(«) is a Z-system we
first verify the following: for all 1 < j < n and for all j < ¢ < N there exists
1 < ¢ < i such that «a(¢,j) = a(i’,0). This result is a consequence of condition
(2) if j = 1, so suppose it is true for 1 < j < j' —1 < n — 1. Since by condition
(2) {a(i,1),...,a(i, )} = {a(¥,0),...,a(i',5/ — 1)} we can apply the induction
hypothesis to obtain 1 < " < ¢’ such that «(i,j') = a(i”,0). Thus the result is
true for j = j' as well.

Next we must show that {«(4,7) | 0 < j < k} is always an abstract k simplex, i.e.
it cannot have fewer than k + 1 elements. Let 2 < i < N be the first row in which
repetitions occur (assuming by way of contradiction that they occur somewhere).
Let j > 0 be as small as possible such that a(i,j) = «a(i, k) for some j < k < n.
If 5 = 0 then since £ > 1 we must have a(i, k) € {a(i’,0) | 0 < < i}, a contra-
diction with condition (1). If j > 1 then by condition (2) {a(i,1),...,a(i,k)} =
{a(?,0),...,a(i’,k — 1)} for some i’ < i, and a repetition must have occurred on
an earlier row, a contradiction of the choice of i.

Now suppose {a(i,j) | 0 < j < k} € ¥ is a k simplex. It is incident on two
kE — 1 simplices, namely {a(i,5) | 0 < j <k —1} and {a(i,j) | 1 < j < k}. We
need to show that it is incident on no other k — 1 simplex. Suppose s € I'* 1 is a
k — 1 simplex on which {a(i,7) | 0 < j < k} is incident. We have s = {a(i',5) | 0 <
j < k—1} for some k < ¢ < N. i > i is impossible since then a(i’,0) = a(i”,0)
for some " < i < i’ contradicting condition (1). If i’ = ¢ then s is one of the
two k — 1 simplices we already know about. So suppose ¢’ < i. s is obtained from
{a(i,j) | 0 < j < k} by omitting a single element, which must be «(i,0) since
otherwise a(i,0) € s and hence «(i,0) = (", 0) for some i” < ¢’ < 4, contradicting
condition (1). Thus s = {a(i,j) | 1 < j < k}, which is the other of the k — 1
simplices that we already knew about.

Since each k simplex is incident on exactly two k — 1 simplices, (I'*~! I'*, o) is
a graph. It is easy to see that this graph is connected, since every k — 1 simplex
(vertex) appears on a row of the Z-matrix defining a k simplex (edge) connecting it
to a k — 1 simplex (vertex) appearing on a previous row. This can only end if the
previous vertex is the first k—1 simplex specified, namely {«a(k—1,0),...,a(k—1,k—
2)}. A connected graph with one fewer edges than vertices must be a tree. Finally
it is clear that the intersection of the two k& — 1 simplices {«(4,7) |0 < j < k — 1}
and {a(i,5) | 1 < j < k} is the k — 2 simplex {a(i,7) | 1 < j <k —1} e ¥ 2 by
condition (2). Thus I = (T'},...,T?) is a Z-system.

We claim that » = («(1,0),a(2,0),...,a(n,0)) is a site for the Z-system T'.
Clearly {a(1,0),(2,0)} = {a(2,0),a(2,1)} € I''. Suppose {a(i,0) | 1 < i<k} =
{a(k,7) |0 <j <k —1} for some 2 < k <n. Then {a(k+1,j) |1 <j <k} must
equal {a(k,j) | 0 < j < k — 1} by condition (2), and by the induction hypothesis
this must equal {«(7,0) | 0 <7 < k}. Adding the element a(k + 1,0) to both sets
shows that {a(i,0) | 1 <i<k+1}={a(k+1,5) |0<j <k} eTk Thusrisa
site of I

Note that {a(N,j5) | 0 < j < n— 1} € I'""! is of degree one in the graph
(I™~1,I'™, 7), since no n simplex other than {a(N,j) | 0 < j < n} € I'™ can
contain the element «(N,0). Thus the Z-matrix determines a leaf-picking order
for the rooted tree (I™~1,T™ o), in the sense that the vertices of this tree are
ordered (assigned numbers n through N) starting at the root vertex s,_1(r) =
{a(1,0),...,a(n,0)} = {a(n,0),...,a(n,n — 1)} with number n, such that for



POLYSPHERICAL COORDINATES IN ORBIT SPACES 27

every n < k < N the vertex {a(k,0),...,a(k,n —1)} is a leaf of the tree subgraph
of (T"~1,I', o) induced by the set of vertices numbered n through k.

Now we will show the converse of this, namely that a rooted Z-system (T',r)
with a choice A\ of leaf-picking order for the top level rooted tree determines a Z-
matrix (T, 7, ). The key ideas for how the Z-matrix is determined have already
been explained in the proof of the main theorem. We obviously should define
a(1,0),...,a(n,0) so that the root site is given by r = («(1, 0), ®(2,0), ..., a(n,0)).
Also we must define a(2,1) = a(1,0), so that {a(2,0),a(2,1)} = s1(r) e If S C
I'? then define T'% = {s € I'* | s C S}. Notice that Fgl(r) = {{a(1,0)},{a(2,0)}}
and I‘il(r) = {{a(2,0),(2,1)}}. Now suppose the first k rows of the Z-matrix
have been defined for 2 < k < n — 1 such that for all 0 < h < k — 1 we have
Fi‘k_l(r) = {{a(i,j) | 0 < j < h} | h+1 < i < k}. Define s = si(r) =
{a(1,0),...,a(k+1,0)} € I'*. s} is incident on two k — 1 simplices, one of which
is 80 | = sp—1(r) = {a(1,0),...,a(k,0)} € I'*~! and the other we denote by
st_,. Note that a(k+ 1,0) € sp_,. As in the proof of the main theorem we define
sY_, =52 ,Nsi_,, and let s;_, be the k — 2 simplex on which s},_, is incident
besides 32_2. Note again that a(k+1,0) € s,lc_Q. Continuing this procedure as in the
proof of the main theorem we end up with two 0 simplices: s} = {a(k+1,0)} and s.
We define al(k+1,1),...,a(k+1,k) such that s) = {a(k+1,1),...,a(k+1,h+1)}
for h=0,1,...,k— 1.

QL= {ak+1,1)}
si= A{ak+1,1), alk+1,2)}
st 1= AHalk+1,1), ak+1,2), ... ak+1,k)}
sy = {a(k+1,0), ak+1,1), ak+1,2), ... alk+1,k)}
sp= {a(k+1,0), ak+1,1), alk+1,2)}
Si - {a(k+ 170)7 O‘(k+ 171)}
A= {alb+1,0)}
Since s C s} C -+ C sY_; = sp_1(r) we have that s) € F?kilm for h =

0,1,...,k — 1, and by the induction hypothesis this means that s = {a(4,7) | 0 <
j < h} for some h+1 < i < k+1, verifying condition (2) for row k+1 of the Z-matrix.
Note also that s; = {a(k + 1,0),a(k + 1,1),...,a(k + 1,h)} for b = 0,1,...,k.
Thus F?kilm U{st} C F?k(r). Thus these two sets will be equal if we can show that

T )| =k—h+1, since |F’S'”k_1(r)| = k—h. As we argued in the proof of the lemma

sk (r
in section 2 (Fi;(lr),FlSk(r),a) is an acyclic subgraph of the tree (I'~!, T, o), and
hence |I‘IS;(T)| > \Fls’c(r)| + 1. Since F’;k(r) = {s}}, and hence |F’:k(r)| =1, we have

\Fls’c(r)| >k—l+1foralll=0,1,...,k. But then k+1 < |ng(r)| <|sk(r)|=k+1.
Thus k —1+1 < |Fl5k(r)\ <k-I1+1forl=0,1,...,k, showing the desired re-
sult. This shows that ng(r) ={{a(i,j) |0<ji<h}|h+1<i<k+1} for
h = 0,1,...,k. This finishes the induction step, so that the first n rows of the
Z-matrix are defined so that condition (2) is satisfied for these rows and moreover

WehaveF’;nil(r):{{a(i,j)|0§j§h}|h—i—lSiSn}forh:O,l,...,n—l.
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To define rows n + 1 through N of the Z-matrix we need to use the leaf-picking
order that has been chosen for the tree (I, I™ o) with root s, i(r). Thus
the elements of I'"~! are assumed numbered n through N, the root vertex being
numbered n, so that for all n < & < N the vertex numbered k is a leaf in the
subgraph of (I'"~!, I ¢) induced by the set of vertices numbered n through k.
Suppose rows 1 through £ of the Z-matrix have been defined, where n < k < N —1,
such that Fg(k) ={{a(i,§) |0<j<h}|h+1<i<k}forh=0,1,...,n, where
S(k) = {a(L,0),...,a(k,0)}. Assume that condition (2) is satisfied for each of these
k rows. Also assume that for all n < i < k that {«(i,0),...,a(i,n — 1)} is element
number i in I'™~!. Let s}, _; be element number k+1 in I'™~! and since it is a leaf
in the subgraph of (I'"~1,I'™, 7) induced by the set of vertices numbered n through
k+1, let the unique edge of this subgraph incident on s, be denoted by s € I'".
Let s2_, € I'"~! denote the other vertex on which this edge is incident. It must be

one of the vertices numbered n through k, and hence in Fg(_kl) By the properties of

Z-systems we have that s , =2 ;Nsl | € ™72 Also let s1 , € I™~2 denote
the other vertex besides s _, on which the edge s} _; is incident. Continuing as in
the proof of the main theorem we define s} and s) for h = 0,1,...,n—1. We define
a(k +1,0) such that s§ = {a(k +1,0)}, and we define a(k + 1,1),...,a(k + 1,n)
such that s = {a(k+1,7) |1 <j < h+1}for h=0,1,...,n — 1. We also have
that s}, = {a(k+1,5) | 0<j <h}forh=0,1,...,n. We know that TS| =k-—n
by the induction hypothesis. s. € Fg(k +1) is incident on element number k + 1 of
I'"~1, and hence is distinct from the edges in Fg(k) which are incident on elements

numbered n through k of I'"~!; so I'sk+1yl = kB —n+ 1. Using the fact that

(T%~1,T%, o) is a subgraph of a tree, with the consequence that [T% | > |T%| + 1,
we obtain after n applications that |F05(k+1)| > k+1. Thus |[S(k+1)|=k+1
and hence a(k + 1,0) ¢ S(k). Furthermore we have that |F’§(k+1)| =k—h+1, for
h=0,1,...,n. Thus Fg(kH) = Fg(k) U{st} for h=0,1,...,n. Since s € Fg(k)
for 0 < h < n—1 we have that condition (2) is satisfied by row k+1 of the Z-matrix.
This finishes the inductive definition of the Z-matrix. The first column of the Z-
matrix has NV distinct elements from the set A, which has exactly N elements; so
condition (1) is also satisfied.

The construction of the Z-matrix a(I", 7, \) obviously satisfies I'* = T'*(a(T, r, \)),
1<k<n,r=r(ael,rN), and A = Aa(T,r,A)). Also if a is a Z-matrix and
& = a(l'(a),r(a),\(c)), then the Z-matrices o and & must coincide by a simple
induction argument, similar to those already given; the reader is invited to generate
this argument as an exercise. (I

The orientations of the n simplices in I'?(a(T, 7, \)) need not coincide with the
orientations in I'?. Different choices of root site r and leaf-picking order A for the Z-
system will lead to different Z-matrices and hence to possibly different orientations
of the n simplices. For example, suppose I' is the Z-system for methanol given
in Figure 1. Choose the root site r = (C, O, Hy), and the leaf-picking order \ =
({o,C, H1},{0,C,H,},{0,C, H3},{0,C,H}). Then a(T,r, ) is the same as the
Z-matrix « given above for methanol. We have

Fi(a) - {[H270707H1]7 [H270707H1]7 [H,O,C, Hl]}a
Fi = {[CﬂoaHlaH2]’ [CaoaH17H3]7 [H,O,C, Hl]}



POLYSPHERICAL COORDINATES IN ORBIT SPACES 29

Since [H;,C,0,H,] = [C,0,H;,H;]| = —[C,0,Hy,H,], j = 2,3, we see that
I¥(a) # T2,

Thus Z-systems can be understood as generalizations of Z-matrices in the sense
that one merely forgets the root site and the leaf-picking order. Thus Z-matrices
can be viewed as extremely compact presentations of Z-systems. The difficulty in
manipulating Z-matrices can be understood as arising from both the high degree of
compression of the information in the Z-system and from the presence of the extra
information, namely the specific choice of the root site and the leaf-picking order.
In the 3 dimensional case the iterated line graph picture (see Figure 2) provides
a natural graphical way of presenting a Z-system which also makes manipulations
surprisingly easy (see section 6 for examples).

The concept of a labelled Z-system has its counterpart in the concept of a labelled
Z-matrix. If a: {(i,j) € Z2 |0 < j < n,j <i < N} = N is a Z-matrix, then a
mapping 3: {(i,7) € Z* |1 <j <n,j <i< N} — Ris a labelling of the Z-matrix
a if

(1) B(i,1) >0 for 2 <i < Nj

(2) 0<B@G,j)<mfor2<j<n-1,j+1<i<N;

(3) —w<B(@,n)<wforn+1<i<N.
Suppose v € Dp is a labelling for the Z-system I', and suppose « is a Z-matrix
associated to I' for some choice of root site and leaf-picking order. Assume that
the oriented n simplices in I'? are the same as those determined by the Z-matrix
a. Then we define the labelling 8 of the Z-matrix associated to 7 as follows.

(1) If 2 <4 < N then define 3(i,1) = L., where e = {a(7,0), a(i,1)}.

(2) f2<j<n-1landj+1<i < N then define 8(i,j) = cos™* C¢, where

e ={ali,h) [0 < h < j}.
(3) If n+1 < k < N then define B(k,n) € (—,n] such that ¢i(-D"""Blkn) —
Zex, where e* = [a(k,0),...,a(k,n)].

The only unexpected aspect of this definition is the factor (—1) appearing in the
equation for 3(k,n). It reflects a discrepancy in even dimensional spaces between
the interpretation of an oriented n simplex that is natural for Z-systems versus
that which is conventional and natural for Z-matrices (see Figure 6). In Z-systems
it is natural to interpret [ip,...,%,] in terms of a positive rotation of the half-
hyperplane containing the codimension 2 subset Y (spanned by R, ,...,R; _,)
and containing R; _, into the half-hyperplane containing ¥ and R; . According
to the usual conventions for Z-matrices this would be represented by the oriented
n simplex [i,—1,%0,-.,%n—2,%n]. These two oriented n simplices are related by
n — 1 transpositions. Fortunately in 3 dimensions, where the Z-matrix convention
is standard among chemists, the two conventions agree.

Labelled Z-matrices are very close to usual coordinate systems where the coor-
dinates are all assumed to be real numbers and where a specific ordering of the
coordinates is specified. However, even a labelled Z-matrix does not tell us whether
the coordinates should be ordered by rows or by columns. In our discussion of
Z-systems we have not assigned any importance to the ordering of coordinates; also
we refused to make a choice of branch of the phase angle for an element of S,
treating the complex number itself as the “coordinate”. There is not a universally
agreed upon file format for storing a labelled Z-matrix. The GAUSSIAN format
[36], [24] lists the coordinate (3(i,j) right after the specification «(4,j), whereas
the MOPAC format [14] lists all the coordinates between columns 0 and 1 of the

n—1
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b2 i

to
FIGURE 6. An oriented angle in the case n = 2. The Z-system

convention would assign a positive angle to [ig, i1, %2]. The Z-matrix
convention would assign a positive angle to [i1, g, i2].

Z-matrix. These details are of no mathematical interest, and consequently make
no appearance in our mathematical description.

6. BIOMOLECULAR CONFORMATION

The theory of n dimensional Z-systems has been described to provide perspective
for the 3 dimensional theory, which can be applied to the study of the geometry of
biological macromolecules. The 3 dimensional case is simpler in many ways than
the n dimensional case, and so various alternatives to Z-system theory might be
proposed for the 3 dimensional applications which would be inadequate in general.
Hence it is with confidence that we claim that Z-systems are the “correct” tool for
a mathematical study of biomolecular conformations. In this section we set n = 3
and discuss these motivating applications.

We begin by introducing some terminology natural in the context of molecules.
We refer to the Z-system for methanol introduced in Figures 1 and 2, for which a
related Z-matrix was given in the previous section. References to columns and rows
are in relation to that Z-matrix. The one element sets in I'° contain the names in the
1st column. It is natural to call elements of '’ atoms. The two element subsets in I'!
of the associated Z-system contain the names listed in the 1st two columns excluding
the 1st row, i.e. Tt = {{O,C},{H;,C},...,{H,0}}. In this example each of the
1 simplices in I'' consist of a pair of atom names which are covalently bonded in
the molecule methanol. For this reason elements of I'! are often called bonds. This
terminology is slightly misleading because not every covalently bonded pair of atoms
will always be a member of I'!, such as happens in molecules containing rings. Also
we will see (in our discussion of five-membered rings) that it is sometimes convenient
to include as an element in I'! a pair of atom names corresponding to atoms which
are not covalently bonded in the molecule. Such pairs can only be called “bonds”
in some abstract sense. We will however use this terminology. The three element
subsets in I'?> contain the first three entries of each row, excluding the first two
rows. Hence I'? = {{H,,C,0},{H»,C,0},{Hs3,C,0},{H,0,C}}. We will call
the elements of I'? triangles. Likewise the four element subsets (3 simplices) in '3
contain all the entries of each row, excluding the first three rows. We will call the
elements of '3 tetrahedra. The order that the atom names are listed in each row
(after the first three rows) determines the orientation of the 3 simplex; in this way
the elements of I'? are determined.

The polyspherical coordinate system associated to the above example of a Z-
system assigns coordinates to each element of each of the sets I', I'2, and I'2. The
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b) A1 == A2

FIGURE 7. (a) w = {a1,a2} is a dihedral. (b) w = {a1,a2} is an
improper. In both cases b is the common bond shared by a;,as.

positive real number Ly(R) assigned to each bond b € T'! is called the bond length
of b in the configuration R € D¢ (T'). Recall the lemma from section 2 defines a
bijection B2: edge L(I'°,I't, o) — I'2. Thus every triangle ¢t € I'? is associated via
Bo with a pair {b;,b2} of bonds, where b; Nby = A € I'? is an atom. We call
a = {by, b2} an angle and A is its common atom. b; and by are the two 1-simplices
on which the 2-simplex ¢ is incident. The real number Cy(R) € (—1,1) assigned
to each triangle ¢ € I'? is called the bond angle cosine, cos(f), being a measure of
the angle 6 between bonds b; and by with vertex at atom A, in the configuration
R. Similarly the bijection 33: edge L(I'!,I'?,0) — I'® allows us to associate with
every tetrahedron 7 € I'® a pair {t1,t»} of triangles where t; Nt, = b € T'l. We
call w = {t1,t2} a wedge and b is its common bond. t; and ty are the two 2-
simplices on which the 3-simplex 7 is incident. The unit modulus complex number
Z+(R) = Cr(R) +iS.«(R) = €'? assigned to each oriented tetrahedron 7* € I'?
is called a wedge angle coordinate, being a measure of the angle ¢ between the
half-planes containing the triangles ¢; and ¢o measured in the plane perpendicular
to the line containing the common bond b, in the configuration R. The sign of
this angle depends on the chosen orientation of the tetrahedron 7. If b = {A, A’}
and t; \ b= {A}}, i = 1,2, and 7* = [4, A’, A}, A}], then the positive sense of ¢
is according to the right-hand-rule, where the axis of rotation is oriented from A
toward A’, and the half-plane of triangle ¢, is rotated into the half-plane of triangle
to. If the oriented tetrahedron 7* is kept fixed and we compare two configurations
R and R’ in which Z«(R') = Z;«(R) (so that the corresponding angles ¢ are
negatives of one another) we find that the geometric orientations of the resulting
3 simplices (not abstract) in the two configurations are reversed, i.e. they have
opposite chirality.

According to the proof of the lemma from section 2 the only bonds which are
subsets of a triangle are those in the associated angle. Hence the common bond b
of a wedge must be part of both of the angles associated to ¢; and t5. So triangle ¢;
is associated to angle a; = {b,b;}, 7 = 1,2. Let A; be the common atom of angle a;,
i = 1,2; we always have Ay, Ao C b. Tetrahedra (and also wedges) are classified into
two disjoint categories. We say 7 (or w) is a dihedral if A; # Ay so that b = A; U As.
We say 7 (or w) is an improper if A; = A,. This categorization of a tetrahedron as
either a dihedral or an improper depends on the details of the Z-system; different
Z-systems might cause the same tetrahedron to be categorized in opposite ways. In
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the example of the Z-system for methanol, we have the dihedral [H, O, C, H] and
the impropers [Hy, C, O, Hy] and [H3,C, O, Hy).

One important consequence of the dichotomy between dihedral and improper
is their behavior in relation to orientations. There is a canonical way to assign
an orientation to a tetrahedron (3-simplex) which is a dihedral. Let 7 be a di-
hedral, where we adopt to notation above, and add the definitions b, = A4; U AL,
1 = 1,2. Then the canonical orientation of the tetrahedron 7 is [A’l, Ay, 1212,121’2],
where A; = {A;} and A} = {A!}, i = 1,2. We say it is canonical because it does
not depend on the ordering of the triangles ¢, to forming the associated wedge, i.e.
[/1’1,/11,142,/1’2] = [AIQ,AQ,AI,AII] as one can easily check. We will call this the
canonical dihedral orientation. Although it is not necessary to do so, it is the usual
practice (although mostly unconscious) to always use the canonical dihedral orien-
tation for any tetrahedron which is a dihedral when building a Z-system. When
a dihedral tetrahedron is equipped with its canonical orientation it is called a tor-
sion. As one can easily check, we have done this for the dihedral in our Z-system for
methanol. The situation for impropers is quite different. An orientation needs to
be chosen but neither of the two possibilities stands out as a better choice. Unlike
dihedrals, the common bond b is oriented, from A; = Ay toward the other atom
Az = {Ag} . But since the two triangles are not ordered, no particular orientation
is determined. If we add information to the tetrahedron 7 which orders the two
triangles as t1, 2, then an orientation consistent with this choice is [A;, Az, A}, A}].
But if we reverse the order of the two triangles then we get [fll, As, 14’2, ;1’1], which
is clearly the opposite orientation to that obtained from the other ordering. Even
though there is no canonical orientation of an improper, a choice of an orientation
of an improper is equivalent to a choice of an ordering of the two triangles forming
the improper wedge.

One practical difference between dihedrals and impropers arises from the na-
ture of chemical forces. Since the Z-system I' determines a coordinate system valid
throughout the dense open set D (T'), the potential energy of the molecule is a
well-defined function on Dp(I"). (We are assuming there are no external forces so
that the potential energy is invariant under all rigid motions of the molecular config-
uration.) For biological molecules under most biologically relevant conditions such
potential energies are not greatly elevated above their minimum possible values.
Thus if the Z-system is chosen correctly we can expect that the bond lengths will
be effectively constrained to be within one or two tenths of an angstrom of a minu-
mum energy value. Likewise the bond angles are constrained to be within 0.5 to 1
degrees of a minimum energy value. Improper wedge angles are also constrained to
be within 1 or so degrees of a minimum energy value. But dihedral wedge angles
are not so strongly constrained under normal biologically important conditions [49].
Thus an interesting mathematical model of a biomolecule is obtained by exactly
freezing the values of all the bond lengths, bond angles, and improper wedge angles,
but allowing complete freedom for the dihedral wedge angles. However the clarity
of this situation can be marred by a poor choice of Z-system, namely if there is an
overuse of dihedrals. For example, consider the methyl group in methanol, namely
the group of atoms C, Hy, H, H3, which is attached to the rest of the molecule via
the bond {C,O}. Under normal biologically relevant conditions the methyl group
is well approximated as a rigid body whose primary degree of freedom is its ability
to rotate about the axis of the bond {C,0}. This one degree of freedom should
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correspond to a single free dihedral. Thus in our Z-system for methanol we use the
single dihedral = {H, O, C, H;} to describe the orientation of the methyl group
relative to the rest of the molecule, and we use the two impropers {Hs, C, O, Hy}
and {H3,C,0, H,} to fix the shape of the methyl group as a rigid body. How-
ever it is mathematically possible (but chemically inadvisable) to replace these two
impropers with the two dihedrals 7 = {H3,C,0,H} and 73 = {H3,C,O,H}.
The rigid body constraint would in this new coordinate system translate into con-
straints on the differences between pairs of dihedral angles: ¢,, — ¢, = 120°
and ¢,, — ¢y = —120°. Thus as the methyl group rotates three dihedral angles
change, but would do so in concert. Clearly it is preferable to have only one angle
change during this rotation. Thus, if when constructing a Z-system care is taken
not to overuse dihedrals, then a biomolecule (excluding the covalently bonded rings
of atoms) can be approximated as a system of linked rigid bodies whose primary
independent degrees of flexibility are its torsion angles [28], [20], [58].

Chemical reactions give rise to interesting constructions on Z-systems. Suppose
molecules described by Z-systems I' and A approach one another in space and
undergo a chemical reaction from which molecules described by Z-systems ¥ and €2
emerge. When the reaction is viewed in this way, I" and A describe the reactants and
Y and  describe the products. In order to describe the approach of the reactants
toward one another in space and the early stages of the chemical reaction it is
necessary to form a Z-system I' @, A for the reactant supermolecule. There are
many ways this approach could be described, and a particular choice of how this
will be done is represented by the information p. Similarly there will be a product
supermolecule described by a Z-system ¥ @, 2. Both of the Z-systems I' ©,, A and
3 @, Q should be able to describe the transition state configurations, i.e. all such
configurations should be members of D¢ (I' @, A) N D (E &, Q).

The operation of forming from I' and A the new Z-system I' @, A using the
information p will be called tethering. (See Figure 8.) We assume that I' is a
Z-system on the set N' of N elements, and A is a Z-system on the set M of
M elements, where NN M = (. Then I' &, A will be a Z-system on the set
N UM of N+ M elements. Thus tethering conserves atoms. One simple way
to specify the tethering information p is to give two sites, one from I' and the
other from A. Thus we must specify a triple (¢g,%1,%2) of elements of N such that
{io} € T? (necessarily true), {io,i1} € T'!, and {ig,i1,i2} € I'?; this defines a site
from I'. Likewise we must specify a triple (jo,j1,j2) of elements of M such that
{jo} € A° (necessarily true), {jo,j1} € A, and {jo,j1,j2} € A% Clearly we will
have (I' @, A)® = T U A%, We define (I' @, A)' = I'" UA" U {{ip,jo}}. The
new bond {ig,jo} is called the tether. Since [I'| = N — 1 and |[A}| = M —1
we have that |(I @, A)!| = (N—-1)+ (M —1)+1 = N+ M — 1. Since the
graph (I @, A)°, (T @, A)',0) is obviously connected, it must be a tree. Also
define (F S A)2 =T2UA%U {{io,il,jo}, {jo,jl,io}} and (F S A)3 =T3UA3U
{{0, 11,12, Jo}, {40, %1, J0, 71}, {Jo, J1, J2, to} }. By similar counting arguments we see
that both (T, A), (Pd,A)?%, 0) and (D, A)?, (T, A)?, o) are trees. The inter-
section condition is immediately verified. In regard to orientations we note that the
central tetrahedron must be a dihedral, so we choose its orientation to be canonical,
i.e. [i1,%0,J0,J1]- The other two tetrahedra could be either dihedrals or impropers,
but we assign their orientations as follows: [jo,%0,11,%2] and [ig, jo, J1,J2]- In the
dihedral case, this is the canonical orientation. But in the improper case we have
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FIGURE 8. a) A tethered Z-system for the reactant supermolecule.
Two amino acids approach one another. b) A tethered Z-system for
the product supermolecule. A water molecule moves away from a
dipeptide. The tethers (bonds) are shown as dark lines, the tether
angles as dark dashed lines, and the tether wedges are shown as
dark dotted curves or lines.
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effectively decided that the new triangle gets rotated into the old triangle. Thus we
define (F EBH A)i = Fi U Ai’ U {[j07 7"07 ila i2]7 [7"17 iOajDajl]’ [iOajOaj17j2]}' Thus with
p = {(i0,1,%2), (Jo, j1,J2)} we have that I' @, A is a well-defined Z-system.

It should be clear that I' ®, A = A @, I'. Furthermore if v is a site in I', Ay, Ao
are sites in A, and ¢ is a site in another Z-system A, then we have an associative
property:

L@y (ADpge A) = TS A) O, A

Tethering can also be done with labelled Z-systems, where the numerical labels
of the six added simplices specify the relative position and orientation of the two
molecules.

Z-systems for large biomolecules are extremely laborious to generate from scratch.
As compact as a Z-matrix is, it nevertheless has one row for each atom, and
biomolecules can easily have thousands of atoms. The details of the structure
of these molecules cannot be neglected if a mechanistic understanding of biological
processes is to be achieved [48], [51], [12], [65], [10], so we must find ways to deal
with the huge quantity of information in large Z-systems. One idea is to build
up large Z-systems from smaller Z-systems by gluing the smaller pieces together.
Biomolecules lend themselves to this approach because they are polymers, synthe-
sized from many copies of smaller molecules called monomers. But as we have seen,
mimicking the chemical reactions involved in joining these monomers together is
rather complicated in its detail. It is desirable to have a gluing operation which
can bypass the chemical processes and go straight to the final result. In fact, when
one builds plastic models of molecules one uses exactly such a gluing operation. It
is interesting that Z-systems are perfectly suited to such an operation.

Suppose Z-systems I" and A on disjoint sets A" and M respectively, and with sites
v = (io,1,%2) € vert S(I') and A = (jo, j1,J2) € vert S(A) are given. We require
that {io} is a leaf vertex in the tree (I'°,I'!, o), and that {jo} is a leaf vertex in the
tree (A°,A', o). We intend to define a new Z-system I' x, A, where p = {v,A}. It
will be a Z-system on the set £ = (M \ {ig}) U (M \ {jo}), which (together with
the mappings tar, taq) is the pushout of the following diagram:

{il, .71} 1170,J1]J1 M

i1>—>i17j1>—>igJ( lLM

N N

Given any set S and any mappings f: M — S, g: N' — S such that f(jo) = g(i1)
and f(j1) = g(ip) there exists a unique mapping h: £ — S such that f = h oy
and g = h o . This pushout property requires the definitions:

w(i):{i i € N\ fio} LM(j):{j je M\ {io}

J1 t=1p 1 J=Jo

F@) e M\ {jo}
g(l) e N\ {i}
elaborate manner to indicate how the construction might be generalized to the case
n # 3, where instead of gluing along a 1 simplex, one glues along an n — 2 simplex.
The upper horizontal and left vertical mappings of the pushout rectangle would be

(We describe these mappings in such an

and hence h(l) = {
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required to be monomorphisms of Z-systems.) Now we define
(C o A = fum(®) [ b€ DU {unc(d) | b € A},
(T M) = {opma(t) [t € TP U {un(t) [ £ € A%},
(C#u A’ = {epa(r) [T € T U {en(7) [ 7 € A} U {{in, 01, 51, G2}

We must show that these definitions satisfy the necessary properties to define a
Z-system. Since {ig} is a leaf vertex in the tree (I'°,I'!,s) the bond {ig,i1} is
the only bond in I'! incident on {ig}. So if b € I'* \ {{ig,41}} then tx/(b) = b.
Likewise since {jo} is a leaf vertex in the tree (A°, A', o) the bond {jo,j1} is the
only bond in A! incident on {jo}. So if b € A'\ {{jo,j1}} then ¢xr((b) = b. Clearly
en({io,in}) = eam({do, 1) = {in, 1} Thus (T, A) = (I {{io, i1}}) U (AT
{{orj1}}) U {{ir, j1}}. Since (I'#, A)° = (£) has (N = 1)+ (M —1) = N + M —2
elements, and (I'x, A)* has (N —2)+(M —2)+1 = N+M —3 elements, and the graph
((T %, A)°, (T %, A)!, o) is connected, it must be a tree. The set {tarq(t) | t € T2}
and the set {¢ar(t) | t € A?} are disjoint, hence (T' %, A)? has (N —2) + (M —2) =
N + M — 4 elements. The graph ((T' *, A)', (T *, A)?,0) is clearly connected, so
it must be a tree. The union defining (T %, A)® is a disjoint union, so (T *, A)3
has (N —3)+ (M —3)+1= N+ M — 5 elements. The tetrahedron {is, 1, j1, j2}
connects the triangle ¢ar({io,1,72}) = {i2, 1,1} to the triangle ¢r({jo, J1,J2}) =
{i1, j1, 2}, so the graph ((I'*, A)2, (I'*, A)3, o) is connected and hence a tree. The
intersection property is clearly satisfied. The mapping txr and txq take oriented
3 simplices into oriented 3 simplices in the obvious manner. Furthermore, the
3 simplex {42,141, 71,2} is a dihedral, with the canonical orientation [is, 1, j1, jo.
Thus (', A)? is defined. So I x, A is a Z-system.

This gluing operation on Z-systems can be illustrated by the example of com-
bining methane and water to make methanol. Let

C

H, C

H, C H, H O
H, C H, H H* O H

Hs C H, H

be a Z-matrices I' and A for methane and water respectively. As before we use a Z-
matrix to define a Z-system, where we ignore the root site and the leaf-picking order.
We choose the site v = (H,,C, Hy) in methane, and the site A = (H*,0, H) in
water. We have N' = {C, H,, H1, H2, H3} and M = {O, H, H*} and the mappings

Cc 1=C,

O [I=H,, O =0,
iv(l)=< Hy 1= Hj, tm(l)=< H 1=H,

Hy = H,, C l=H~

Hs 1= Hs,

The result of gluing is the Z-system I' x,, A on the set £ = {C, H,, H2, H3,0, H},

where
(F *H A)l = {{Ca Hl}a {Ca H2}a {07 H3}a {07 H}7 {C’ O}}
(F *u A)2 = {{Hh 07 O}’ {H27 07 O}’ {H37 C7 O}? {07 O’ H}}
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(T %, A)? = {[H2,C,0, Hy|,[Hs,C,0, Hy],[Hy,C,0, H|}.

This Z-system for methanol coincides with the one pictured in Figures 1 and 2
except that the orientations of the two impropers are reversed. As usual there
are many Z-matrices one could write for this Z-system, such as the one given in
section 5, but none of them are obtained from the two initial Z-matrices by a simple
manipulation.

Labelled Z-systems can be glued as above to yield another labelled Z-system. The
gluing information p, in addition to the two sites v and A, must contain a bond
length for the bond {41, j1} and a unit modulus complex number as the wedge an-
gle coordinate for the oriented 3 simplex [is, i1, j1, j2]. The other labels are carried
over from the corresponding simplices of I' or A. The bond length of {41,371} is in
practice determined by the element types of iy and j;, since {i1, j1} will almost al-
ways be a single bond (the formation of double or triple bonds usually involve more
complex rearrangments than contemplated in this gluing construction). The (dihe-
dral) wedge angle coordinate is usually not uniquely determined anyway at normal
biological conditions, so this construction fits well with chemical reality. The gluing
of labelled Z-systems provides a very convenient operation on this mathematical
model of biomolecules [20].

The lack of a simple way of gluing Z-matrices has been an effective obstacle to
their being adopted as the primary working data structure for biomolecules. The
existence of many Z-matrices for the same molecule has also made the adoption
of a standard Z-matrix for each biomolecule inadvisable. Z-systems correct both
problems. Given the standard atom names and conformational variables already
established in the references [37], [38], [39], it is a short step to choose standard Z-
systems for all the important monomers of biopolymers. Z-systems for the polymers
themselves can easily be constructed by gluing. Labelled Z-matrices can be used to
manipulate conformations of biopolymers because computer software can mediate
between molecular configurations (i.e. pdb files), Z-matrices and Z-systems. Al-
ready a computer program IMIMOL [18] developed by the author with a graphics
programmer, Scott Johnson, with funding provided by the Industrial Mathematics
Institute at the University of South Carolina, allows the user to build edit and
manipulate (tether and glue) three dimensional Z-systems graphically and to write
labelled Z-matrices. This makes manipulation of the geometry of biomolecules quite
easy.

The significance of Z-systems as a means of biomolecular geometry description
is best understood against the backdrop of previous efforts in this direction. There
has been a good amount of careful work on describing molecular geometry and
unique naming of three dimensional molecular structures by the stereochemist An-
dre Drieding and his collaborators [19], [72]. In particular the paper by Andreas
Dress, Andre Dreiding and Hans Haegi [20] carefully lays out the mathematical
scheme. However the approach taken in that paper to the problem of an “internal
coordinate” description of molecular geometry is based on using only distances as
coordinates (i.e. no angles) as in the book by Crippen and Havel [15]. This ap-
proach has attracted a lot of interest from specialists in “rigidity theory” [31], [66].
Here one relaxes the condition that I' = (I'°,T'!, o) be a tree, but still labels each
edge of this graph with a distance between the two atoms involved. The main ques-
tion of “rigidity theory” is how to characterize the class of graphs I' for which this
collection of distances (together with some discrete “chirality” coordinates) gives a
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coordinate chart on G4\ D¢ (), where D¢ (T') is some dense open subset of (R*)V.
We should remark that even after this question is settled, the coordinate domain
D¢ (T) will probably be extremely difficult to characterize, not to mention the pa-
rameter domain Dp(T'). Lingering uncertainty about where the singularities of a
coordinate chart are is enough to limit the practical applicability of such internal
coordinate systems.

Other authors, such as Walter Whiteley, have considered the possibility of using
both distances and angles [69], [70]. But specifications of exactly which combina-
tions of distances and angles are sufficient have not been rigorously justified. In
fact in [69] Whiteley says the problem in 3-dimensions is too hard. This is sur-
prising considering the long history of molecular physics and the obvious need to
separate the overall positional and orientational degrees of freedom from the inter-
nal degrees of freedom [47], [43]. There has been a huge amount of study of the
kinetic energy of a molecule in various internal coordinate systems, but the type of
systems considered has been strongly influenced by the desire to treat high energy
scattering processes; see e.g. [17] and [27]. Alexey Mazur and Ruben Abagyan
have tackled this problem in the context of biomolecules, and have developed what
they call the “BKS tree” [54]. Here one requires that (I'°,I', ) be a tree, but then
one introduces a numbering of the atoms, the root atom being numbered 1, so that
along paths starting at the root the atom numbers must increase. The tree defines
a partial ordering < of the atoms, where the < predecessor of an atom A is the
second atom along the path starting at A and ending at the root atom. Using this
data one constructs a Z-matrix as follows: each atom A after the first is part of a
bond with its < predecessor B; each atom A two or more bonds away from the root
is part of an angle with its < predecessor B and with B’s < predecessor C'; each
atom A three or more bonds from the root is part of a dihedral with B, C, D, where
B, C are as above and D is the < predecessor of C. This prescription is attributed
to Eyring [23]. However certain of the initial choices of the Z-matrix are not always
settled by this prescription. Also, to avoid overuse of dihedrals, a modified rule is
applied to all atoms A4;,,...,A; , whose < predecessor B is a branch point of the
tree. If 4y < --- < iy, the atom A;, follows the above prescription. The atoms
A, ..., A;, are part of impropers with the atom A; , where the “old” triangle
involving A;, is rotated into the “new” triangle.

Most chemists and molecular physicists consider it to be obvious that such pre-
scriptions define valid internal coordinate systems, and so a careful proof has appar-
ently never been written down. However recently John Frederick and Clemens Woy-
wod [26] have written down “guidelines” for the proper construction of “bond angle”
coordinate systems. These are stated without proof, and they explicitly eschew a
rigorous definition of the coordinate chart with its coordinate and parameter do-
mains. One of their guidelines, “bond angle coordinates must all subtend two of the
bond length coordinates present in a valid set”, which is consistent with the struc-
ture of Z-systems, is nevertheless not necessary in order to obtain a coordinate chart
with all the good properties listed in our main theorem. Consider a system with
N ={1,2,3,4} and I'* = {{1,2},{2,3},{3,4}}, where a bond length coordinate
is associated with each bond in I''. Assign bond angle coordinates to each of the
angles {{1,2},{2,3}} and {{1,3},{3,4}}. Assign a wedge angle coordinate to the
data: {{1,2,3},{1,3,4}} and [2,1, 3,4]. Let I stand for all this data. Then D¢(T")
consists of all configurations R such that the 2 simplices associated to {1,2,3} and



POLYSPHERICAL COORDINATES IN ORBIT SPACES 39

{1,3,4} are geometrically independent. Dp(I') = (0,00) x (—1,1)% x S'. These
coordinates define a diffeomorphism G,\D¢(I') — Dp(T) even though the angle
{{1,3},{3,4}} is incident on a bond {1, 3} whose bond length was not specified as
a coordinate. This example shows the necessity of going beyond the chemists and
physicists appeal to intuition and providing rigorous proof. Thus the question of
exactly which combinations of bond lengths, bond angles, and wedge angles, are
necessary and sufficient to obtain a diffeomorphism G,\D¢c(T') — Dp(T') between
coordinate and parameter domains defined as in section 3 is still open. However the
second theorem of section 4 shows that Z-systems are adequate for all noncollinear
molecular configurations, so the practical benefit of considering systems more gen-
eral than Z-systems and yet with the same coordinate and parameter domains is
not likely to be real.

An extensive amount of work has been done on the problem of automatically
generating a suitable internal coordinate system from a given molecular config-
uration R (a list of Cartesian coordinates for each atom) [61], [7], [62]. These
automatically generated systems are intended to simplify vibrational analysis, or
to make the process of geometry optimization (finding the conformation of least
potential energy) more efficient. Often linear combinations of bond length, bond
angle, and/or wedge angle coordinates are introduced which lose clear geometric
interpretation. Such coordinate systems are clearly unsuitable for our purposes, i.e.
a mathematical study of biomolecular geometry. The torsion angle representation
of molecules is popular in the field of rational drug design, [55], [44].

The most serious difficulty in using Z-systems in the study of biomolecular ge-
ometry is the presence of flexible covalently bound rings [64], [15], [16], [50], [21].
Five-membered rings are present in both proteins (i.e. proline) and in all nucleic
acids (the furanose ring) [3], [45], [46], [1]. Larger flexible rings are frequently
present (via disulfide bonds) in proteins, and constitute an important constraint
on their conformational flexibility [40]. If N' = {0,1,2,3,4} then the orbit space
G, \B is 15 — 6 = 9 dimensional. Because of the five covalent bonds of the ring, it
is desirable to use those bond lengths as five of the nine coordinates. This clearly
takes us outside the realm of Z-systems. A simple possibility (see Mazur [53]) is
to use as additional coordinates the bond angles {{0, 1}, {1,2}} and {{1,2},{2,3}}
and the dihedral wedge angles [0,1,2,3] and [1,2,3,4]. The cosine of the angle
{{2,3},{3,4}} is found by solving a quadratic equation derived by imposing the
distance constraint between atoms {0} and {4}. There are obviously generically ei-
ther two or zero real solutions, so these nine coordinates either do not determine any
conformation or do not determine a unique conformation. If we always choose the
larger of the two solutions of the quadratic equation, the coordinate domain (which
cannot be dense) and the parameter domain still need to be characterized. Another
more complex (yet more symmetrical) choice of the four coordinates supplement-
ing the five bond lengths has been proposed and studied (Marzec Day [52]). This
system has the benefit that the primary degree of flexibility of the ring is described
by one of the coordinates, the so-called pseudorotation phase angle. However, the
coordinate and parameter domains for this system have not been characterized.
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An interesting alternative to these approaches can be based directly on Z-system
theory. Consider the Z-system I' on N with the Z-matrix (see also Figure 9)

1

21

0 21
3 0 21
4 3 0 2

This system has the “bonds” {0,2} and {3, 0} which are not covalently bonded pairs
of atoms. Nevertheless our main theorem gives us a diffeomorphism #: G,\D¢c(T') —
Dp(). As usual Do (T) is the dense open set of all configurations R € (R*)V for
which the three triangles {0,2,1},{3,0, 2}, {4, 3,0} represent noncollinear triangles.

Also Dp(T) = (0,00)T" x (=1,1)T° x (§!)T*. Define
A= {{0,1},{1,2},{2,3}, {3,4}, {4,0}},
A% ={ar = {{0,1},{1,2}},as = {{3,4},{4,0}}}.
Define the mapping £: (O,OO)FI x (—1, l)F2 — (0,oo)Al x (—1, 1)A2 by the rule
&L, C") = (L,C), where
Loy = \/(L/{1,2})2 + (LS[O,Q})Z - 2L{{1,2}L/{0,2}Ci0,2,1}
L{172} = L{{1,2}
Lizsy = \/(L{[o,z})2 + ([”{0,3})2 - 2L{{0,2}L{{0,3}C~/{3,0,2}
Ligay = Lizay
Laoy = /(Lo g)? + (Lay)? — 2L50,59 L1syClaoy

L{{I,Z} - L{{O,Q}CEO,Z,I}
Lo,1y

Cy, =

LI{4,3} - LI{O,?:} C(%4,3,0}
Liga,03

Co, =

This mapping simply recoordinatizes each of the three triangles in I'2. Define
A C (0,00)2" x (—=1,1)2" to be the range of £&. The new coordinatization for
the triangle {0,2,3} is in terms of the lengths of its three sides, and this entails a
restriction on the possible triples of lengths. Hence

A={(L,C)|L: A' = (0,00),C: A* — (—1,1),such that
[( ,{072})2 + ( ,{0,3})2 - (L{2,3})2]2 < 4( ’{0,2})2(LI{0,3})27
where (L 0,)? = (Lgo,13)* + (L1,2))” — 2L10,13 L1,2) Cay»
and (L{g5y)* = (Lgoay)” + (Lga)? = 2L{0,41 La,3) Cas }-

If ¢ is equal to & with its codomain restricted to A then ¢ is a diffeomorphism (as
the reader is invited to check by explicitly constructing its inverse mapping). If
Dp(A) = A x (SH)F?, then (€ x 1) 07 is a diffeomorphism between G,\D¢(T') and
Dp(A). Thisis an internal coordinate system for the five-membered ring where both
the coordinate and the parameter domains are explicitly identified. The coordinates
are the five bond lengths Ly 1}, L{1 2}, L{2,3}, L{34}, L{4,0}, the two bond-angle
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0

3 2

FIGURE 9. A Z-system I' for a Five-Membered Ring.

cosines Cy, , Cq,, and the two wedge angles ©(3 0211, ¥[4,3,0,2]- The two wedge angle
coordinates are called flap angle coordinates in this case. Pseudorotation cycles
form closed paths in the flap angle plane and in the bond angle plane. Flap angle
coordinates have also appeared in the study of rings with more than five atoms [41],
[34].

This result on five-membered rings suggests that there may be interesting gen-
eralizations of our main theorem where A is more general than a Z-system, and
where Dp(A) is a semialgebraic set [11].
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