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Abstract

We analyze mathematically the effect of quantization error in the circuit imple-
mentation of Analog to Digital (A/D) converters such as Pulse Code Modulation
(PCM) and Sigma-Delta Modulation (¥A). We show that ¥A modulation, which
is based on oversampling the signal, has a self correction for quantization error that
is not inherited by PCM. This result may partially explain the success of such con-
verters. Motivated by this example, we investigate whether it is possible to use
redundancy to construct other encoders, with the same self correction property, but
with higher order accuracy relative to bit rate. We introduce a class of encoders
which exhibit exponential bit rate accuracy (in contrast to the polynomial rate of

Y A) and still retain the self correction feature.
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1 Introduction

A one-bit quantizer is a mapping ) of the real numbers into the discrete set {—1,1},

defined by

-1, 2<0

Qz) = { 1. 250 (1.1)
The hardware circuit implementation of such a device is never perfect: transition often
happens at some point different from 0. This results in an erroneous quantizer Q, which

instead computes

Q(z) := { _}’ Zsp (1.2)

5 zZ>p,
for a possibly unknown (small) value of p. One may further assume p to vary at each
implementation of Q. We are interested in methods for converting an analog signal
z(t) defined on the real line IR into a digital bitstream using such an imprecise one-bit
quantizer.

Another essential ingredient of the methods we will be considering is the sampling
operation, which maps a given signal z(t) to a sequence of numbers (z(n7)),cz, where 7
is the sampling interval. We assume that this operation is carried out precisely.

We shall work with bandlimited functions, i.e., functions whose Fourier transforms
are compactly supported. Any bandlimited function can be recovered perfectly from its
samples on a sufficiently close-spaced grid; this is known as the “sampling theorem”. Let
S(€) denote the class of functions x € L*(IR) whose Fourier transforms are supported on
[—€2,Q]. The Shannon-Whittaker formula gives a way to reconstruct a function z € S(7)
from its samples (z(n)),ecz taken on the integer grid:

z(t) = > z(n)S(t —n), (1.3)

neZ

where S is the sinc function
sin 7wt

S(t) == : (1.4)

it

The functions S(- — n), n € Z, form a complete orthonormal system for S(w). Clearly,
the formula above can be extended through dilation to functions in S(2) for arbitrary .
In practice, one observes a function only on a finite portion I = [a, b] of the real line IR.

In addition, we shall consider functions of limited maximum amplitude; in other words,



we consider the class S(Q, M, I) of all signals z € S(Q2) that take values in (—M, M)
when ¢ € I:
lz(t)| < M, tel. (1.5)

It will be sufficient in all of what follows to consider the case where {2 = 7 and M = 1.
We denote S(m, 1, ) simply by S.

Pulse Code Modulation (PCM) is maybe the simplest method for analog to digital
conversion of functions in . Each sample z(n) € (—1,1) in the expression (1.3) is simply
replaced by a truncated version Z(n) of its binary expansion. (There is, however, a slight
glitch to overcome due to the instability of the basis functions S(- —n), n € Z, which is

reflected by the fact that

3 IS(t— )| = oo (1.6)

nez

whenever ¢ is not an integer. This can be easily fixed by oversampling, as we shall see in
Section 2.)

Let the real number y € (—1,1) have the binary expansion
y="boy b2, (1.7)
i=1

with by = bo(y) € {—1,1} and b; = b;(y) € {0,1} for all i > 1. The sign bit by is given by
bo(y) = Q(y). The other bits can be computed using the one-bit quantizer described in

(1.1) in the following algorithm known as Successive Approximation (SA). For each real

number z, let @Q1(z) := (Q(z — 1) +1)/2, i.e,

0, z<1

@1(2) = { 1,  z>1. (1.8)

Let u; := 2bpy = 2|y|; the first bit by is given by b; := Q;(u;). Then the remaining bits

are computed recursively as follows: if u,, and b, have been defined, we let

and
bi+1 = Ql(ui—l—l)- (110)

Let us now consider what will happen if we make errors in the quantization. We

suppose that at each quantization step, the circuit does not compute Q(z) but rather
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Q(z), given by (1.2). This also leads to the definition

~ ] 0, z2<1+p
Q1(2) .—{ L 2>14p, (1.11)

where p may vary at each implementation of Q;. We assume that lp| < & where § > 0
is fixed. The debilitating effect of the quantization error can already be seen in the sign
bit. Assume for example that p > 0. If y € (0, p|, then the sign bit of y will be incorrect.
No matter how the remaining bits are assigned the resulting error |y — g| is at least as
large as |y| which can be as large as 6. By taking a function z(t) = yS(t — k), with
S the sinc function (1.4), this translates into the same possible error for PCM in its
circuit implementation. Note that this is not just an anomaly of only the sign bit. For
y € (1/2,1/2 + p/2), the sign bit by(y) will be correct, but the bit b;(y) will be wrong
and no matter how the other bits are assigned the resulting error |y — §| will be at least
as large as |y — 1/2| which could be as large as §/2.

In this paper, we shall look at two other schemes which do not suffer from this effect.
In these schemes, it will be possible to reconstruct the signals perfectly by taking more
bits from their digital representations, even if the quantizer used to derive the digital
representations is imperfect. The compensation will come, as we shall see, from the
redundancy of the codewords produced by these algorithms. To give a more systematic
treatment, we first give a short discussion of the information theoretical aspects of the

problem in the next section.

2 Encoding-Decoding and Kolmogorov Entropy

Let S be the space of our signals, as defined in Section 1. By an encoder E for S we mean
a mapping

E:S—B (2.1)
where the elements in B are finite bitstreams. The result of the encoding is to take the
analog signal x to the digital domain. We also have a decoder D which maps bitstreams
to signals

D:B—S (2.2)
where the class S is not necessarily the same as S. Note that there may be many decoders

D associated to a given E.



In general DEx # x. We can measure the distortion in the encoding/decoding by

|z — DEx|| (2.3)
where || - || is a norm defined on the signals of interest. We shall restrict our attention to
the norm

1zl := sup |(t)], (2.4)
tel

where C(I) denotes the class of continuous functions on I. A similar analysis can be
carried out for other norms such as the L*(I) norm.
One way of possibly assessing the performance of encoders is to measure the distortion

of the encoding-decoding
d(S;E,D) = sung—DExHC(I). (2.5)
fAS

for the class S. In order to have a fair competition between various encoding-decoding
schemes we can look at the performance as a function of the bit budget. Given a distortion
e > 0, we let £ := £(S,¢) denote the class of encoder-decoder pairs (E, D) for which
d(S;E,D) < e. A given encoder E corresponding to a pair in this class utilizes a bit
budget

n(S,e, E,I) .= sup #(Ez), (2.6)

z€S
where #(Ez) is the number of bits in the bitstream Exz. The smallest number of bits

that can realize the distortion € for S on I is given by

n(S,e 1) := (E’DI%?(S,E)n(S,e, E,I). (2.7)

It is well known that n(S, €, I) is determined by the Kolmogorov entropy H.(S,C(I))
of the class S as a subset of C(I). Here H (S,C(I)) := logy N(S) where N := N(S)
is the smallest number of functions fi,...,fy € C(I) such that each f € S satisfies

|f = fillory < € for some i = 1,2,..., N. It is then easy to see that
n(S,e,1) = [H(S,C(I))]

with [y] the smallest integer > y.
In many applications in signal processing, the interval I on which we wish to recover the

signals z(t) is varying and will be large relative to the Nyquist sample spacing. Consider,
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for example, audio signals where sampling at 44,000 times per second corresponds to
high quality audio and sampling at 4,000 times per second corresponds to wireless voice
applications. Recovering M minutes of such signals in these two cases means that the
interval I corresponds to a number of 2,640,000M or 240,000M consecutive samples,
respectively. So, the interval I, while finite, is typically very large. In this case, the

average bit rate

_ . n(S,e1)

(2.8)
is a relevant measure of the encoding efficiency. There is a corresponding concept of
average entropy
— H(S,C(I
H(S) ;= lim M

1] =00 ||

(2.9)

and we have

n(S,€) = H(S).

The average entropy of the class S can be derived from results of Kolmogorov and

Tikhomirov [2] on the average entropy of classes of analytic functions. These results yield
_ 1

n(S,e) = (14+o0(1))log, —, 0<e<]l. (2.10)
€

One can derive this result through the practical encoding scheme PCM. We shall
here give a formulation of the proof using methods that are similar to those used in [2],
however, with more generality. The first issue to be taken care of is the instability of the
expansion (1.3) as stated in (1.6). We can circumvent this problem easily in the following
way. We choose a real number A > 1 and sample = at the points n/\, n € Z, thereby
obtaining the sequence x,, := z(n/\), n € Z. When we reconstruct x from these sample
values, we have more flexibility since the sample values are redundant. If g := g, is any
function whose Fourier transform § is 1 on [—m, 7], and vanishes outside of [—Am, A,
then we have the recovery formula (see [1])

2(t) = % S 2ag(t — n/A). (2.11)

neZ

Let GA(n) := supe(o,1/x) |9(t — n/A)|. We shall only need to consider g for which

> Gi(n) < oo, (2.12)

neZ



which can easily be achieved by choosing g to be sufficiently smooth.

Given an integer m > 0, we define the encoder E,, as follows. Given an interval I =

[a,b] in which we want to recover the signal, let [ := [a — M, b+ M] where M = M(m, \)

is chosen so that

Z G,\(’I”L) <27™,

In|>[AM]

(2.13)

For z € S, we define E,,(x) to be the bitstream consisting of the bits b;(z,), i = 0,...,m,

z, € I. Thus Z, := by(x,) 27, bi(2,)27" satisfies
|z, — Zp| <27

JFrom this bitstream, we can decode using the recovery
_ 1 _
z(t) == 3 > Zug(t —n/N).

neX

We can easily bound the distortion for this encoding/decoding. We have
r=5y+ 51
where Sy := 1 Y, e Zng(t —n/X) and Sy := + 3, a7 2ng(t — n/X). Therefore,
|z(t) — z(t)] < [S1()] + [2(t) — So(t)]-
We have |g(t —n/A)| < Gx(n — [At]), so that for t € I,

[Si@] < D lglt—n/N < > Ga(k) <27™

ngAI k= [AM ]
In view of (2.14)
Z(t) — So(B) <27 > lg(t —n/A)| < C27™,

neX

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

where C := () denotes the sum of the series given by (2.12). Putting these two estimates

into (2.17), we obtain
lz(t) —z(t)| < (1+C)2™, tel.

The number of bits used in this encoding is bounded by

m| I\ = m(2M + 1),

(2.20)

(2.21)



from which we derive

(S, (1+0)2™™) < lIl‘im [I]7(2M + A|I|)m < dm. (2.22)
— 00
In other words,
1
n(S,€) < A(logy — +logy(1 + C)). (2.23)
€

Now, given any § > 0, we choose A > 1 so that A — 1 < §/2. Then for € > 0 sufficiently
small, (2.23) gives
1
n(S,e) < (14 9)log, — (2.24)
€

We therefore obtain a proof of the upper bound of (S, €) stated in (2.10).

3 The Error Correction of Sigma-Delta Modulation

We have seen that for sufficiently large intervals I and a sufficiently large number of
bits m per Nyquist interval, the accuracy d(S; E, D) of PCM, when implemented using
a precise quantizer, is of order O(2™™). However, when the quantizer is imperfect as
defined in Section 1, the accuracy has no asymptotic decay as m is increased, as shown
by our earlier examples. In this section, we shall look at another class of encoders, given
by Sigma-Delta (XA) Modulation, which behave differently when quantization error is
present.

We describe here only the simplest case of first order YA modulation. We again choose
A > 1 (although now A will be chosen to be large rather than close to one). We continue
with the notation z, := x(n/)\) as above. Given (z,), the algorithm creates a bitstream
(bn), b, € {—1,1}, whose running sums are trying to match those of z,. There is an
auxiliary sequence w,, which tracks the error between these two running sums. We take

up, = 0 for n < Aa where I = [a, b], and define
Upt1 = Up + Ty — by, n/AEI, (3.1)

where
by, = Q(uy) (3.2)
and @ is the quantizer defined by (1.1). The A encoder E, maps z to the bitstream

(b,). We see that E) appropriates one bit for each sample, which corresponds to A bits

per Nyquist interval, therefore resulting in |I|\ bits for the whole signal z.
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To decode the XA bitstream, we can use the recovery formula (2.15) with g as before
and with each Z, replaced by b,,. This gives
_ 1
2(1) := D((ba))(2) := 5 2 bug(t =1/ A). (3.3)
nel

One can easily show (see also [1]) that using appropriate g yields
lz(t) —Z(t)| < CoA7t, tel, (3.4)

with the constant Cj depending only on the choice of g. Examples show that for general

x, this bound cannot be improved, i.e.,
oAt < d(S; E, D) < Cox1. (3.5)

Hence we see that when the average bit rate is A, first order YA modulation results in
O(\1) accuracy, much worse than what would be achieved if PCM was used. However,
the remarkable fact is that XA encoders are impervious to error in the circuit implemen-
tation of the quantization. Theorem 3.1, below, shows that given any § > 0, then an error
of at most ¢ in each implementation of quantization in the XA encoder will not affect the
distortion bound (3.4) save for the constant C.

Let us see how this works. Suppose that in place of the quantizer @ of (1.1), we use
the imprecise quantizer Q of (1.2), where p can vary at each occurence. We assume the
uniform bound |p| < §. Using these quantizers will result in a different bitstream than
would be produced by using Q. In place of the auxiliary sequence u,, of (3.1) which would
be the result of exact quantization, we obtain the sequence u,,, which satisfies u,, = 0 for
n/A < a and

linp1 = Tp + T — by, n €N (3.6)

where

We then have:

Theorem 3.1 Suppose that XA modulation is implemented by using, at each occurence,
one of the quantizers Q, with |p| < 68, in place of Q. If the sequence (En) is used in place

of b, in the decoder (3.3), the result is a function T which satisifies
lz(t) —z(t)| < OXY tel, (3.8)
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with C = Cy(2+ 6) and Cy the constant in (3.4) .

Proof: This theorem was proved in [1]. We do not repeat its simple proof in detail. The

main idea which is to establish the following bound:
|n| < 240, (3.9)

which can be proved by induction on n. It is clear for n < Aa. Assume that (3.9) has

been shown for n < N. If ay < p, then by = —1 and from (3.6) we have
ﬂNqu :ﬂN“‘xN_BN- (310)

Now, 2y — by € [0,2] and hence iy, € [-2 — 8,2+ 6]. A similar argument applies if
uy > p and therefore we have advanced the induction hypothesis and thus proved (3.9).
The remainder of the proof uses summation by parts to obtain (3.8) (see [1]). O

The error correction capability in XA is related to the large amount of redundancy in
the representation (2.11). The question arises whether one could utilize redundancy to
build other encoders which have the best of both worlds: self correction for quantization
error and exponential accuracy in terms of the bit rate. In the next section, we shall
construct a class of encoders which have the flavor of PCM but rather than using the
binary representation of a real number y (which is unique), they utilize representations
with respect to a base 8 € (1,2). Such beta-representations are not unique, even when [

is kept fixed, and this fact is exploited to achieve the above mentioned properties.

4 Beta-Encoders with Error Correction

We shall now show that it is possible to obtain exponential bit rate performance while
retaining quantization error correction by using what we shall call beta-encoders. The
essential idea is to replace the binary representation of a real number y by a redundant
representation.

Let 1 < 5 < 2and v :=1/8. Then each y € [0, 1] has a representation

y=> b~ (4.1)
=1
with
b; € {0,1}. (4.2)
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In fact there are many such representations. The main observation that we shall utilize
below is that no matter what bits b;, ¢ = 1,...,m, have been assigned, then, as long as
m-+1

0 .
<> byt <y, (4.3)
1—9 i=1

y_

there is a bit assignment (by)g>m, which, when used with the previously assigned bits,
will exactly recover y.

We shall use this observation in an analogous fashion to Successive Approximation
to encode real numbers, with the added feature of quantization error correction. These
encoders have a certain offset parameter p whose purpose is to make sure that even when
there is an imprecise implementation of the encoder, the bits assigned will satisfy (4.3);
as shown below, introducing p corresponds to carrying out the decision to set a bit to 1
only when the input is well past its minimum threshold. We let ); be the quantizer of
(1.8).

The beta-encoder with offset u. Let p > 0 and 1 < § < 2. Fory € [0,1], we
define uy := By and by := Q1(u1 — ). In general, if u; and b; have been defined, we let

Uj41 = ﬁ(ui - bz‘), biy1 = Q1(Ui+1 - /J)- (4-4)
It then follows that
Y=Y by =y =D 7w — yuir1) =y — yur + V" Mty <Y ullie,  (45)
i=1 i—1

showing that we have exponential precision in our reconstruction, provided the |u;| are
uniformly bounded. We shall see below that we do indeed have such a uniform bound.
Let’s analyze the error correcting abilities of these encoders when the quantization is
imprecise. Suppose that in place of the quantizer )y, we use at each iteration in the
beta-encoder the imprecise quantizer Q; defined by (1.11) where at each application the
value of p may vary. We assume a uniform bound |p| < ¢ for the quantizer errors. In
place of the bits b;(y), we shall obtain inaccurate bits b;(y) which are defined recursively

by @y == By, by := Q1 (i1 — p) and more generally,

Ujpy = ﬁ(ﬂz - bi), biy1 == Ql(ﬁiﬂ - ,U)- (4-6)
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Theorem 4.1 Let § > 0 and y € [0,1). Suppose that in the beta-encoding of y, the
quantizer Q is used in place of Q1 at each occurence, with the values of p possibly varying

but always satisfying |p| < . If p > & and [ satisfies

< (4.7)
then for each m > 1, ¥, := > 3", Bwk satisfies
Y =G| <CY™, m=1,2,..., (4.8)
withC =14 p+96.
Proof: We first claim that
0< i, <BAl+p+6), n=12,.... (4.9)
This is proved by induction on n. For n = 1 it is true because
uy = Py < 6.
Assume that (4.9) has been proved for n = N. If by = 0, then @iy < 14 p -+ 6 and hence
0 <ty =Pun < B(1+p+9), (4.10)
as desired. If by = 1,then iy >1+p+pu>1—3§+ p>1. Also, in this case,
0<tuny1=B(uy—1)<BPBAL+p+0)—-1]<B2+pu+0—-1)=p1+p+0) (4.11)

where we have used (4.7). This advances the induction hypothesis and proves (4.9). On
the other hand,

Y= Om=y— bey® = il — > AF (G — Yigsr) = Y™ s, (4.12)
k=1 k=1
which together with (4.9) gives (4.8). O

(Note that, in the special case 6 = 0, the bound (4.9) shows that the |u,| in (4.5) are
uniformly bounded, as claimed above.)
For signal encoding, we utilize the beta encoder as in PCM. Namely, we take A > 1

and let x, := x(n/\) as before. We would like to avoid keeping sign bits of the z,. We
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can do this by replacing z,, by z!, := (z, + 1)/2. For each z!, we keep the first m bits
bi(xl),...,bn(x)) of the beta encoder applied to z/,. To decode, we use the beta-encoder

bits to approximately recover x] by

T =Y bi(wn)y* (4.13)
k=1
and then approximately recover x,, by
T, =27 —1 (4.14)
which satisfies
|z, —Z,| < CY™, neZ, (4.15)

Given a signal z, an integer m > 0, and the interval I, we define Z as in (2.15) except

that we use the Z,, of (4.14).
Theorem 4.2 For any x € S, the beta-encoder/decoder with m bits per sample satisfies
5(t) — 5(t)| < Oy, tel, (4.16)

with C' depending only on the reconstruction filter g. Moreover, if in place of the ezxact
quantizer 1, we use, at each iteration, a quantizer Ql given by (1.11), with p satisfiying
lp| < 9, then we still obtain the error bound (4.16) with the constant C' now depending

also on 9.

Proof: If we define Sy as in (2.16), then Theorem 4.1 gives
Solt) — ()| < Cy7, tel

If we couple this with (2.18), we arrive at (4.16). 0
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