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1 Introduction

Digital signal processing has revolutionized the storage and transmission of audio signals,
images and video, in consumer electronics as well as in more scientific settings (such as
medical imaging). The main advantage of digital signal processing is its robustness: although
all the operations have to be implemented with necessarily not quite ideal hardware, the a
priori knowledge that all ideal outcomes must lie in a very restricted set of well separated
numbers makes it possible to recover the ideal outcomes by rounding off appropriately. When
bursty errors can compromise this scenario (as is the case in many communication channels,
as well as for storage in memory), making the “perfect” data unrecoverable by rounding off,
knowledge of the type of expected contamination can be used to protect the data, prior to
transmission or storage, by encoding them with error correcting codes; this is again done
entirely in the digital domain. All these advantages have contributed to the present wide-
spread use of digital signal processing. Many signals, however, are inherently “analog” rather
than digital in nature; audio signals, for instance, correspond to functions f(¢), modeling
rapid pressure oscillations, which depend on a “continuous” variable ¢ (i.e. ¢t ranges over R
or an interval in R, and not over a discrete set), and the range of f typically also fills an
interval in R. For this reason, the first step in any digital processing of such signals must
consist in a conversion of the Analog signal to the Digital world, usually abbreviated as A/D



conversion. For different types of signals, different A/D schemes are used; in this paper,
we restrict our attention to audio signals, and a particular class of A/D conversion schemes
adapted to audio signals. Note that at the other end of the chain, after the signal has been
processed, stored, retrieved, transmitted, ..., all in digital form, it needs to be reconverted to
an analog signal that can be understood by a human hearing system; we thus need a D/A
conversion there.

The digitization of an audio signal rests on two pillars: sampling and quantization. It is
standard to model audio signals by bandlimited functions, i.e. functions f € L*(R) for which
the Fourier transform

~

1 = —ite
f(f)zﬁ/oof(m)e “dp

vanishes outside an interval || < . Note that our Fourier transform is normalized so that
it is equal to its inverse, up to a sign change,

1 ®; iz
fla) = / RGeS

The bandlimited model is justified by the observation that for the audio signals of interest
to us, observed over realistic intervals [T, T, |\xje>a(X<rf)"||2 is negligible compared
with || xjej<a(xp<r.f)" |2 for @ ~ 27 - 20,000 Hz. For band-limited functions one can use a
well-known sampling theorem, the derivation of which is so simple that we include it here
for completeness: since f is supposed on [—2, ], it can be represented by a Fourier series
converging in L*(—,Q), i.e

= e ™Y for €< Q,
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where

We thus have

which by the inverse Fourier transform leads to

Zf(mr)% Zf( )smcﬂx—mr). (1)

This formula reflects the well-known fact that an 2-bandlimited function is completely
characterized by sampling it at the corresponding Nyquist frequency % However, (1) is not
useful in practice, because sinc(r) = x !sinx decays too slowly. If, as is to be expected,
the samples f (””) are not known perfectly, and have to be replaced, in the reconstruction
formula (1) for f(z), by f, = f (”—ér) + €n, then the corresponding reconstructed f(z) may
differ appreciably from f(z). Indeed, the infinite sum ) e,sinc(2z—nm) need not converge;
even if we assume that we sum only over the finitely many n satisfying |n%‘ < T (using the



tacit assumption that the f ( ) decay rapidly for n outside this interval), we will still not
be able to ensure a better bound then

f(z) — f(z)| < Celog T ;

since 7" may well be large, this is not satisfactory.

To circumvent this, it is useful to introduce oversampling. This amounts to viewing f as
an element of L2(—AQ, AQ), with A > 1; for |¢| < AQ we can then represent f by a Fourier
series in which the coefficients are proportional to f (%),

5 1 Jm NI\  iner
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Consider now a function g such that g is C*°, and g(§) = \/% for |£] < 7, g(§) = 0 for
|¢] > 7. Then

resulting in
1 nm Q n
f(w)zxz;f<>\—9)g<;x—x> . )

Because g is smooth with fast decay, this series now converges absolutely and uniformly;
moreover if the f (2%) are replaced by fo = f(3) + &, in (2), with |e,| < ¢, then the
difference between the reconstructed f(z) and f(z) can be bounded uniformly:

F o) — ()] < > Z\ (2 x——)\swg 3)

where C; = A 1||¢'||1 + ||g]/ 1+ does not depend on T'. Oversampling thus buys the freedom
of using reconstruction formulas, like (2), that weigh the different samples in a much more
localized way than (1) (only the f (2%) with |z — 27| “small” contribute significantly). In
practice, it is customary to sample audio signals at a rate that is about 10 or 20% higher
than the Nyquist rate. For high quality audio, a traditional sampling rate is 44,000 Hz.

The above discussion shows that moving from “analog time” to “discrete time” can be
done without any problems or serious loss of information: for all practical purposes, f is
completely represented by the sequence ( f (;\L_;;))nEZ' At this stage, each of these samples
is still a real number. The transition to a discrete representation for each sample is called
quantization.

The simplest way to “quantize” the samples f ( ) ) would be to replace each by a trun-
cated binary expansion. If we know a priori that |f(z)] < A < oo for all = (a very realistic
assumption), then we can write

f(:—g) - —A+Aib22’“,



If we can “spend” k bits per sample, then a natural solution is to just select the (b})o<k<x—1;
reconstructing f(z) from the approximate f, = —A + AZZ;& b2~" then leads to

|f(z) — f(z)| < C27"T1A, where C is independent of x or f (see above). Quantized rep-
resentations of this type are used for the digital representations of audio signals, but they
are, in fact, not the solution of choice for the A/D conversion step. (Instead, they are used
after the A/D conversion, once one is firmly in the digital world.) The main reason for this
is that it is very hard (and therefore very costly) to build analog devices that can divide the
amplitude range [—A, A] into 27! precisely equal bins.

It turns out that it is much easier (= cheaper) to increase the oversampling rate, and to
spend fewer bits on each approximate representation fn of f (%) By appropriate choices of
fn one can then hope that the error will decrease as the oversampling rate increases. Sigma-
Delta (abbreviated by X A) quantization schemes are a very popular way to do exactly this,
oversampling significantly, and then spending very few bits per sample, achieving neverthe-
less a close approximation for the overall function f when the coarsely quantized f, are used
instead of the true samples f (z—g) in (3). In the most extreme case, every sample f (;—g)
is replaced by just one bit, i.e. by Ag, with ¢, € {—1,1}; in this paper we shall restrict
our attention to such 1-bit YA quantization schemes. Although multi-bit ¥A schemes are
becoming more popular in applications, there are many instances where 1-bit XA quantiza-
tion is used. In the next section we explain the algorithm underlying XA quantization in
its simplest version, we review the mathematical results that are known, and we formulate
several questions, some of which we shall address in this paper in section 3. We conclude, in
section 4, with many open problems and outlines for future research.

2 First order X A-quantization

2.1 The simplest bound

For the sake of convenience, we shall set (by choosing appropriate units if necessary) 2 = 7
and A = 1. We are thus concerned with coarse quantization of functions f € Cy = {h €
L2 ||kl < 1, support h C [—m, w]}; for most of our results we also can consider the larger
class

Cy = {h; h is a finite measure supported in [—, 7], ||h||L~ < 1}

With these normalizations (3) simplifies to

=L T (D)o (e-2) "

with g as described before, i.e.

() = —= for 6| <. §(6) = 0 for o] > M and g € O (5)

It is not immediately clear how to construct sequences q* = (¢))nez, with ¢, € {—1,1} for

each n € 7Z, such that
= 1 A\ n
fo@ =5 ag (2 - 3) (6)
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provides a good approximation to f. The most naive idea would be to take simply ¢\ =
sign ( f (%)) This doesn’t work, for the simple reason that there exist infinitely many
independent bandlimited functions ¢ that are everywhere positive (such as the lowest order
prolate spheroidal wave functions for arbitrary time intervals and sufficiently small symmetric
frequency intervals; see e.g. [14, 12]; picking the signs of samples as candidate ¢ would make
it impossible to distinguish between any two functions in this class.

First order ¥ A-quantization circumvents this by providing a simple iterative algorithm
in which the ¢) are constructed by taking into account not only f (%) but also past f (%),
we shall see below how this leads to good approximate qu. Concretely, one introduces
an auxiliary sequence (uy)nez (sometimes described as giving the “internal state” of the
YA quantizer) iteratively defined by

Up = Up 1+ f (%) —q

N n (7)
o=t (7).

and with an “initial condition” ug arbitrarily chosen in (—1,1). These u,, are then all bounded
by 1 by a simple inductive argument. We prove this in two steps:

Lemma 2.1 For any f € Cy, the sequence (u,)nen defined by the recursion (7) is uniformly
bounded, |u,| < 1 for alln >0, if |up| < 1.

Proof
Suppose |u, 1| < 1. Because f € (i, ‘f(%)‘ < 1, so that ‘f(%) +un,1‘ < 2, hence
() + s — sign (7 (3) + )] < 1 '

For negative n, we first have to transform the system (7) into a recursion in the other
direction. To do this, observe that for n > 1 we have

un_1+f<§> > O:Un—f<ﬁ):un_1—1<0

A
un,1+f<ﬁ> < 0:>un—f<ﬁ) =u, 1+1>0.
A A
In all cases we have thus sign (u, — f (%)) = — sign(us—1 + f (%)). The recursion (7)
therefore implies, for n > 1,
Up—1 = Up — f (g) - Sign(un - f (%)) ) (8)

which we can now extend to all n, making it possible to compute u,, for n < 0 corresponding
to the “initial” value uy € (—1,1). The same inductive argument then proves that these u,
are also bounded by 1. We have thus

Proposition 2.1 The recursion (7), with |ug| < 1 and f € Cy, defines a sequence (uy)nez
for which |u,| < 1 for alln € Z.

;From this we can immediately derive a bound for the approximation error | f(z)— fo» (2)].
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Proposition 2.2 For f € C;, A > 1, we define the sequence q* through the recurrence (7),
with ug chosen arbitrarily in (—1,1). Let g be a function satisfying (5). Then

‘f(w) -3 >0 (o - ;)‘ < <lg'llsr (9)
Proof
Using (4), summation by parts, and the bound |u,| < 1, we derive
10— 50l =5[Z0F) e+
! o <g (:=2) —g(x_ ”;1»‘

A
> =
)
/N
8
|
>3
N—
|
Q
A/~
]
|

3
>+
—_
~

1 2=3 1
< = ’ —
< AZ/an l9'(Wldy = S 119'll n

This extremely simple bound is rather remarkable in its generality. What makes it work
is, of course, the special construction of the ¢} via (7); the ¢} are chosen so that, for any N,
the sum 2521 q) closely tracks Zgzl f (%), since

N n N
‘;f(x)—;lqé

If we choose ug = 0 (as is customary), then we even have

N n N
;f(x) —;q,);

this requirement (which can be extended to negative N) clearly fixes the ¢} unambiguously.
The “¥” in the name Y A-modulation or ¥ A-quantization stems from this feature of tracking
“sums” in defining the ¢); YA-modulation can be viewed as a refinement of earlier A-
modulation schemes, to which the sum-tracking was added. There exists a vast literature on
Y. A-modulation in the electrical engineering community; see e.g. the review books [2] and
[13]. This literature is mostly concerned with the design of, and the study of good design
criteria for, more complicated X A-schemes. The one given by (7) is the oldest and simplest
[2], but is not, as far as we know, used in practice. We shall see below how better bounds
than (9), i.e. bounds that decay faster as A — oo, can be obtained by replacing (7) by
other recursions, in which higher order differences play a role. Before doing so, we spend the
remainder of this section on further comments on the first-order scheme and its properties.

:|’LLN—U0|<2.

= |un| < 1; (10)
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2.2 Finite filters

In practice, one cannot use filter functions g that satisfy the condition in (5) because they
require the full sequence (g)),cz to reconstruct even one value f(z). It would be closer to
the common practice to use G that are compactly supported (and for which the support of
G is therefore all of R, in contrast with (5)). In this case, the reconstruction formula (4)
no longer holds, and the approximation error has additional contributions. Suppose G is
supported in [—R, R], so that, for a given z, only the ¢, with [z — 2| < R can contribute to
the sum > q’\G(:L" — 2). Define I glz| = {n |z — %] < R}. Then we have

‘f(w) - 3 06 (¢ -3) (11)

32 (5) ) (=-3)

n

< -3 r(f)e(-5)

n

The second term can be bounded as before. We can bound the first term by introducing again
an “ideal” reconstruction function g, satisfying supp ¢ C [=Am, An] and §|j—r» = (2m)~1/2,

Then
\fm — %zf<§>e<x—§>\=§;f<§> o (== 3) -6 (== )]
g(e=3) -G (z=3)| <16 =gl + 176 =gl 5

by imposing on G that the L' distance of G and G’/ to g and ¢’/ ), respectively, must be
less than C'/\ for at least one suitable g, this term becomes comparable to the estimate for
the first term. (This means that G depends on A; the support of G typically increases with
A.) For the special case where |f| is integrable, we can also bound the first term in a simpler
way, by Fourier transforming and applying the Poisson summation formula:

i Aol s ()

1 A 1 & )
< — / o~ T / fQe B COGdc | de
1 o0 .
< ﬁ / O = VarG© L fe-+ 2miais
< |‘——G ‘d§+2/ &) |G — 2mkA)|dE

k£0

where we have exploited that f € Cy, and f is supported in [—m, 7r]. It follows that if G [
is closer to ——= than , and if G has sufficient decay so that > k0 1G(&— 2Tk | Xjej<r < F

(IG(€)] < C’g( + |§|) ¢ would be sufficient), then (11) is bounded by C'/A.
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Note that in practice, and except at the final D/A step mentioned in the introduction,
bandlimited models for audio signals are always represented in sampled form. This means
that once a digital sequence (q)),cz is determined, all the filtering and manipulations will
be digital, and an estimate closer to the electrical engineering practice would seek to bound

errors of the type
‘f (%)Y e

using discrete convolution with finite filters G*, rather than expressions of the type (9) or
(11). If we were interested in optimizing constants relevant for practice, we should con-
centrate on (12) directly. For our present level of modeling however, in which we want to
study the dominant behavior as a function of A, working with (9) or (11), or their equivalent
forms for higher order schemes, below, will suffice, since (12) will have the same asymptotic
behavior as (11), for appropriately chosen G?. Unless specified otherwise, we shall assume,
for the sake of convenience, that we work with reconstruction functions ¢ satisfying (5).

(12)

2.3 More refined bounds

In practice, one observes better behavior for |f(z) — qu (x)| than that proved in Proposition
2.2. In particular, it is believed that, for arbitrary f € Cq, one has

2
.1 1 n
g or [, 0 -3 0k (1-5)

with C independent of f € C; or of the initial condition ug for the recursion (7). Whether
the conjecture (13) holds, either for each f € Cy, or in the mean (taking an average over a
large class of functions in C; or Cs, with respect to an appropriate probability measure) is
still an open problem.

A priori, it is not surprising that a better bound than (9) would hold. After all, we used
very little in the derivation of (9). In particular, we never used explicitly that the f (%) were
samples of the very smooth (because bandlimited) function f —we would have obtained the
same C'/\ bound if the samples f (%) had been replaced by any other bounded sequence

(@p)nez for which
flz) = %Zang (l‘—;) : (14)

(There exist many such sequences, because the g (.72 — %) are typically not independent. For

instance, if g(§) = 0 for £ € I = [-Am, —=A(1 —¢)m]U[A(1 —¢)m, 7], and if b is a finite measure
supported in I, then bg = 0, implying > b (%) g (m — %) = 0 for all z. We could thus take
an = f (%) +b(%) for any such b, and satisfy (14). If in addition we impose b to be real and

even, and || < ~, then we would still have a,, € [—1,1] for real f € C; with |||z < 1—1.
An example would be b, = ycosnrt (1 — %) ) We could use such much “wilder” sequences
(an)nez in (7) and generate other possible 1-bit sequences q, for which we do not expect

fq to approximate f as well as when the true samples are used. This argument leads us to

C
dt < 5 5 (13)




suspect that the decay in A~! in (9) is not optimal. However, it turns out to be easier to
derive the bound (9) than to improve on it.

For some special cases, i.e. for very restricted classes of functions f, (13) has been
proved. In particular, it was proved by R. Gray [5] that if one restricts oneself to f = f,,
where a € [—1,1] and f,(t) = a, then

! 1 1 n
lim — () — < Ao (t— <

in Gray’s analysis the integral over ¢ is a sum over samples, and g is replaced by a discrete
filter G* (see above), but his analysis applies equally well to our case. A different proof can
be found also in [9]. Gray’s result was later extended by Gray, Chou and Wong [6] to the
case where the input function f(¢) is a sinusoid, f(t) = asin bt, with |b| < 7.

For general bandlimited functions, there were no results, to our knowledge, until the
work of S. Giintiirk [7, 8], who proved, by a combination of tools from number theory and
harmonic analysis, that, for all f € C; and all ¢ for which f(t) # 0,

‘f(t) > a9 (t - %)

In Giintiirk’s analysis the value of C' depends on |f’(¢)]; his ¢* (into which the 1/) factor
from (9) has been absorbed) is compactly supported, and has to satisfy various technical
conditions. Although there is no mathematical proof for the moment, numerical simulations
of intermediate results in Giintiirk’s work suggest that (16) may still hold, for general f € C;,
if the upper bound CA57¢ is replaced by CA~2*. For more details concerning the whole
analysis and this discussion in particular, we refer the reader to [8].

2

dt| da < % ; (15)

< OAate (16)

2.4 Robustness

In practice, the recursive scheme (7) would be implemented by a simple feed-back loop
circuit, with block diagram given in Figure 1.

U, U,_
(%) - - - Delay pt - j - - )

Figure 1: Block diagram implementing a first-order ¥A modulation. The symbol | stands
for 1-bit quantization: the output of this block is simply the sign of the input.

For readers not accustomed to reading these diagrams, here is a simple road map. The
whole diagram represents an algorithm, in which several quantities are computed from new

9



inputs or previously computed quantities; all the computations are done instantaneously, but
only at regularly occurring “clock times”, represented here by values of n € Z (in practice,
nothing is ever instantaneous, of course, but we assume here that the computation time
is significantly shorter than the clock time). Every arrow corresponds to a number that
gets transmitted (sometimes in different directions) and that can be used in computations
(adders or subtractors in our diagram), transformed (the quantizer box near the right of the
diagram), or held back for one cycle (stored in memory and recovered, as in the “Delay”
box). At every clocking time (i.e. at successive values of n € Z), a new sample value f (%)
is read in, and a new d) can be read out. By giving the quantity entering the Delay box the
label U,,, we see that Figure 1 is equivalent to

Up=Up1+f(}) —d)
d) = sign(U, 1) .

This is not quite the same as (7), but upon defining u, := Upt1 — f (%) ,qp = dp),,, it
reduces exactly to (7).

Remarkably, one can give a very similar block diagram for a circuit or algorithm that
computes, from the input sequence ry = a € (—1,1), x, = 0 for n > 0, the successive entries
(bn)nen of the binary expansion of 2(a + 1); this block diagram is given in Figure 2.

U, U,—
Tp— - > De]ay N ! > j > > d,

Figure 2: With input zg = a € (—1,1),x, = 0 for n > 0, the output (d,), of this block
diagram gives a binary representation for «; more precisely, %(1 + d,) are the entries in the
binary expansion of (1 + a).

The recursive algorithm reads now

Un - 2Un—1 + xn - dTL
d, = sign(U,—1) .

After the transformation @, = U,, .1 — %xn+1, b, = d+1, this becomes

{ yn = 2Up_1 + Tp — bn (17)

b, = sign(2u,_1 + x,)

One easily checks that if 4_; is chosen to be 0, if zp = a with a € (—1,1), and z,, = 0
for n > 0, then |G,| < 1 for all n (the same induction argument as before works, since

10



|24, 1 + x,| equals either |zg| < 2 for n =0, or 2|G, ;| <2 if n > 1), so that

N N
a — Z 27n5n Z 2 "(xn — En)
n=0 n=0
N

=Y 27"ty — 2iin 1) = 2 Nan| <2V =0 as N = o0

n=0

converging exponentially like a binary expansion. (Since the b, € {—1, 1}, this is not quite
a binary expansion; however, the b, = % € {0,1} are the digits for the binary expansion
of 112

The only difference between the two block diagrams lies in the presence of the multiplier
by 2 in the feedback loop in Figure 2, absent in Figure 1. How can this be squared with our
claim in the Introduction, i.e. how can XA quantization, which uses the circuit in Figure 1,
be so much cheaper to implement than binary quantization of less frequent samples, which
would use a circuit akin to Figure 27 The answer is that both circuits behave very differently
when imperfections, in particular imperfect quantizers, are introduced. Quantizers are never
perfect. Although we might desire to use g(x) = sign(z) for our 1-bit quantizer, we must
expect that in practice we may have, e.g., ¢(z) = sign(xz + ¢), where ¢ is unknown (and
may vary from one chip to another), except for the specification 6| < 7. A good algorithm
or circuit is one that will perform well even without very stringent requirements on 7; if
extremely tight specifications on 7 are necessary to make everything work, then this will
translate into an expensive circuit.

Let us replace the “sign” function in (7) by such a non-ideal quantizer; the new recursion

is then
Up = Up 1+ f (%) — Qn 18
{anQ(un_1+f(§)), (18)

and let us assume that Q(t) = sign(t —0) for some § with [§| < 7 < 1. It turns out that the
uy, are still bounded, uniformly in 6 € [—7, 7]:

Proposition 2.3 Let f be in Cy, let un,q, be as defined in (18), and let 6 € [—1, 7] be fized.
If lugl <1 —1, then |u,| < 741 for all n.

Proof
For n > 0, we use induction again. Suppose |u, 1| < A+1. Because f € C, |f (%)‘ <1. We
now distinguish three cases. If u,, 1+ f (%) > A, then u,, = u, 1+ f (%) —1le(A-1,A+1).
Likewise, if u,_1 + f (%) < —A, then u, = u, 1+ f (%) +1€(—A—1,—-A+1). Finally,
if —A < u, 1+ f(%) < A, then Q(u, 1 + f(%)) could be either +1 or —1, so u, =
U1+ f(3) = Quar + £ (%)) €(FA-1LA+1).

To discuss the case n < 0, we need to transform (18) again. Because Q(t) = sign(t — J)
for some unknown 4, we have in fact u, € (=14 9,1+ 4) for all n > 0, if we start from
up in this range. (The choice uy € (=1 + A,1 — A) ensures this.) It then follows that

Up — f (%) <difu, 1+ f (%) >0, and u, — f (%) >0 ifu, 1+ f (%) < 6, so that (18) can

also be rewritten as
tno1 =1t = f(3) = Q (un = £ (}))
tn1=Q (un— [ (%)) -

11



This implies, again by induction, u, € (-1 +9§,14+) C (-1 —A, 14+ A) foralln <0. n
By the same argument as in the proof of Proposition 2.2, this has as an immediate
consequence.

Corollary 2.1 Let f be in Cy, let X be > 1, and suppose g satisfies (5). Suppose the
sequence (@) )nez is generated by (18), with the imperfect quantizer Q(t) = sign(t+46), where
§ € [—7, 7] is arbitrary, and T < 1. Then, for allt € R,

‘f(t) ~ 33 (- 5)

We can also consider the case where 6 € [—7, 7] need not be fixed, i.e. where we have

<1—|—T
- A

gl - (19)

Uy = i+ f(5) —n (20)

¢, = sign (un_l + f (g) — (5n> ,
with (9, ), a sequence such that |0,| < 7 for all n.

Proposition 2.4 Let f be in Cy, let u,,q, be defined as in (20), with |§,| < T for all n. If
|ue| < 147, then |uy,| <1+ 7 foralln > L.

Proof

Same as in the first half of the proof of Proposition 2.3. [
Because we now have only a one-sided estimate for the |u,| (i.e. only for n > ¢), we have

to replace (19) by a one-sided estimate in ¢ as well. One has then

Corollary 2.2 Let f be in Cy, let X be > 1, and suppose g satisfies (5) as well as |g(t)] <C
(|t| + 1)"M=L, for some M > 1. Choose N > NTVM _ Suppose the sequence (¢ )nezn> n 5
generated by (20), starting with |u_y 1| < 1+ 7, and assuming |0,| < 7 for alln > —N.
Then, for all T > 0,

<2 (H L +T)||9'||L1> (21)

Proof

12



We have, for t > 0,

‘ﬂ@—-%fﬁ@gG—Q‘

AE @] S nme-3)
IRl R RIS

*° 1
< o [ @rlersh M s+ 1)l
N/A A
C N\M 1
< —([1+— —(1 ! .
< 5 (1+3) 300l
Since N > A\HY/M the desired estimate follows. n

If one replaces the “perfect” reconstruction function g by a suitable compactly supported
G*, as in §2.2, then one can also derive one-sided estimates similar to (21), exploiting the
compactness of support(G*). Although we must pay some penalty for the imperfection of the
quantizer in all these cases (the constants increase), the precision that can be attained is nev-
ertheless not limited by the imperfection: by choosing A sufficiently large, the approximation
error can be made arbitrarily small.

The same is not true for the binary expansion schemes (17). Suppose we use (17) to
generate bits b, € {—1,1}, and consider the approximation ay = 27]:7:0 27"b,, to the input
a, as before; the quantizer has been changed to Q(t) = sign(t — ¢), however. Suppose
now a = %; for the sake of definiteness, assume 6 > 0. Then (17), with this imperfect
quantizer, will give by = —1, so that ay = by + Zgﬂ 2-h, < —2N for all N, implying
la — an| > g for all N. The mistake made by the imperfect quantizer cannot be recovered
by working harder, in contrast to the self-correcting property of the >A-scheme. In order
to obtain good precision overall with the binary quantizer, one must therefore impose very
strict requirements on 7, which would make such quantizers very expensive in practice (or
even impossible if 7 is too small). On the other hand [3], ¥A-quantizers are robust under
such imperfections of the quantizer, allowing for good precision even if cheap quantizers are
used (corresponding to less stringent restrictions on 7). It is our understanding that it is this
feature that makes X A-schemes so successful in practice. It would be better, however, to see
the approximation error decay faster with \; faster even than the A% estimate conjectured
to hold for first order ¥A-quantization of bandlimited functions (see §2.3 above). For this
faster decay we must turn to higher order schemes.
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3 Higher order XA-quantization

3.1 The general principle

The proof of Proposition 2.2 suggests a mechanism by which better decay for |f(x) — qu ()]
could be obtained. The argument relied completely on the fact that f (%) — ¢} was rewritten
as the first difference of a bounded sequence; summation by parts then gave the estimate.
The following proposition states that if we can work with k-th order (instead of first-order)
differences of bounded sequences, then we shall obtain a A\=* decay for | f(x) — fo» ()| instead

of the A™! decay of (9).

Proposition 3.1 Take f € Cy; take X > 1, and suppose g satisfies (5). Suppose that the

q) € {—1,1} are such that there exists a bounded sequence (vy)ncz for which

£(5) - o= Ak = S (’j) Vs

=0

Then, for all x € R,

d'

dxk

< : [v]]
Il} oo

‘f(fﬂ) - % > ag (:E — g)

nez

Proof
It follows from (22) that

@)~ 1Y (x—})‘ =

> aton(+-5)| -3

where A" is the k-th order forward difference. Thus (see [4], p. 137)

1
A

k

A (9 (@ —3)) =Z(-D' (g (v — )

k/A n
= Jy oW (= 1) (Mt

(22)

(23)

where ¢y, is the k-th order B-spline, ¢ = Xjo,17% - - * X[o,1] (K convolution factors). Note that
¢ 1s positive, and supported on [0, k| (so that we can just as well replace the integration
limits by —oo and o0o). Moreover, > . op(y +m) =1 for all y € R, and all k € N\ {0}.
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It follows that we can estimate

‘f(x) - %Ztﬁg (x - g)

1 ik n+k
selvlie 32 [ 1o = " oo

<

IN

]_ 0
- ﬁ”””l‘”Z/ 19 () er(Ay — Az + 1 + k)dy

1
= Slvlleellg®lle ]

Remark

As in the first-order case, we can adapt this to the case where only finitely many consecutive
samples f (%) are known, and only the corresponding finitely many ¢} are computed. If
(22) holds for n = 0,..., N, then we can still conclude, by decomposing the error into two
components as in section 2.2, that

‘f(w) - ;ﬁjjq,ig (m—g)\

(1+2>) " +(1+ <x— %)2)—’( !

dk
+ —( max |vn|)‘ g

< C —
< CUk Ik

A _k<n<N ’

Lt

where we assumed that |g(z)| <C (1 + 22)~K~1/2. We shall therefore concentrate on the
forward recursion only, and on proving bounds on max_,<,<y |v,| that are independent of N.
The key to better decay in A for the approximation rate is thus to construct algorithms of type
(22) with k& > 1 and uniformly bounded v,,. A XA algorithm which has such uniform bounds
on the “internal state variables” is called “stable” in the electrical engineering literature; see
e.g. [11]. We are thus concerned here with establishing the existence of stable XA schemes
of arbitrary order. We first discuss the case k = 2 and 3, before proceeding to general k.

3.2 Second-order YA schemes

We shall consider the recursion

Up = Up—1+ T, — Gn
Up = Up_1 + Up (24)
dn = Sign[F(un—la Un—1, xn)] )

where the function F still needs to be specified. We are interested in applying this to the case
where the z, are samples of a function f € C;; however, our discussion of the boundedness
of uy,,v, is valid for arbitrary input sequences (z,)ncz, provided |z,| < a < 1. (Note that
this means we need to impose the additional requirement [|f||,~ < a < 1 on f € C; if we
want to derive a bound of type (23).
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Several choices for F' have been considered in the literature; see e.g. [2]. One family of
choices described in [2] is
F(u,v,z) =u+yv+z, (25)

where 7 is a fixed parameter. A detailed discussion of the mathematical properties of this
family is given in [17]. Another very interesting choice, proposed by N. Thao [15], is
Flu,v,z) = 6z — Tsign(z) N (u Lt + 3sign(x)

3 5 > +2(1— |z|)v . (26)

In both cases, one can prove that there exists a bounded set A, C R? so that if |z,| < a for
all n, and (ug, vg) € A,, then (u,,v,) € A, for all n; see [17]. It follows that we have uniform
boundedness for the v, if z, = f (%) for bandlimited f with ||f||z~ < a, implying a A\ ™2
bound according to (23). As in the first order case, it turns out that for (26) this A2 bound
can be improved by a more detailed analysis; for constant input, one achieves a A~*/2 bound.
For (25) an additional z-dependent offset has to be inserted in F to obtain such a A\~%/?2
bound, without the insert one finds only A=2. We refer to [10, 16, 17] for a detailed analysis
and discussion of these schemes. Robustness is an issue for second-order (and higher-order)
schemes, just as it was for the first-order case. In fact, the problem becomes trickier because
the quantization scheme should be able to deal not only with imperfect quantizers, but also
with imprecisions in the multiplicative factors defining F' in (26) or (27) below. The analysis
in [17] shows that we do indeed have such robustness, for a wide family of second-order
sigma-delta schemes. Proving more refined bounds than (23) for higher order XA schemes,
even for constant input, turns out to be much harder than for first order (where already the
analysis leading to (16) is highly nontrivial — see [8]). This is mainly because even for z,, = z
constant, the dynamical system (24) is much more complex that (7). In particular, the map

Ri,: R—=R
uru+x— sign(u + x)

has [—1,1] as an invariant set, regardless of the value of z € [—1,1]. In contrast, the maps

Ry, : R* 5 R? (27)
u u+r— sign(u+ 5 + )
(U) ~ <U+U+ZIJ— sign(u—i—%—km))

have similar invariant sets I';,, which now depend on the value of z € (—1,1), however. The

sets ', have fascinating properties which are still poorly understood; for instance, for each

fixed z,T', seems to be a tile for R? under translations by 2Z2. (This tiling property is

observed for many F', although we know of no proof in general.) For = # 0, the ', for (25)

can have interesting fractal boundaries; for “large” z, these I, are disconnected. (See Figure
3.)

On the other hand, the sets I', for (26) are connected neighborhoods of (0,0) bounded

by four parabolic arcs (see Figure 4); because of the explicit characterization of these sets, a

proof that the 277 — translates of I, tile R? is straightforward in this case. The smoothness

of the boundaries also makes it possible to refine (23) for this choice of F' and for constant
input (see [10]).
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Figure 3: The attracting invariant sets I', for two values of z (left: x = .2, right: x = .8)
and for the choice (25) for F', with v = .5. For z = .2, ', is polygon, with sides that can be
computed explicitly [10] ; for z = .8, I', is disconnected and fractal.
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Figure 4: The attracting invariant sets I', for two values of x (left: x = .5, right: z = .8) for
the choice (26) for F.

Neither of the two schemes (25) or (26) are easy to generalize to higher order. We shall
therefore concentrate our attention here on yet another choice for F',

F(u,v,z) = u+x + M sign(v) , (28)

with M > 1 to be fixed below. For this choice of F, we shall prove explicitly that the
Up, U, Temain bounded if |z,| < a < 1 via an argument that we will be able to generalize to
arbitrary order. With F as in (28), ¢ in (24) has two regimes:

o if |u, 1+ x,| > M, then ¢, = sign(u,_1 + z,)
o if |u, 1+ x,| < M, then ¢, = sign(v, 1).
We now have

Proposition 3.2 Suppose |z,| < a <1 for alln € N. Choose F' as in (28), with M > 1+2a,
and let u,, vy, g, be as defined by (24). Then, if [ug| < M + 1, we have |u,| < M + 1 for all

n € N. Moreover, if vg = 0, then |v,| < % for all n € N.
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We start by proving the following succession of Lemmas 3.1-3.4. In each of these lemmas,
we make the same assumptions as in the statement of Proposition 3.2.

Lemma 3.1 If jug| < M + 1, then |u,| < M + 1 for alln € N.

Proof
By induction. Suppose |u, 1| < M + 1. If |u, 1 + z,| > M, then |u,| = |up 1 + 2, —
sign(u,—1 + )| = [up_1 + 20| = 1 < |upq|+a—-1< M+1. If |u,q + z,| < M, then

Lemma 3.2 Suppose vy, < 0, and vgi1,Vk12,...,0%+r > 0. Define k to be the smallest
integer strictly larger than 121_‘/{1 + 1. If L > &, then there exists at least one | € {1,... Kk}

such that ugy; + Tpri1 < —M +1+a.

Proof
Suppose Ugi1 + Trioy .-, Upin1 + Tpax are all > —M + 14 a. Because vpy1,..., Vi1 are
all > 0, we have g2 =...= qr1x = 1, which implies
Ukt + Thyn-1 = Up T+ Z(xlm — Q1) + Thirtt
1=2
2M
< M+1+(/1—1)(a—1)+a<M+1+a—(1—a)1
—a
= —M+1+a. [
Lemma 3.3 Let vg, Vgi1,---,Uker be as in Lemma 3.2. If upyy + g1 < —M + 1+ a for

some l € {1,..., L}, then we have, for all l' satisfying | <1I' < L,

Ut + T < —M +1+a.

Proof

By induction. Suppose g, + Tpini1 < —M +1+a withn € {1,..., L — 1}; we prove that
this implies ug1n11 4+ Trinie < —M + 1+ a. If ugiy + Tpinyr > —M, then g1 = 1 (since
Ugtn > 0), hence ugini1 + Thonieo < —M +14+a+ 2pipnio—1 < —M + 1+ a. On the other

hand, if ugin+Tpin-1 < —M, then grinir = —1, and Uping1 + Thyniz < —M +1+Tpnyo <
—M+1+a. ]
Lemma 3.4 Let vg, Vi1, ...,V be as above. Then the ug,; decrease monotonically in [,

with ugy;—1 — Uk > 1 —a, until ugy + g1 drops below —M + 1+ a. All subsequent ugyp
with I' < L remain negative.

Proof

As long as ugyp+ Tpini1 > —M +1+a with n < L, we have qgipni1 = 1, S0 Ui — Ugini1 =
~Tppnpr +1 2 1—a fupy+ap41 < —M+1+a, then upyy + Ty < —M +1+a by
Lemma 3.3 if I' € {l,..., L}, so that upyy < —M + 1+ 2a < 0. [
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It is now easy to complete the proof of Proposition 3.2:

Proof
Lemma 3.1 already proved our assertion for the u,. We shall prove here that v, < %

The lower bound follows analogously.
Suppose Vg1, ...,V is a stretch of strictly positive v,, preceded by v, < 0. We have
then, for all m € {1,..., L},

m m
Ukym = U + E Ugpr < E Uky1 -
=1 =1

By Lemma 3.4, these u,; decrease monotonically by at least (1 — a) at every step until
they drop below a certain negative value, after which they stay negative. Consequently,
Ut < uppr — (1—a)(l—1) < (M +1)— (1 —a)(l — 1), at least until this last expression
drops below zero. It follows that

n

Vpym < max » (M +1)—(1—a)(l-1))

< ;( H}JralJ + 1) <2(M 1) - W_JralJ (1- a)>
- (M +2—a)? .
= T o1—a)

Remarks

1. The bound on |v,]| is significantly larger than that on |u,|. For a = .5, for instance
and M =1+ 2a =2, we have |u,| < 3 and |v,| < 12.25. Although we could certainly
tighten up our estimates, the growth of the bounds on the interval state variables, as
we go to higher order schemes, is unavoidable. We shall come back to this later.

2. It is not really necessary to suppose vy = 0. If |vg| < A, then we have |v,| < A +
1 (M+2—a)?
2 l1-a

in sign, we have |v,| <

for all n; moreover, once an index ¢ is reached for which v, and vy, differ

%W for all subsequent n.

3.3 A third-order XA scheme

Let us consider the construction we discussed for second order, but take it one step further.
We define the recursion
(W (1)

Un = Up1+Tn—(Gn

D = 2,
< D (29)
| = sign [ug,)l + z, + M, (sign(u,(f,)l + M, sign(uf,)l)))]
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where My, M, will be fixed below in such a way as to ensure uniform boundedness of the
(|u§’) |)nen, provided we start from appropriate boundary conditions. We assume again that
|z,] <a<1foralln>0.

There are now three regimes for the determination of the ¢,:

o if |u£}21 + x,| > M, then ¢, = sign(u,(zl,)l + x,)

o if |u 71+ x,| < My, then two possibilities exist:

— if |u 1| > M>, then g, = sign(u,, @ 1)

— otherwise, ¢, = sign(u(g) ).

n—1

Let us indicate here how the arguments of subsection 3.2 can be adapted to deal with
this case. We shall keep this discussion to a sketch only; a formal proof of this third order
case will be implied by the formal proof for arbitrary order in the next subsection. This
preliminary discussion will help understand the more general construction, however.

Flrst of all, exactly the same argument as in the proof of Lemma 3.1 establishes that
| < My +1 = M.

Next, imagine a long stretch of un +1> ufl% ..., all > M,. Then the corresponding ¢, 4+1

(1)
n—+l

then show that if uﬁl > —M;+1+2a > 0, the ugl will decrease monotonically, by at least
1

nit T Tniip1 drops below —M; +14-a (in at most «; steps), after

(1)
which all the subsequent u,, /,,

its mirror for the lower bound) leads to |ul)| < M.
One could then imagine repeating the same argument again to prove the desired bound

on the |un |: prove that if one has a long stretch of ul(i)l, e ,ul(i)L that are all positive, then

l(i)m must dip to negative values and remain negative, in such
a way that the total possible growth of the ul(i)m must remain bounded. We will have to make
up for a missing argument, however: when we followed this reasoning at the previous level,
we were hel%)ed b(y the priori knowledge that consecutive uly just differ by some minimal

amount, |un 11— Un | > 1—a. We used this to ensure the speediness of the dropplng ul( +)m, and

thus to bound the «!? . In our present case, we have no such a priori bound on |un 1 —u? |,

are all 1, unless u, ;, < —Mj. Arguments similar to those in the proofs of Lemma 3.2-3.4

(1 —a) at each step, until u

in the stretch are negative. As before, this argument (and

necessarily the corresponding u

l+m
so we need to find another argument to ensure sufficiently fast decrease of the “z( +)m. What
follows sketches how this can be done.

Suppose “1(3) <0, ul(i)l, e ,ul(i)L > 0. Then we must have, within the first ko indices of
this stretch (with k9, independent of L, to be determined below) that some ul(i)m < —Mo,.
Indeed, if ul(i)l, e ,ul(i)nrl > —Ms, then the corresponding ¢q;,, are 1, unless ul(i)mfl < =M.
As before, this forces the ul(}r)m down, until they hit below —Mj 4+ a in at most x; steps, after
which they remain below this negative value. This forces the ul(i)m to decrease, and one can
determine k4 so that if ul(i)l, . ,ul(i)m_l > — M, then uy ., < —Ms must follow. Once ul(i)l,

has dropped below — M5, the picture changes. We can get ¢y = —1, and the argument

that kept the ul(}r)m down can then no longer be applied. In fact, some of the u,(i)m with
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m > ' may become positive again, causing the ul(i)m
(2)

have x; consecutive uy,’ > —Ms, we must have for at least one of the corresponding indices,
that ul) < —M 1 + 1+ a, which forces the subsequent u,(ll), below this value too, and we are
back in our cycle forcing the ug), down until they hit below —M,. So if —My + k1 M] <0,
then the u'? don’t get a chance to grow to positive values within the first x; indices after
ul(i)l, < —M,. This forces all the ul(i)m to be negative for m =1'+1,..., L; since I' < ko, this
then leads, by the same argument as on the previous level, to a bound on u,(i)m

In the next subsection we present this argument formally, for schemes of arbitrary order;
the proof consists essentially of careful repeats of the last paragraph at every level. This

then also leads to estimates for the bounds M J’

to increase. However, as soon as we

3.4 Generalization to arbitrary order

We assume again that |z,| < a < 1 for all n € N. To define the ¥A scheme of order J for
which we shall prove uniform boundedness of all internal variables, we first introduce the
following constants.

(1+a) (30)

The scheme itself is then defined as follows

(u) = ul + 3, —qn

R R TP
¢, = sign {uglzl + M, sign [u,(f,)l -+ M, sign (uff’,)l + o
+M;_,sign (u,(;]:ll) + My, Sign(”iﬂl)))] }

\

If we write U, = u), then uff) = AJ-I(U) := ;7 (777)(~=1)'U,_1. As initial conditions
we take u(_]% =0forj=1,...,J; westart the recursion at n = 0. We then have the following
proposition:

Proposition 3.3 Suppose |x,| < a < 1 for alln € N. Let M; for j = 1,...,J, be de-
fined as in (31), and let the sequences (qn)nen and (ug))neN,j =1,...,J, be as defined
by (22), with initial conditions u(_]i =0 forj =1,....,J. Then U, := ne satisfies
U, | < 2(3k1)7 14V DU2DL, for all n € N

Remark
Note that this scheme is slightly different from the ones considered so far, in that the formula
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for g, includes u(l)l only and not the combination u( )1 + z,,. This is done merely for
convenience: it avoids having to single out the case j = 1 as a special case whenever we
write general lemmas for the ul) , below. Similar bounds can be proved when z,, is included
in the formula for ¢,; we expect that the numerical constants might be slightly better (as
they are in the first and second order case) but their general behavior will be similar.

The proof of Proposition 3.3 is essentially along the lines sketched for the third-order
case, albeit more technical in order to deal with the general case. The whole argument is
one big induction on j. We start by stating two lemmas for the lowest value of j, to start
off the induction argument.

Lemma 3.5 |u,(11)| < M;+1+a foralln eN.

Proof
The argument is very similar to that used in the proof of Lemma 3.1, except that x,, does
not appear in the definition of g,. We work by induction. Suppose |un 1| < M; +1+a.

If |u > My, then ¢, and u() have the same sign, so |u | < | | 1+ |z, <
|u |—1+a<|u |<M1+1+a

If|un 1|<M1,then|un)|<|ul)|+1+a<M1+1+a [
Lemma 3.6 If u,(fll, ce SJ)FN > Ms, with N > Ky, then there must emst led{l,...,k}
such that unlJ)rl < —M;. Moreover, for alll" € {l,..., N} we have then un+l, < —M1+1+a. A
similar statement holds if we start with u,(i)rl, . ,ufi)rN < —Ms, and other signs are reversed
accordingly.
Proof
The argument is again similar to the proofs of Lemmas 3.2-3.3. Suppose uELIJ)rl, . ,u&)mfl
are all > —M;. Then we have ¢,12 = --- = @15, = 1. Hence

K1
ulle, = ulh + Y (@nit = Gas) <My +1+a— (51— 1)(1 - a)
=2
< 3(la) — 5(+a) = —M; .

This establishes that uglll < —M; for some [ € {1,...,k1}. Next, suppose that u&)ﬂ <
—M; +1+4a, for some r with [ < r < N—1. If unlJ)rT > Ml, then ¢,.,+1 = 1, hence

USJ)rrH = EzlJ)rr + Tpir1 — 1 < uilr < =M+ 1+ if U’n—H" < —M, then uglrﬂ <
—M; + 14 |2piri1] < —M;+ 1+ a. In both cases, uglrﬂ < —M; + 1+ a, and we continue
by induction. [}
Next we introduce auxiliary constants, for j =1,...,J — 1,
R; = 42071)/{1
3
o
M! = 1M
N



as well as M) = 1(3k1)/714U=DU=2 0. These have been tailored so as to satisfy, for
=2 =1,

Mj = 2M]{71I€j,1
ki = Kj1+ (M;+ M)/M;_,
M; = M;+ M \kj

" / 3
M] = M] - Mjfl’%jfl 5

in addition, the third formula also holds for j = J.
We now state our general lemmas, used in the induction argument.

Lemma 3.7 (j)
|u£f)| < M; for n € N.

Lemma 3.8 (j)
If u#fll o udt) s My, with N > k;, then there must bel € {L,...,K;} so that

] » Yn4+N
uff}rl < —M;. Moreover, for alll' € {l,...,N}, one then has un+l, < =M. A similar
statement holds if we start with ufm), . ,ugjj,) < —Mj1, and other signs are reversed
appropriately.

Our induction argument then alternates two steps:
a. Lemmas 3.7(j) + Lemma 3.8(j) implies Lemma 3.7(j + 1)

b. Lemmas 3.7(k) + 3.8(k) for k < j, together with Lemma 3.7(j + 1), implies Lemma
3.8(j + 1).

Since the case j = 1 is established (see Lemmas 3.5, 3.6), induction will ultimately get us
to a proof of Lemma 3.7(J), which will complete the proof of Proposition 3.3. It remains to
prove steps a and b.

Proof of step a '
We prove only that ud ™ < M} ; the inequality ufty > —M;,, is analogous.

Assume uf Y < Mjg,u gjf), e ,uiffjb) > Mj;1. We need to show that none of these
Efjll),l =1,...,N, can exceed M}, ,. We have ugjll) — w4 Zk 1 nlk

By Lemma 3.8(j), at most the first x; terms in the sum can be positive, and each of
those is bounded by M} by Lemma 3.7(j). Therefore, for each [ € {1,..., N},

wll) < My + 1 M) = My, ]

Proof of step b

This step is the most complicated. In order to prove this induction step, we invoke a third
technical Lemma, that will itself be proved by induction. We put ourselves in the framework
where Lemmas 3.7(k) are proved for k < j + 1, as well as Lemmas 3.8(k) for k < j.
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Lemma 3.9 (j+1)

Let j € {1,...,J — 2} be fized. Take any k € {1,...,7}. Suppose ugff), . ,ug;f,) >
Mo with N > Kji1. Suppose that the set S C {n+1,...,n+ N} satisfies the following
requirements:

e S consists of consecutive indices only, and contains at least ki elements, i.e. S =
{n+m+1,....,n4+ M+ m} for some m >0 and M > Ky

o u) > M foralire S, alll e {k+1,...,j+1}
Then any ki consecutive elements in S must contain at least one r such that ugk) < —M;.
Moreover, once M < — My, for anr € S, then we have uff) < =M} forallr" € S;r" >r.

Proof
By induction on k. We assume Lemmas 3.7(j') and 3.8(j") hold for j' < j+ 1 and j' < j
respectively.

1. The case k = 1.

e We have vV’ > —M;: for all s € S, and all ' € {2,...,7}. We must prove that

if we have k1 — 1 consecutive elements in S, numbered r +1,...,7 + k1 — 1, for
which ugl, e ,ugm_l > —M;, then necessarily ugm < =M.
But if u,(,1+)1, . ,u,(,lﬁmfl > —M, then ¢, 40 = -+ = ¢r1; = 1 (because all the

indices are in S, so that for each s, ul) > —M; if 5 € {2,...,7}, and N ARAEN
M;.4.) It follows that

r+K1

1 1
Uﬁ(*-gm = uf“-i}l + z : (CEm o Qm)
m=r+2

< M{—l- (Iil — 1)(0,— 1) < —M,

o Next we must show that if ul") < —M; for some r € S, then uf}) < —My for
r'>rres.
This is again done as in the proof of Lemma 3.5, by induction on r':
— assume uﬁ}zl < —M7
— if uf}ll < —M,, then uf}) <—-My+a+1=-M
if US)_1 > — M, then ¢,» = 1 and ug,l) = “79)—1 +a—-1<-M'+a—1< —M/.
This completes the proof of the case k = 1 of Lemma 3.9(j).
2. Suppose the lemma holds for k£ = 1,... ky — 1, with ky < j. Let’s then prove it for
k = ]{70.

Take a set S that satisfies all the requirements for k = k.
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e In a first part, we must prove that among any xy, consecutive elements in .S’ there
(ko)

is at least one r such that u, "’ < —Mp,. That is, we must prove that if we can
find usH, e >u§]ff3~,c071 that are all > —Mp,, then ug_cf,lko must be < —Mj,.

Define S = {s+1,...,5+ kg, — 1} C S. Then S satisfies all the requirements in
Lemma 3.9(5+1) for k = ky—1. By the induction hypothesis, it follows that there

is a t among the first ky,_; elements of S such that u(ko V< —Mjp,—1. Moreover,

for all #' € S exceeding this ¢, u(ko RS < =My _,. It follows that

s—l—nko -1
(ko) _ § : ko 1) (kO*l) (ko—1)
us—l—nko - + + U’s—i—nko
t'=t+1

< MI::O - (K/ko -1- K/ko—l)Mlgg—l - Mko—l + ( Mko 1T M]::O—2)

_ ! " !

My, + M,’c0

—_ , B ——
- Mko M ko—1
ko—1

- Mko—l + M]i:o—Q

= _Mk() - Mkofl + M]:;072 S _Mko )

where in the first inequality, we used Lemmar 3.7 (kg — 1) to bound each of the

(ko—1) u(ko—l)

entries in the sum and we bounded the last term by writing u, gy = Ustrg,_y T

(ko—2)
StREg—1"
e In this second part, we must prove that if, for r € S, ulf) < —Mj,, then all ' € S
with ' > r must satisfy u(lfO) < —My.

For r' > r, let " = max{t < r/; ) < o} Then u(,,ll,..., (k") > — My, .

By the induction hypothesis, we must have, among the first x, 1 of these (if the

stretch is that long) an index t so that ugkrl) < —Mj, 1, and all later ' in the

stretch will have ugko Vo< —M;, ;. Tt follows that the u(,,ll, . ,u(ko1 cannot
increase after the first x,_; — 1 entries:

(ko) (ko) ]

k k
MAX | Upsr 15+ -y Ups (ko) (ko) ]

< max [U NS PR >ur”+nk0—1*1

ko k
< U+ MaXie(1,my 11} Dopg Unyy) < —Mig + (K1 — DM, .

Hence ul® < o) + M,y < =My, + Kgy—1 M, _, = —M] . This completes
the proof of Lemma 3.9(j). ]

We can now use this to complete the

Proof of step b:
Assume Lemmas 3.7(j') and 3.8(j') hold for j' < j, as well as Lemma 3.7(j 4+ 1). This also
allows us to use Lemma 3.9(j') for j' < j.
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e Suppose now ufﬁf), . SL%,) > Mo with N > k1. We have to prove that among

the first £, elements of this stretch, we have one for which u(J H) < —Mj41. As usual,

we assume ugfil ), e ,uﬁfjjjﬂ_l > —M; 1 (and we need to estabhsh ugj;l) < —M;iq).

Define S by S ={n+1,...,n+ kj41 — 1}, and fix K = j. Then, S,k satlsfy all the
conditions in Lemma 3.9 (j + 1). It follows that at most the first x; — 1 elements of S

can correspond to ud) > —M;. Therefore the max of {UEJ +1); t € S} must be achieved
among the first k; — 1 elements, and

L) max{ui”l)'t ce{n+1,...,n+r; +1}} = (Kjpa — k; — )M}

Ntk i1
< My, — (k301 — 1) MY = — M
e Next, we need to prove that if u(Hl) < —Mj, for some [ € {1,..., N}, then u£+l,) <
—M}, for I' € {l,...,N}. Define I" := max{t < I : 53;1) < —M,1}. Then
ugjl,l,) SRTEE ugjl,l) 1 = —M;,:. We have again that the max of these must be obtained
among the first x; — 1 entries (since after that, the u¥™ must decrease monotonously),
so that

(7+1) (5+1) EARY
max(uy g, uld ) ) < ud )+ S ud)
!
< _MjJrl + (Iij — ]')MJ

= W9t <WUM) 4 M) < —Mj + M) = —MY,, .
e We have thus proved Lemma 3.8(j+ 1), completing the proof of step b in our induction
process. [ |

Remarks

e There is clearly a lot of room for obtaining tighter bounds. By being more careful, one
can replace the factor 4/="V=2) in M/ by v/~DU=2) with v < 4. We have not been
able to reduce the growth in J of the exponent below a quadratic, however. We shall
come back to this, and its implications, in the next section.

e As in the lower order special cases, it is not really crucial to start with u(fi = 0; other
initial conditions can also be chosen, with minimal impact on the bounds.

4 Conclusions and open problems

Our construction in section 3 showed that it is possible to construct stable ¥ A-quantizers
of arbitrary order. The quantizers (31) are, however, very far from schemes built in practice
for 1-bit XA-quantization. Often, such practical schemes involve not only higher order
differences (as in our family), but also additional convolutional filters; it is not clear to us at
this point what mathematical role is played by these filters. It may well be that they allow
the bounds on the internal state variables to be smaller numerically than in our construction.
This is certainly one topic for future work.
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In addition, other notions of “stability” are often desirable in practice. For instance,
audio signals often have stretches in time where they are uniformly small in amplitude. It
would be of interest to ensure that the internal state variables of the system then also fall
back (after a transition time) into a bounded range much smaller than their full dynamic
range. At present, we know of no construction to ensure this mathematically.

The fast growth of our bounds M; in subsection 3.4 is also unsatisfactory from the purely
theoretical point of view. The combination of Propositions 3.1 and 3.3 leads, for f € C; with
Ifllz= < a < 1, to the estimate

1 n 1 2
__E:(k),A _ e L kok

where we have absorbed the bound on ||ZZ—§|| 11 into o (which is possible for appropriately
chosen g, within the constraints of (5)), and where we write qr(lk)’A for the output of the k-th

n

order £A-quantizer (31), given input (f (X))nez . Given A, we can then select the optimal
ky, which leads to the estimate

1 n
- (N o ry—vlog A
‘f(:v) F ket =5 < ONT,
where q,({\) = qﬁbk*)”\ . By spending A bits per Nyquist interval, we thus obtain a precision

with an asymptotic behavior that is better than any inverse polynomial in A, but that
is still far from the exponential decay in A that one would get from spending the bits on
binary approximations to samples taken at a frequency slightly above the Nyquist frequency.
We don’t know how much of this huge discrepancy is due to our method of proof, to our
stable family itself, or to the limitation of ¥ A-quantization schemes in general. In [1] it
is proved that Y A-schemes can never obtain the optimal accuracy of binary expansions;
sub-optimal but still exponential decay in A is not excluded by [1], however. It would be of
great interest to see what the information-theoretic constraints are on XA-schemes or other
practical quantization schemes for redundant information; a first discussion (including other
robust quantizers) will be given in [3], but there are still many open problems.
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