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In this paper, we analyze the modified method of characteristics (MMOC) and an improved
version of the MMOC, named the modified method of characteristics with adjusted advection
(MMOCAA), for multidimensional advection-reaction transport equations in a uniform manner.
We derive an optimal-order error estimate for these schemes. Numerical results are presented
to verify the theoretical estimates.
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[. INTRODUCTION

Advection-dominated transport partial differential equations (PDEs) arise in petroleum
reservoir simulation, subsurface contaminant transport and many other important ap-
plications [1, 9]. The numerical treatment of these equations often presents severe diffi-
culties. Standard finite difference or finite element methods or upwind schemes tend to
generate numerical solutions with severe nonphysical oscillation or excessive numerical
diffusion. The modified method of characteristics (MMOC) was first formulated for an
advection-diffusion equation by Douglas and Russell in [7] and then extended by Russell
[13] to nonlinear coupled systems in two and three spatial dimensions. Similar schemes
have been developed by Pironneau [12] for the incompressible Navier-Stokes equations,
and by Benque and Ronat [2] and by Morton, Priestley, and Siili [11] for advection-
dominated transport equations.

In the MMOC scheme, the time derivative and the advection term are combined
as a directional derivative along the characteristics, leading to a characteristic time-
stepping procedure. Consequently, the MMOC symmetrizes and stabilizes the governing
PDEs, and allows for large time steps in a simulation without the loss of accuracy and
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eliminates the excessive numerical dispersion and grid orientation effects present in many
upwind methods. An algorithm combining the mixed finite element method and the
MMOC scheme has been successfully applied to the miscible displacement problem in
porous media by Ewing, Russell, and Wheeler [10]. Recently, in the simulation of two-
phase immiscible flow in porous media, Douglas, Furtado, and Pereira [5] formulated
an improved version of the MMOC, named the modified method of characteristics with
adjusted advection (MMOCAA), to correct the mass balance error of the MMOC by a
higher-order perturbation of the foot of the characteristics. Douglas, Huang, Pereira [6]
derived appropriate forms of the MMOCAA schemes for advection-diffusion problems.
The MMOCAA scheme conserves mass and preserves the conceptual and computational
advantages of the MMOC scheme.

For advection-dominated equations with nondegenerate diffusion, optimal-order con-
vergence rates of O(h**1 + At) in L? at each time level for the MMOC scheme was
proved in [7] by Douglas and Russell, where k is the degree of the piecewise polynomial
approximating space. But these estimates fall short for the MMOC scheme for pure
advection problems. The error estimate for the MMOC applied to periodic linear ad-
vection problems in multiple space dimensions is at best O(h* + At) in L? [4], which is
a suboptimal-order error estimate in the sense that the power of h is one lower than is
possible for a best approximation. Recently, Douglas, Huang, and Pereira [6] obtained
a suboptimal-order L? error estimate of O(h + At) for the piecewise-linear MMOCAA
scheme for an advection-diffusion equation with nondegenerate diffusion.

In this paper we analyze the piecewise-linear MMOC and MMOCAA schemes for
multidimensional advection-reaction equations uniformly and prove an optimal-order L?
error estimate for these schemes. The rest of this paper is organized as follows: In
section II, we briefly review the MMOC and MMOCAA formulation. In section III, we
prove the main error estimate. In section IV, we prove an auxiliary lemma which is
crucial in deriving the optimal-order error estimate. In section V, we perform numerical
experiments to verify the theoretical estimates.

[l. THE MMOC AND MMOCAA FORMULATIONS

We consider the following two-dimensional linear advection-reaction equation

%—ku-Vc—«—Rc = f(z,t), (z,t) € Qx(0,T],

ot (2.1)

c(z,0) =co(x), z €1,
where Q = (a,b) X (¢, d) is a rectangular domain. u(x,t) = (Vi(z,t), Va(z,t)) is a velocity
field, R(x,t) is a first-order reaction coefficient, f(x,t) is a given function describing
source terms, and c(z,t) is the unknown function representing the solute concentration

of a dissolved substance. For convenience, we assume that problem (2.1) is Q-periodic,
i.e., we assume that all functions in (2.1) are spatially -periodic [5, 6].

A. Preliminaries and notation

On the spatial domain 2, we define the following Sobolev spaces

2@ {1 | [ Plare<o).
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We will drop the domain €2 in these notations when it is clear. In addition, we also use
the following spaces that incorporate time dependence for any spaces X defined on €2

LP(th, ta; X) = {w(m,t) ‘ w(-,t)]x € L”(tl,tg)}

2

H™ (1,1, X) =S w(m,t) | Y / Yol d<ool,
0<a<m X
with the norms
lwlLe(ey i) = H||w(,t)||x‘ Lp(thtz), 1<p< +oo,
1/2
2
ol = | X[ Gen] a
0<a<m x
We define a partition of the time interval [0, T] by
. T
m =mAt, m=0,1,...,M, with At:M’ (2.2)
and a discrete time-dependent norm
[0/l 07y = 1m0, ot

B. The Modified Method of Characteristics (MMOC)

In the modified method of characteristics, the time derivative and the advection term in
Eq. (2.1) is written as a directional derivative

Oc Oc
= . - 2 Y¢
5 (& tm) +u(@,tn) - Ve(@, tm) L+ |u(@, tn) 2 5=

along the characteristic r(7; x,t,,) defined by

dr
dr

(@, tm),

= .
T=tm

= u(r,7), (T &, tm)

Then the directional derivative %(m, t,,) along the characteristic r(7;x,t,,) is approx-

imated by a backward difference quotient along the approximate characteristic in the
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time stepping procedure [7]

Oc e(x,ty) — c(x*, tm-1)

T+ (@, tn)P 5 (@, tn) = + Bi(c(mtm),  (2.3)

where

z* =x — u(x,t,)At,

Ei(c(x,t)) = /1 + |u(z,t,,)? %(m,tm) _c(xtm) _Act(m*’tm_l)-

A weak formulation for problem (2.1) states as follows: Find c(z,t,) € H'() for
m=1,2,..., M, such that for any w(z) € H(Q)

(2.4)

[ i) =) ) [ e, el o)

At (2.5)
:/ﬂ%%m@m+/E@@@mmmm.
Q Q
We introduce a uniform rectangular partition on Q by
T*: z;=a+iAx, 1=1,2,...,I, with Az = b;a,
ile (2.6)

TY: yj=a+jAy, j=1,2,...,J, with Ay =

Let h = [(Az)2+(Ay)?]'/? be the diameter of the partition, we assume that the partition
is quasi-uniform, i.e.,
< h <M <+
—_ 00.
= min{Az,Ay} = "
Let S,(2) be the continuous and piecewise-bilinear finite element space on Q with the
partition in (2.6) and is Q-periodic. Then the MMOC scheme states as follows: Find
cn(Tyty) € Sp(Q) for m=1,2,..., M, such that

/Qch(matm) —A‘fz(m*’tm’l)wh(w) +AR(w,tm)Ch(watm)wh(w) da

:/Qf(m,tm)wh(m)dm, Vun(x) € Sh(%).

2.7)

The MMOC scheme (2.7) follows the flow by tracking the characteristics backward
from a point x in a fixed grid at the time step ¢,, to a point «* at the previous time
step t,,_1- Hence, the MMOC avoids the grid distortion problems present in forward
tracking methods. Unfortunately, MMOC fails to conserve mass.

C. The Modified Method of Characteristics with Adjusted Advection (MMOCAA)

Here we briefly outline the idea of the MMOCAA and refer readers to [5, 6] for the
detailed development and description. Summing the MMOC scheme (2.7) for all the test
functions, we obtain

/ch(a:,tm)da:+At/ R(x, tm)ch(x, ) de
Q Q (2.8)
:/ch(:c*,tm_l)dm+At/ f(z, ty)dx.
Q Q
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On the other hand, integrating Eq. (2.1) over the space-time strip € X [t;,—1,tm] and
applying the divergence theorem, we obtain

/Qc(a:,tm)da:+/timl/ﬂ[V-u(a:,t)+R(a:,t)}c(a:,t)d:z:dt

:/Qc(a:,tm1)dw+/ttm1/ﬂf(a:,t)da:dt.

Applying Euler quadrature at time ¢, to evaluate the space-time integrals in Eq. (2.9),
and then taking c(x,t,_1) = cp(®,tm_1), we obtain the following equation of mass
conservation in the integral form (up to the order of the truncation error)

(2.9)

/Q {1 + At [—v cu(®, ) + R(a:,tm)] } o(@, tr)dw

:/ch(m,tm,l)dw—i—At/f(a:,tm)da:.
Q Q

(2.10)

Eq. (2.8) is the equation of the mass conservation, which the MMOC solution ¢y, (x, t,,)
satisfies for the given initial condition cp(x,tmy 1) at time ¢,, 1. In contrast, Eq. (2.10)
specifies the true (up to the local truncation error) mass conservation equation which the
exact solution c(x,t,,) of (2.1), starting from the initial condition cp,(x,t,—1) at time
tm_1, satisfies. Let

Qm_1 :/ch(w,tm_l)daz+At/V-u(:z:,tm)c(a:,tm)da:,
Q Q

m-1 Z/ ch(”, ty—1)de.
Q

From Egs. (2.8) and (2.10), we see that to maintain mass balance we must have
Qm-1 = QF,_,. Because c(x,ty) is unknown in the evaluation of Q,—_1, it is approxi-
mated by an extrapolation of 2¢p (@, tm—1) — cn(®, tm—2).

If Qm-1 # QF,_1, we see that the MMOC scheme (2.7) will introduce mass balance
error. To correct this error, the following higher-order perturbations =’} and z* of =~
are defined for some fixed constant x > 0

Tt =z — u(@, ty) Al + ku(T, tm)(AL)? = ° + ku(z, tm)(AL)?,

(2.11)
¥ =z — u(x, ty,) At — ku(x, t,)(At)? = x* — ku(x, t,)(At)2.
Then we let
max{cp(x,tm—1),cn(® ,tm-1)}, if Q1 < Qm-1,
(@ tm 1) =4 fen * 1), enl ) V) : Q* 1S Qe (2.12)
mln{ch(aa»atmfl)ach(wfatmfl)}a if mel > mely

and set
kal = / c#(w*,tm)dw.
Q
Then one needs to find 6,,,_; such that

Qm-1=0m 1Qp_1+ (1 — emfl)QﬁAv



6 WANG

and let

En(@  tm 1) = Om 10 (¥ tm 1)+ (1 = Om_1)cl (2, tm_1). (2.13)
Then, one has

/ eh(T* tmo1)de = Qm_1.
Q

In the MMOCAA procedure one replaces the cj(x*,t,,—1) term in the MMOC scheme
(2.7) by ¢n(x*, tm—1). Consequently, the MMOCAA scheme conserves mass globally.

[1l. ERROR ESTIMATES FOR THE MMOC AND MMOCAA SCHEMES

In this section we derive optimal-order error estimates for the MMOC and MMOCAA
schemes. We notice that the only difference of the MMOCAA scheme from the MMOC
scheme is that in the cp(z*,tm—1) term in the MMOC scheme (2.7) the z* is possibly
replaced by one of its higher-order perturbations =% and x* defined in (2.11). Hence,
we can analyze both schemes in a uniform manner, with the understanding that in the
MMOCAA scheme the * could be one of the 7 and x*.

Let II : C(2) — Sn() be the piecewise-bilinear interpolation operator. For m =
0,1,..., M, we define

e(x,tm) = cn(@,tm) — c(x, tm), (e tm) = cp(x, tn) — He(x, t),

77(‘1’5, tm) = HC(:E, tm) - C(:l:, tm)
to be the global truncation error, the error between the numerical solution c; and the

piecewise-bilinear interpolation Ilc, and the piecewise-bilinear interpolation error Ilc —c,
respectively. It is well known that the following estimates hold [3]

ILf = fllzz) < M B2[|fll12(q), Vf € H*(Q),

I fullee@) <M A Y| fullee),  Vin € Su(9).

Subtracting the MMOC scheme (2.7) from the reference equation (2.5) and choosing
the test function w(z) = &(«, t,,), we obtain the following error equation

/Qe(f'%tm) Aet(m*’tm_l)g(a:,tm)da:+/QR(:E,tm)€(ﬂ3atm)f($atm) dx 3.3

. —/QEl(c(a:,tm))f(a:,tm)dw.

(3.1)

(3.2)

Since the interpolation error n(x,t,,) is given by (3.2), we only need to estimate &(x, t,,)
by rewriting Eq. (3.3) in terms of £ and 7 as follows

| E@tnde = [ 6@ tur)é@tu)dn + [ n(e" tna)é(@ t)da
Q Q Q
_ /n(w,tm)g(a:,tm)dw—i—At/R(a:,tm)§2(w,tm) dx
Q Q
+ 8t [ R tn)1(@,tn)6(a, ) de

At /; Eq(c(z,tm))é(x, ty)de.

(3.4)
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The first term on the right-hand side of Eq. (3.4) is bounded by

IN

| @ tné@ e <5 [ €6 tnadet g [ et

1+ LAt 1
< - / gz(matm—l)dm + = / §(m,tm)d:1:,
2 Q 2 Jq
where we have used the following relation for the Jacobian determinant

det <$> - [det (%ﬁ,)] h 1 (3.6)

- [det (;; [a: - u(a:,tm)At}>} =1+ O(At),

(3.5)

and have replaced the dummy variable * formally by « in the first integral on the
right-hand side of the last “<” sign.
The fourth and fifth terms on the right-hand side of Eq. (3.4) are bounded by

‘At/ R(x,t)E% (2, t) da:+At/ R(x, tm)n(x, tm)E(x, tm)dx

Q Q

< LAH|E(x,tn) |32 + LAHn(@, tm) |32 (3.7)
< LAt[E(@, tm) (|72 + LAt |[el| 7o (0,712

The last term on the right-hand side of (3.4) was bounded by [7]

At/QEl(c(:c,tm))f(:c,tm)dm

o2c11? (3.8)

< LAY, tm) 3 + L(AD? || 2

Lz(tm—lytm§L2)

However, the estimate of the remaining two terms on the right-hand side of Eq. (3.4)
presents the major difficulty. The techniques used in the previous analyses for the MMOC
scheme [4, 7] only lead to a suboptimal-order error estimate that does not reflect the
strength of the MMOC and the MMOCAA schemes. To derive an optimal-order error
estimate for the MMOC and the MMOCAA schemes, it is crucial to bound these two
terms in an optimal order. We present the detailed analyses in the auxiliary lemma in
the next section; there we obtain

[t ettt

3.9
< LAUE(, ) 32 + LAY el o o 39
FALAL [0+ (A llelldr o,z + Nelm 0,00 |-
where A = sgn(|Cr|) with Cr being the Courant number defined by
Cr= max { Vi(z, t)|At M(m’t)'m} . (3.10)
(@,4)€2x[0,T] Az Ay

Hence, A =0 if Cr < 1 and A = 1 otherwise.
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Incorporating (3.5) through (3.9) into (3.4), we obtain

€@ ) 125
< (£ 1a8) (€@ tm) 22 + 116G tm1)]2
= 2 ytm )| L2 ybm—1)]|L2
) o o2 |? (3.11)
ToNL2 (1 ,tm;L?)

FALAL (1 + (A llelfs 0.z + el o209 |-

Canceling 1||é(x, t,,)||22 on both sides of (3.11) and summing the resulting equation
over m, we obtain

- 82c||?
€@, tn)ll7 < LAEY " [[€(@, t)|[72 + L(AL)? 92
4k:0 ) ) L2(0,T;L2)
+ L[h" + (At) ]HC”LOO(O,T;HZ) (3.12)

+ AL + (A2 [l o a2y + el e o.2,9)

Taking At sufficiently small such that LAt < 1/2 and applying Gronwall’s inequality,
we obtain the following estimate
e
072 | L2 (0,1:22) (3.13)
+ AL (12 + A4 llell 2o,y + el 7509 |-

llimo ey < LI+ Atlelimo e + LAY

Combining (3.13) with the estimate (3.2), we obtain

Theorem 3.1. Let c(z,t) be the exact solution of (2.1) satisfying c € L>=(0,T; H*t*(Q))
NHY0,T; H?(?)) and g—ig € L%(0,T; H?(S2)). Let cp(x,tm) be the numerical solution of

the MMOC or MMOCAA scheme. Then the following optimal-order L* error estimate

holds

8%c
972

len = ellzoeozi02) < LB + Al o,z + LA

LZ(O,T;LZ) (3‘14)
+ AL [h* + At [HCHHl(o,T;HZ) + ||C||L°°(0,T;H3):|-

Here A =1 if Cr <1 and 0 otherwise, where the Courant number Cr and \ are defined
in (3.10) and below (8.9), respectively.

Remark.  For simplicity of presentation, we have presented the analysis for the MMOC
and MMOCAA schemes for two-dimensional advection-reaction equations. The analysis
directly carries over to higher-dimensional problem.
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IV. PROOF OF THE AUXILIARY LEMMA
Standard techniques only yield a suboptimal-order estimate

/n (1@ t) = (@ trn2) | (@ ) e

< LAt|E(@, tm )| 72 + LA B2[|cl| T o0 (0,772

This in turn leads to a suboptimal-order estimate of O(h + At) for the MMOC and
MMOCAA schemes, and does not reflect the strength of these schemes. In this section
we prove the following superconvergence estimate

Lemma 4.1. The following estimate holds

/n (1@, t) = (@ trn1) | (@ 1) e

< LAHE @, tw)llFe + LAY el 0,731
FALAL [+ (A llel o,rir) + el 0,10

where A =1 for Cr <1 and 0 otherwise.
Proof. Since Cr > 1 implies h > LAt, we bound the left-hand side of (4.1) by

/Q[Tl(w,tm) - 77(93*7tm71)]§(w,tm)dﬂ3
< LI, tallza [ In(@, tu) 122 + 0@, traa) 122] 12)
< LR2(|E(@, tm) || 22 llell Lo 0,73 12)

< LA|E(2, tm)l[72 + LA e Zoo (0,7;12) -

We now concentrate on the case C'r < 1. In this case we rewrite the left-hand side of
Eq. (4.1) as follows

/Q D bt )E (@, ) dat — / 0 b )€ (2, b )t

- _/Q M:" %(w,t)dt] £(®, tm)da ws)
_/Q|:77(€B,tm—1) - n(m*,tm_1):|§(m,tm)dm‘

The first term on the right-hand side of (4.3) is bounded by
tm
/ E(az,t)dt] £(@,t)da

/S;) tm—1

<@y [ [ /m’" (%(:c,t))zdt] " e tlie (4.4

< LAHE(x, tm) 22 + Llnlli o,y e0i22)

on

< LAHE(, tm) 72 + LhH el 1,y tir2)-
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We now decompose the second term on the right-hand side of Eq. (4.3) as follows

/Q[n(a:, tm-1) —n(z", tm_l)] E(, t)da

= /Q{n(m, Y tm—1) —n(z", ¥, tmfl)}f(w, Y, tm)dzdy (4.5)
+ [ 1o thtines) =057 )t
where
z¥(z,y) =z — Vi(z,y, tm)At, y*(z,y) =y — Vao(z,y, tm)At. (4.6)

We substitute the expression below into the first term on the right-hand side of (4.5)
Nz, y*, tm-1) — (", y*, tm-1)
Ld
= /0 den(a; +0(x —2*),y*, tm—1)db
= [ O e = a0t ) (o - 0
and then integrate the resulting term by parts to obtain
/Q[n(m,y*,tmfl) —n(z", y*,tmfl)}f(w,y,tm)dmdy
1
0
= / [/ 6—77 (" +60(x—2),y" tm-1) (z— w*)de] &(z,y, tm)dzdy

x

//[ (" +8(z — 2"), 4", tmliax (2 —2%)

(et 40 0,y ) 2 *)]ﬁ(w,y,tm)dﬂcdydé’ (4.7)
—/ / (z*+6 x—w*),y*,tm,l)(m—m*)%(m,y,tm)dwdyde
/ / n(b* + 8(b— b*), y*, tm_1) (b—b*)}f(b,y,tm)

- a+9(a—a )y ¥ tm—1) (a—a*)]{(a y,t )}dydﬂ

The last term on the right-hand side of (4.7) vanishes due to the periodicity of the
functions. Using (4.6) and the fact that

oz —z*) OV ~
T ox (.’17 Yy tm )At, % - 617 (.’17 y,t )Ata

we bound the first term on the right-hand side of (4.7) b

oyt 9V,

Dz + 0 — 2°), 4" b 1) (z— ")

Q [311 9
(x

"+ 000 = )0 o) 2552 (ot )yt

< LA (|6t [I0( tm1) 122 + At [0, ) 11
< AL (@, t)lI3s + LAE [B+ (AOR] ell3w o o1

(4.8)
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We rewrite the third term on the right-hand side of (4.7) as

// (* + 8(z — 2%), y" b 1)(m—x)g€

_At/ / ¥+ 0(x — ), y*, tm-1)Vi(z, y,t )gf( T, Y, tym)dzdyd
= At/ ‘/1(:1: tm)%(l' y,tm) [U(%Zlatm—l)

/ / y('y),tml)dfyde] dzdy (4.9)
—At/ Vi(z,t )65(33 b )0(@, b 1) da

+At///V1wy, g(fvy,t)
-

(@ = )52 (@(2,0),52) )

. 0
+(y" - y)a—Z(w(%ﬂ),y(v),tml)] dzdydde,

(z,y,tm)dzdydd

where z(v,0) =z +v(1 — 0)(z* — z) and y(y) =y + v(v* —y).
We use the inverse inequality (3.2) to bound the second term on the right-hand side
of (4.9)

2t [ [ [ Vitetw) 2t [0 00"~ ) 2260000002 o)

o ) aZ( (v,e>,y<v>,tml>] dadyd (4.10)
< L(AY? h (@, tm)lr: (2, 1)
< LA @, ) 22 + DO el 0,12

A standard estimate to the first term on the right-hand side of (4.9) yields

At/ Vl(a;,tm)n(m,tm,l)%(w,tm)dw

Q
< LAtR?(|€(x, tm) |12 e, tm—1) | a2
< LAt|g (@, tm)lI 22 + LAtH?||c(@, tm—1)]| 12,

where we have used the inverse inequality (3.2) in the last “<” sign of (4.11). The
estimate (4.11) will lead to a suboptimal-order estimate of O(h + At) for the MMOC
and MMOCAA solutions. To derive an optimal-order estimate for the MMOC and
MMOCAA schemes, we have to bound this term in a different way. We sum this term
by parts and obtain

At/Vlmt (@, b l)gi(mt )

Z/ / Vi(z,y,tm (I,y,tm_l)[.f(xi,y,t ) —&(zi—1,y,t ):|dmdy—
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At b d
- / / V(%0 b )1(2 s b 1)E (b, U, tn) ddly
At &[4
——/ / Vl Z,Y,tm n(w,y,tma)f(a’y’tm) dzdy
Z/ / Vi(z + Az, y,tm) — Vl(:v,y,tm)dz] (4.12)

77 z yv m— 1 :Umyv )d{Udy

[ e snt - ntaet )

Vl(:v T Az, Y, tm)E(2i, Y, tn)dzdy.

We bound the third term on the right-hand side of (4.12)

I-1 d z;
% Z/ / {V1(:v + Az, y,tm) — Vi(z,y, tm)]
i=17¢ YTi-1

n(z, y,tm DE(xi, Y, tm)dady|

<LAtZ/ /mz1

< LA E(@ ) 2 [, b2
< LAt ||§($,tm)||2Lz + LAt h* ||C||%°°(0,T;H2)’

(4.13)

T, Y tm— 1 xnya ‘dw

where in the second “<” sign, we have used the equivalence between the discrete and
continuous L? norms. Namely, there are two positive constants L; and Lo such that

I d
Lyllé (2, tm)[|72 < ZAw/ (i, Yy tm)dy < Lo||E(z, tm) |72
i=1 ¢

However, if we similarly bound the last term on the right-hand of Eq. (4.12), we can
only obtain a suboptimal-estimate. To derive an optima-order estimate, we introduce a
new function ¥ (z,y,t) by

Az
Y(z,y,t) = c(z + Az, y,t) — c(z,y,t) = / %(a + z,y,t)da. (4.14)
0

Because the spatial partition (2.6) is uniform and n(z+Az, y, t,, 1) is a shift of ¢(z, y, tm—1)
by one grid point, so the forward difference operator and the shift operator is commuta-
tive. Hence, we have

n(z+ Az,y,tm_1) = 12,y tm-1)
=M —1De(z+ Az, y, tm—1) — (I — De(z, y, tm—1)
=(II-1) [c(a: + Az, y,tm-1) — c(z,y, tm,l)}
= (I -Dy(z,y, tm—1)-

We substitute the identity (4.15) into the last term on the right-hand side of (4.12) to
obtain

(4.15)
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I-1 .d pz;
% Z/ / |:7’]($ + Aw)yvtm) - n(mayatm):|
i=1v¢ Ti—1

+Vi(z + Aw,y,tm)&xi,y,tm)dwdy‘

1/2

[ (-6t )P (416)

I-1 J

< Sl [0 [

i=1j=1"Yi

1
< LA R [, ) 2 1 (2t 1) 2
< LA R2E( b2 e, 1)
< LAHE(, ) 122 + LA B el 01,10

where at the last “<” sign, we have used the inverse inequality (3.2).
We utilize the periodicity of the data to rewrite the first two terms on the right-hand
side of Eq. (4.12) as follows:

At [P d
_I/g”l/C Vi@, Y, twm)n(2, Yy tm—1)E(b, y, tm) dady
At (7o
e [ Ve tadnte )60, t) dody
At [Zo 4
= —/ / Vi(2, Yy tm)0(2, Yy tm—1)E(a, y, tm) dzdy
/ / V(s st )02, st 1)E(r 3, ) iy
=2 [ mtantetns (@17

V1 T — Az, y, ty)n(x — Aw,y,tmfl)}ﬁ(a,y,tm) dzdy

= /IO/C V1( z,Y,tm) — Vi(z — Az, y,t )}

aya m—1 g( ayv )dl‘dy

N
- - / / n(wayatm—l) - 7](17 - A.’l?, yatm—l)i|
g Je ot

Vl(x - Awayatm)g(a y7 ) dmdy

The first term on the right-hand side of (4.17) is bounded by

~ / Vie,y,tm) = Vi = A2,y ) |10, 9t 1)6(a,y, ) didy

im € (@, t) 22 (@, o) 2 (418)
< LA 6@, )| 2lle(@, trnr) [

< LAtHf(:E,tm)H%z + LAt h4||c‘|%°°(0,T;H2)v

where at the last “<” sign we have used (4.14) again.
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We use (4.15) to bound the second term on the right-hand side of (4.17) as follows

/zo / Nz, Ystm—1) — U(fﬂ—AfE,y,tmfl)}

Vi( m—Ax Yy tm)€(a, y, tm) dedyl

LAt / /
B A:I; Yj—1 Y To
<LAth ||€(f'3 tm)|| 2 19 (@, tin—1) | 2
< LAt B2 ||(z, tn) |2 llc(@, tm 1) 775

I 1)(z — Az, y, tm_1 ‘Ié a,y,tm)|dzdy (4.19)

< LAt|E(@, tm )72 + LA B |cl|T o0 (0,17, 19) -

The estimates (4.17) through (4.19) yield an upper bound for the first two terms on
the right-hand side of (4.12). Combining (4.7) through (4.12), we have bounded the first
term on the right-hand side of (4.5) by the right-hand side of (4.1). By symmetry, we can
bound the second term on the right-hand side of (4.5) in the same way. These estimates,
together with (4.3) and (4.4), gives the proof of the lemma. -

V. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments to verify the theoretically proven
optimal-order L? convergence rates. The test example is the transport of a two-dimensional
rotating Gaussian pulse. The spatial domain is @ = (—0.5,0.5) x (—0.5,0.5), the ro-
tating field is imposed as Vi(z,y) = —4y, and Va(z,y) = 4z. The time interval is
[0,T] = [0,7/2], which is the time period required for one complete rotation. The initial
condition ¢y(z,y) is given by

co(z, ) = exp (_ (& —z)? + (y—yc)2>7 (5.1)

202

where ., y., and o are the centered and standard deviations, respectively. The corre-
sponding analytical solution at the final time 7' = 7 /2 is identical to the initial condition.

In the numerical experiments, the data are chosen as follows: z. = —0.25, y. = 0,
o = 0.0447 which gives 202 = 0.0040. We use a linear regression to fit the convergence
rates and the associated constants in the error estimates

len(z, T) — c(z, T)||Lr < Lah® + Lg(At)P, p=1,2. (5.2)

We perform two kinds of computations. The first tests the spatial convergence rates of
the MMOC and MMOCAA schemes, where we fix a small time step At and compute
the convergence rate o with respect to h; the other tests the temporal convergence rate,
where we choose a small grid size h and calculate the convergence rate § with respect
to At. The results are presented in Tables I through ?7?7. These results show that the
MMOC and MMOCAA schemes possess second-order accuracy in space and first-order
accuracy in time as predicted by Theorem 1 in Section III.
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TABLE I. Spatial convergence rate of the MMOC
At h llen (2, T) — c(x, T)]| L2 llen (2, T) — c(x, T)|| L1
7/120 1/50 3.7113 x 1073 7.0073 x 10™*
7/120 1/60 2.4237 x 1072 4.4737 x 107*
7/120 1/70 1.9341 x 1073 3.3212 x 107*
7/120 1/80 1.3087 x 1073 2.6142 x 10~*
a=214 a = 2.09
TABLE II. Temporal convergence rate of the MMOC
At h llen (@, T) — c(, T)|| 2 llen (2, T) — c(x, T)|| 1
/56 1/80 2.0071 x 1072 4.1211 x 1073
/64 1/80 1.7231 x 1072 3.6112 x 1073
/72 1/80 1.6048 x 1072 3.1134 x 1073
/80 1/80 1.3469 x 1072 2.8813 x 1073
B =1.06 B8 =1.03
TABLE III. Spatial convergence rate of the MMOCAA
At h llen (e, T) — c(@, T)|| 2 llen (2, T) — c(@, T)|| 1
7/120 1/50 3.3445 x 107° 6.3148 x 10~*
7/120 1/60 2.1647 x 1072 4.0658 x 10™*
7/120 1/70 1.7236 x 1073 2.9836 x 10~*
7/120 1/80 1.1745 x 1073 2.3152 x 10~*
a=215 a=213
TABLE IV. Temporal convergence rate of the MMOCAA
At h llen (e, T) — c(@, T)| 12 llen (2, T) — c(@, T)| 11
/56 1/80 1.7451 x 1072 3.7213 x 1073
/64 1/80 1.5014 x 1072 3.3189 x 1073
)72 1/80 1.4417 x 1072 2.8145 x 1073
7/80 1/80 1.1778 x 1072 2.5816 x 1073
B =1.02 B =1.06
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