

Industrial Mathematics Institute

2001:17

Almost isometries of balls

E. Matouskova

Department of Mathematics University of South Carolina

ALMOST ISOMETRIES OF BALLS

EVA MATOUŠKOVÁ

ABSTRACT. Let f be a bi-Lipschitz mapping of the Euclidean ball $B_{\mathbb{R}^n}$ into ℓ_2 with both Lipschitz constants close to one. We investigate the shape of $f(B_{\mathbb{R}^n})$. We give examples of such a mapping f, which has the Lipschitz constants arbitrarily close to one and at the same time has in the supremum norm the distance at least one from every isometry of \mathbb{R}^n .

1. Introduction

By the classical theorem of Mazur and Ulam, every surjective isometry f of two Banach spaces X and Y is affine. There are various possibilities how to slightly relax the isometry condition on f and still ask if f can be well approximated by an affine mapping (see [BL] for an exposition and literature on this subject). Here we will consider the case when both X and Y are Euclidean spaces and $f: B_X \to Y$ is a bi-Lipschitz mapping with both Lipschitz constants $1 + \varepsilon$ for some $0 < \varepsilon < 1$ (for exact definitions of an ε -rigid mapping, or of an ε -quasi-isometry see Section 2). If dim $X = \dim Y = n$, then by a result of F. John [J], there is an isometry $T: X \to Y$ so that $||f(x)-T(x)|| \leq cn^{\frac{3}{2}}\varepsilon$ for $x \in B_X$, where c is an absolute constant. The estimation of the approximation error $\alpha(n,\varepsilon)$ was improved by Vestfrid [Ve] to $\alpha(n,\varepsilon) < cn^{\frac{1}{2}}\varepsilon$. He proved also that in the general case when $n = \dim X \leq \dim Y$ the approximation error is at most $cn^{\frac{1}{2}}\sqrt{\varepsilon}$. (If $\dim X < \dim Y$, the order of magnitude of the error has to be at least $\sqrt{\varepsilon}$. To see this, it is enough to take the mapping $f:[-1,1]\to\mathbb{R}^2$ defined by f(t) = (t,0) if $t \in [-1,0]$ and $f(t) = (t,t\sqrt{\varepsilon})$ if $t \in [0,1]$. This mapping is ε -rigid and its distance from any affine mapping $T: \mathbb{R} \to \mathbb{R}^2$ is at least $\sqrt{\varepsilon}/8$.)

In Section 4 we give examples which show that the approximation error really does depend on the dimension of X, answering thus a

¹⁹⁹¹ Mathematics Subject Classification. 46C05, 30C65.

Key words and phrases. isometry, quasi-isometry, rigid mapping, approximate.

The author was partially supported by the grants GAAV-A1019103, and DEPSCOR-ONR N00014-99-1-0547.

question in [BL]. For example, for any $\varepsilon > 0$ we construct an ε -quasiisometry $f: B_{\mathbb{R}^n} \to \mathbb{R}^n$ (n is about $\exp \frac{1}{\varepsilon}$) such that $f(B_{\mathbb{R}^{n/2}})$ contains an orthonormal basis of \mathbb{R}^n . This f has the distance at least $1/\sqrt{2}$ from every affine mapping of \mathbb{R}^n . Consequently, if we wish to write the approximation error in the form $\alpha(n, \varepsilon) = \varphi(n)\varepsilon$, then $\varphi(n) \geq c \log n$ for some constant c > 0.

This is very much unlike the situation when both X and Y are Banach spaces of continuous functions on some compact metric spaces. Here, by a result of Lövblom [Lo], an ε -rigid mapping of B_X into Y can be approximated on $(1 - 8\varepsilon)B_X$ by an isometry within an error of 8ε .

We also investigate the shape of $f(B_{\mathbb{R}^n})$, if f is an ε -rigid mapping. In Proposition 3.1 and Proposition 3.2 an easy application of the theorem of Borsuk and Ulam shows that f can not "squeeze" $B_{\mathbb{R}^n}$ close to a space of dimension less than n: if Y is an affine space with dim Y < n then $f(B_{\mathbb{R}^n})$ is not contained in $Y + B(0, 1 - 4\sqrt{\varepsilon})$. In Proposition 3.4 we show a counterpart to Proposition 3.1: the convex hull K of an ε -rigid image of $B_{\mathbb{R}^n}$ can not fill up too much of $B_{\mathbb{R}^m}$ if n < m.

If Z is a closed linear subspace of a Hilbert space H, we denote by P_Z the orthogonal projection on Z. By $B_X(x,r)$ we denote the closed ball with the center at x and radius r in the Banach space X; $B_X^o(x,r)$ is the open ball. By $S_X(x,r)$ we denote the corresponding sphere. The unit ball with the center at zero is denoted by B_X . We reserve the notation $B_{\mathbb{R}^n}$ and $S_{\mathbb{R}^n}$ for the Euclidean ball and sphere. By e_1, \ldots, e_n we denote the standard orthonormal basis of \mathbb{R}^n . By c, c_1, c_2, \ldots we denote absolute constants, which may have different values even in the same formula.

2. Preliminaries

Let f be a mapping from an open subset U of a Banach space X into a Banach space Y. The local distortion of distances by f can be measured by the functions

$$D^{+}f(x) = \limsup_{y \to x} \frac{\|f(y) - f(x)\|}{\|y - x\|},$$
$$D^{-}f(x) = \liminf_{y \to x} \frac{\|f(y) - f(x)\|}{\|y - x\|}.$$

The following class of almost isometric mappings was introduced by F. John [J] (see [BL] for many of their properties).

Definition 2.1. Let $\varepsilon > 0$. A mapping f from an open subset U of a Banach space X into a Banach space Y is called an ε -quasi-isometry if it satisfies the following two conditions

- (i) f is a local homeomorphism; i.e. every point $x \in U$ has an open neighborhood V such that f is a homeomorphism of V onto an open subset of Y.
- (ii) f satisfies $(1+\varepsilon)^{-1} \leq D^-f(x) \leq D^+f(x) \leq 1+\varepsilon$ for every $x \in U$.

We will mostly work simply with bi-Lipschitz mappings which have the Lipschitz constants close to one:

Definition 2.2. Let $\varepsilon > 0$. A mapping f from a subset A of a Banach space X into a Banach space Y is called ε -rigid if $(1 + \varepsilon)^{-1} ||x - y|| \le ||f(x) - f(y)|| \le (1 + \varepsilon) ||x - y||$ for all $x, y \in A$.

We will usually assume that $0 \in A$ and f(0) = 0. Also, we will often use the trivial observation that $1 - \varepsilon \le (1 + \varepsilon)^{-1} \le 1 - \varepsilon/2$ for $0 < \varepsilon < 1$.

If $U \subset \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^n$ is ε -rigid then by the invariance of domains f is an ε -quasi-isometry (the invariance of domains says that if $V \subset \mathbb{R}^n$ is homeomorphic to an open set $U \subset \mathbb{R}^n$, then V itself is open in \mathbb{R}^n). The other way round, if X, Y are Banach spaces and $f: B_X^o(x,r) \to Y$ is an ε -quasi-isometry then f is ε -rigid on $B_X(x,r/(1+\varepsilon)^2)$ and $f(B_X(x,r)) \supset B_Y(f(x),r/(1+\varepsilon))$ (see e.g. [BL], p. 345).

It is an elementary, but useful fact that ε -rigid mappings almost preserve angles (see *e.g.* [BL], p. 349).

Lemma 2.3. Let X be a Hilbert space, $0 < \varepsilon < 1$, $0 \in A \subset X$, and let $f: A \to X$ be ε -rigid and such that f(0) = 0. Then

$$|\langle f(x), f(y) \rangle - \langle x, y \rangle| \le \frac{3}{2} \varepsilon (\|x - y\|^2 + \|x\|^2 + \|y\|^2)$$

for all $x, y \in A$.

Proof. Since f is ε -rigid, $|||f(x)-f(y)||^2-||x-y||^2|\leq 3\varepsilon ||x-y||^2$ for $x,y\in A$. Hence

$$2|\langle f(x), f(y) \rangle - \langle x, y \rangle|$$

$$\leq |||f(x) - f(y)||^2 - ||x - y||^2| + |||f(x)||^2 - ||x||^2| + |||f(y)||^2 - ||y||^2|$$

$$\leq 3\varepsilon(||x - y||^2 + ||x||^2 + ||y||^2).$$

The following lemma states that ε -rigid mappings almost preserve linearity for convex combinations. It is derived in [Ve] from a result of [Za].

Lemma 2.4. Let X be a Hilbert space, $A \subset X$ be convex, $f : A \to X$ ε -rigid. Then for any $x_1, \ldots, x_n \in A$, $\lambda_i \geq 0$, $\sum_{i=1}^n \lambda_i = 1$ it holds

$$||f(\sum_{i=1}^{n} \lambda_i x_i) - \sum_{i=1}^{n} \lambda_i f(x_i)|| \le \sqrt{2} \cdot \sqrt{\varepsilon} \max ||x_i - x_j||.$$

This means in particular, that ε -rigid mappings of convex sets almost preserve the mid-points of line segments: $||f(\frac{1}{2}(x+y)) - \frac{1}{2}(f(x) + f(y))|| \le \sqrt{2}\sqrt{\varepsilon}||x-y||$ for $x,y \in A$.

Assume now that f is an ε -rigid mapping of a convex symmetric set A and f(0) = 0. Then f is almost antipodal; that is, $||f(x)|| + ||f(-x)|| \le 4\sqrt{2}\sqrt{\varepsilon}||x||$ for $x \in A$. Consequently, if $\lambda_i \in \mathbb{R}$ are such that $\sum_{i=1}^{n} |\lambda_i| = 1$, then

$$||f(\sum_{i=1}^{n} \lambda_{i} x_{i}) - \sum_{i=1}^{n} \lambda_{i} f(x_{i})||$$

$$\leq ||f(\sum_{i=1}^{n} |\lambda_{i}| (x_{i} \cdot \operatorname{sgn} \lambda_{i})) - \sum_{i=1}^{n} |\lambda_{i}| f(x_{i} \cdot \operatorname{sgn} \lambda_{i})||$$

$$+ ||\sum_{i=1}^{n} |\lambda_{i}| f(x_{i} \cdot \operatorname{sgn} \lambda_{i}) - \sum_{i=1}^{n} \lambda_{i} f(x_{i})||$$

$$\leq \sqrt{2} \cdot \sqrt{\varepsilon} \operatorname{diam} A + \sum_{i=1}^{n} |\lambda_{i}| ||f(x_{i} \cdot \operatorname{sgn} \lambda_{i}) - f(x_{i}) \cdot \operatorname{sgn} \lambda_{i}||$$

$$\leq \sqrt{2} \cdot \sqrt{\varepsilon} \operatorname{diam} A + 4\sqrt{2} \cdot \sqrt{\varepsilon} \max ||x_{i}||$$

$$\leq 3\sqrt{2} \sqrt{\varepsilon} \operatorname{diam} A.$$

This means that the image of a convex symmetric set by an ε -rigid mapping is again almost convex and almost symmetric.

Quasi-isometries preserve the mid-points of line segments with a smaller error $c\varepsilon$, instead of $c\sqrt{\varepsilon}$ for the ε -rigid mappings. The following lemma appears in [Ve] in a more general setting (f is a quasi-isometry between two Banach spaces), and with a rather involved proof. As we will use it only for quasi-isometries of Hilbert spaces, we provide here an elementary proof of this case.

Lemma 2.5. Let 0 < a < 1. There exists $\varepsilon_a > 0$ wit the following property. Let X be a Hilbert space, and let $f: B_X^o(0, 1+a) \to X$ be an

FIGURE 1. Illustration to the proof of Lemma 2.5.

 ε -quasi-isometry for some $0 < \varepsilon \le \varepsilon_a$. Then

$$||f(\frac{x+y}{2}) - \frac{f(x)+f(y)}{2}|| \le \frac{65}{a} \cdot \varepsilon ||x-y||$$

for $x, y \in B_X$.

Proof. Let $0 < \varepsilon_a < \frac{1}{4}$ be such that

(2)
$$1 + \varepsilon + \frac{a}{2} \le (1+a)/(1+\varepsilon)^3$$

for $0 < \varepsilon < \varepsilon_a$. By Theorem 14.7 of [BL],

- (i) f is ε -rigid on $\frac{1+a}{(1+\varepsilon)^2}B_X\supset B_X$, and
- (ii) $f(\frac{1+a}{(1+\varepsilon)^2}B_X) \supset B(f(0), \frac{1+a}{(1+\varepsilon)^3}).$

Let $x, y \in B_X$ be given. Let z be the orthogonal projection of $f(\frac{x+y}{2})$ on the line defined by f(x) and f(y). Since $f(\frac{x+y}{2}) \in B(f(x), \frac{\|x-y\|}{2}(1+\varepsilon)) \cap B(f(y), \frac{\|x-y\|}{2}(1+\varepsilon))$,

(3)
$$||z - \frac{f(x) + f(y)}{2}|| \le \frac{||x - y||}{2} (1 + \varepsilon) - \frac{||f(x) - f(y)||}{2}$$

$$\le \frac{||x - y||}{2} (1 + \varepsilon - \frac{1}{1 + \varepsilon}) \le \varepsilon ||x - y||.$$

Assume $z \neq f(\frac{x+y}{2})$; we will estimate $||z - f(\frac{x+y}{2})||$. To this end define

$$v = z + \frac{a}{4} \cdot (f(\frac{x+y}{2}) - z) \cdot \frac{\|x - y\|}{\|f(\frac{x+y}{2}) - z\|}.$$

From (3) it follows that $z \in \text{conv}\{f(x), f(y)\}$. Since $f(x), f(y) \in B(f(0), 1 + \varepsilon)$ we get by (2) and (ii) that $v \in f(\frac{1+a}{(1+\varepsilon)^2}B_X)$. Consequently, f is an ε -rigid mapping of the set $A = \{x, y, \frac{x+y}{2}, f^{-1}(z), f^{-1}(v)\}$. As we are interested only in estimating of distances of points in the set f(A), we can by translation of A and of f(A) assume that $0 = z = f^{-1}(z)$. Then, clearly, $||f(x)|| \le ||f(x) - f(y)|| \le (1 + \varepsilon)||x - y||$ and

 $||v-f(x)|| \le ||x-y||(\frac{a}{4}+(1+\varepsilon))$. Since $\langle v, f(x)\rangle = \langle v, f(y)\rangle = 0$, by Lemma 2.3

$$|\langle f^{-1}(v), x \rangle| \le \frac{3}{2} \varepsilon (\|f(x)\|^2 + \|v\|^2 + \|f(x) - v\|^2) \le 6\varepsilon \|x - y\|^2,$$

and, similarly, $|\langle f^{-1}(v), y \rangle| \le 6\varepsilon ||x - y||^2$. Hence $|\langle f^{-1}(v), \frac{x+y}{2} \rangle| \le 6\varepsilon ||x - y||^2$, and again by Lemma 2.3

$$\begin{split} |\langle v, f(\frac{x+y}{2})\rangle| &\leq |\langle f^{-1}(v), \frac{x+y}{2}\rangle| \\ &+ \frac{3}{2}\varepsilon(\|f^{-1}(v)\|^2 + \|\frac{x+y}{2}\|^2 + \|f^{-1}(v) - \frac{x+y}{2}\|^2) \\ &\leq 6\varepsilon\|x - y\|^2 + \frac{3}{2}\varepsilon \cdot 2(\|f^{-1}(v)\|^2 + \|\frac{x+y}{2}\|^2 + \|f^{-1}(v)\| \cdot \|\frac{x+y}{2}\|) \\ &\leq 6\varepsilon\|x - y\|^2 + 3\varepsilon\|x - y\|^2((1+\varepsilon)^2a^2/16 + (1+\varepsilon)^4 + (1+\varepsilon)^3a/4) \\ &\leq 16\varepsilon\|x - y\|^2. \end{split}$$

By the definition of v

$$||f(\frac{x+y}{2})|| = \langle v, f(\frac{x+y}{2}) \rangle \cdot \frac{4}{a} \cdot \frac{1}{||x-y||} \le 16\varepsilon ||x-y||^2 \cdot \frac{4}{a} \cdot \frac{1}{||x-y||} \le \frac{64}{a} \cdot \varepsilon \cdot ||x-y||,$$
 and by (3)

$$||f(\frac{x+y}{2}) - \frac{f(x)+f(y)}{2}|| \le ||z - \frac{f(x)+f(y)}{2}|| + ||f(\frac{x+y}{2}) - z|| \le \frac{65}{a}\varepsilon ||x - y||.$$

Suppose that an ε -rigid mapping $f: B_{\mathbb{R}^n} \to \ell_2$ is well approximated by an affine mapping. Then f is well approximated by an isometry. This statement is used several times in [Ve]; for an easy reference we state it as a lemma.

Lemma 2.6. Let $\varepsilon > 0$, a > 0 be such that $a + \varepsilon < 1$. Let $f : B_{\mathbb{R}^n} \to \ell_2$ be ε -rigid and $T : \mathbb{R}^n \to \ell_2$ linear such that $||f(x) - T(x)|| \le a$ for all $x \in B_{\mathbb{R}^n}$. Then there exists an isometry $\mathbb{R}^n \to \ell_2$ so that $||f(x) - S(x)|| \le \varepsilon + 2a$ for all $x \in B_{\mathbb{R}^n}$.

Proof. Let u_1, \ldots, u_n be an orthonormal basis of \mathbb{R}^n , v_1, \ldots, v_m an orthonormal basis of $T(\mathbb{R}^n)$ and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m > 0$ so that $T(u_i) = \lambda_i v_i$ for $i = 1, \ldots, m$ and $T(u_i) = 0$ and $\lambda_i = 0$ for i > m. Then

$$\lambda_i = ||T(u_i)|| \le ||f(u_i)|| + a \le 1 + \varepsilon + a \quad \text{and}$$
$$\lambda_i = ||T(u_i)|| \ge ||f(u_i)|| - a \ge 1 - \varepsilon - a,$$

hence $1 + \varepsilon + a \ge \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 1 - \varepsilon - a > 0$; in particular, m = n. Define S by $S(u_n) = v_n$. Then $||S - T|| = \max_{i \in \{1, \dots, n\}} |1 - \lambda_i| \le a + \varepsilon$, and the lemma follows from the triangle inequality. \square

Figure 2. Illustration to the proof of Proposition 3.1.

3. ε -RIGID MAPPINGS AND LINEAR SUBSPACES

Let X be a Banach space and $A \subset X$; let $k \in \mathbb{N}$. Recall, that the Kolmogorov k-diameter $d_k(A, X)$ of A expresses how well can A be approximated by k-dimensional subspaces of X:

$$d_k(A, X) = \inf_{X_k} \sup_{x \in A} \inf_{y \in X_k} ||x - y||,$$

the left-most infimum being taken over all k-dimensional subspaces X_k of X. The sum of a linear subspace and of a ball is a convex set, hence $d_k(A, X) = d_k(\operatorname{conv} A, X)$ (for other properties of the Kolmogorov diameter see e.g. [Pi]).

First we observe that an ε -rigid mapping f can not squeeze the unit ball of a k-dimensional Hilbert space inside of a small neighborhood of a space with dimension l < k. We will actually show that the Kolmogorov l-diameter of $f(B_{\mathbb{R}^k})$ is almost one.

Proposition 3.1. Let $0 < \varepsilon < 1$ and $f : B_{\mathbb{R}^n} \to \ell_2$ be ε -rigid, f(0) = 0. Let $X \subset \mathbb{R}^n$, $Y \subset \ell_2$ with dim $Y < \dim X$. Then $f(B_X)$ is not contained in $Y + B_{\ell_2}(0, 1 - 4\sqrt{\varepsilon})$.

Proof. Suppose that

$$f(B_X) \subset U := Y + B_{\ell_2}(0, 1 - 4\sqrt{\varepsilon}).$$

Assuming this, we will construct a continuous antipodal mapping Φ : $S_X \to Y$ such that $\Phi(x) \neq 0$ for all $x \in S_X$, which will contradict the Borsuk-Ulam theorem. For $x \in S_X$ put $F(x) = \frac{1}{2}(f(x) - f(-x))$ and define $\Phi = P_Y \circ F$. The mapping F is antipodal, as $F(-x) = \frac{1}{2}(f(-x) - f(x)) = -F(x)$, hence Φ is antipodal as well. By the remark after Lemma 2.4

(4)
$$||F(x)|| = ||f(x) - \frac{1}{2}(f(-x) + f(x))|| \ge ||f(x)|| - 2\sqrt{2}\sqrt{\varepsilon}$$
$$\ge 1 - \varepsilon - 2\sqrt{2}\sqrt{\varepsilon} > 1 - 4\sqrt{\varepsilon}.$$

Since U is convex and symmetric, $F(S_X) \subset U$, and

(5)
$$||P_Y(F(x))|| \ge ||F(x)|| - (1 - 4\sqrt{\varepsilon}).$$

By (4) and (5)

$$\|\Phi(x)\| = \|P_Y(F(x))\| > 1 - 4\sqrt{\varepsilon} - (1 - 4\sqrt{\varepsilon}) = 0.$$

The midpoints of line segments are for ε -quasi-isometries by Lemma 2.5 preserved with the error $c\varepsilon$ instead just $c\sqrt{\varepsilon}$ as it was for ε -rigid mappings. This enables slightly improve Proposition 3.1; the proof is the same.

Proposition 3.2. Let 0 < a < 1. There exists $\varepsilon_a > 0$ with the following property. Let $f: B^o_{\mathbb{R}^n}(0, 1+a) \to \mathbb{R}^n$, f(0) = 0 be an ε -quasi isometry for some $0 < \varepsilon \le \varepsilon_a$. Suppose $X, Y \subset \mathbb{R}^n$ with dim $Y < \dim X$. Then $f(B_X)$ is not contained in $Y + B_{\mathbb{R}^n}(0, 1 - \frac{140}{a} \cdot \varepsilon)$.

To prove a counterpart to Proposition 3.1, we will need the following version of the theorem of Bartle and Graves.

Theorem 3.3. Let X, Y be Banach spaces, $T: X \to Y$ continuous, linear and surjective and $K \subset X$ closed and convex. Then there exists a continuous mapping $f: T(K) \to K$ so that T(f(y)) = y for all $y \in T(K)$. Moreover, if K is symmetric, f can be chosen so that f(y) = -f(-y) for all $y \in T(K)$.

Proof. (Sketch) We can simply follow the proof in ([BP], p. 86). Let Φ be the inverse of T restricted to K. Then $\Phi: T(K) \to 2^{X}$ is a complete convex lower semi-continuous mapping. By Michael's theorem Φ admits a continuous selection f. If K is moreover symmetric, we replace f(y) by $\frac{1}{2}(f(y) - f(-y))$.

Next we prove that the convex hull K of an ε -rigid image of a k-dimensional unit ball can not fill up too much of an l-dimensional unit ball if l > k. Namely, the maximal inscribed ball of the projection $P_Y(K)$ onto any Y with dim Y = l > k has radius only $c\sqrt{\varepsilon}$. Notice however, that this does not mean that K is contained in a small neighborhood of a k-dimensional space. This follows from Example 4.1.

Proposition 3.4. Let $0 < \varepsilon < \frac{1}{2}$ and $f : B_{\mathbb{R}^n} \to \ell_2$ be ε -rigid, f(0) = 0. Let $X \subset \mathbb{R}^n$, $Y \subset \ell_2$ with dim $Y = \dim X + 1$, and $K = \operatorname{sym} \operatorname{conv} f(B_X)$. Then $\max\{r : B_Y(0,r) \subset P_Y(K)\} < 30\sqrt{\varepsilon}$.

Proof. Assume that $B_Y(0,30\sqrt{\varepsilon}) \subset P_Y(K)$. As in the proof of Proposition 3.1, we will construct under this assumption a continuous antipodal mapping $\Phi: S_Y(0,30\sqrt{\varepsilon}) \to X$ such that $\Phi(y) \neq 0$ for all

 $y \in S_Y(0,30\sqrt{\varepsilon})$. This will contradict the Borsuk-Ulam theorem. The mapping $f^{-1}: f(B_X) \to X$ is $(1+\varepsilon)$ -Lipschitz; by the theorem of Kirszbraun (see e.g. [BL], p. 19) it can be extended to a $(1+\varepsilon)$ -Lipschitz mapping $\varphi: \ell_2 \to X$. For $v \in \ell_2$ put $F(v) = \frac{1}{2}(\varphi(v) - \varphi(-v))$; clearly, F is antipodal. Let $v \in K$. By (1), there exists $x \in B_X$ so that $||f(x) - v|| \le 6\sqrt{2}\sqrt{\varepsilon}$. Since $||f(x)|| \le (1+\varepsilon)||x||$,

$$||x|| \ge (||v|| - 6\sqrt{2}\sqrt{\varepsilon})(1+\varepsilon)^{-1} \ge \frac{2}{3}||v|| - 4\sqrt{2}\sqrt{\varepsilon}.$$

By the definition of φ we have $||x - \varphi(v)|| \le (1 + \varepsilon)||f(x) - v||$, hence

(6)
$$\|\varphi(v)\| \ge \|x\| - (1+\varepsilon)\|v - f(x)\|$$
$$\ge \frac{2}{3}\|v\| - 13\sqrt{2}\sqrt{\varepsilon}.$$

By Theorem 3.3, there exists a continuous mapping $\psi: P_Y(K) \to K$ such that $P_Y(\psi(y)) = y$ and $\psi(y) = -\psi(-y)$ for all $y \in P_Y(K)$. As ψ is a selection from the inverse of an orthogonal projection, it is also $\|\psi(y)\| \geq \|y\|$. Define $\Phi: P_Y(K) \to X$ by $\Phi = \varphi \circ \psi$. Let $y \in S_Y(0, 30\sqrt{\varepsilon}) \subset P_Y(K)$. Then by (6)

(7)
$$\|\Phi(y)\| = \|\varphi(\psi(y))\| \ge \frac{2}{3} \|\psi(y)\| - 13\sqrt{2}\sqrt{\varepsilon}$$
$$\ge \frac{2}{3} \|y\| - 13\sqrt{2}\sqrt{\varepsilon} > 0,$$

and this contradicts the Borsuk-Ulam theorem.

If $T: \mathbb{R}^n \to \ell_2$ is affine, then, clearly, the graph of T is contained in an n-dimensional affine subspace of $\mathbb{R}^n \oplus \ell_2$. If some $f: B_{\mathbb{R}^n} \to \ell_2$ is well approximated by an affine mapping, then the graph of f is contained in a small neighborhood of an n-dimensional affine subspace of $\mathbb{R}^n \oplus \ell_2$. In Lemma 3.5 we observe that the converse also holds. If the graph of a mapping $f: B_{\mathbb{R}^n} \to 2B_{\ell_2}$ is contained in a small neighborhood of an n-dimensional affine subspace of $\mathbb{R}^n \oplus \ell_2$, then f is well approximated by an affine mapping.

Lemma 3.5. Let $f: B_{\mathbb{R}^n} \to \ell_2$ be a mapping with $||f(x)|| \leq 2$ for $x \in B_{\mathbb{R}^n}$. Suppose there is an n-dimensional subspace $Z \subset \mathbb{R}^n \oplus \ell_2$ and $0 < \delta < \frac{1}{2}$ such that the graph of f is contained in $Z + B_{\mathbb{R}^n \oplus \ell_2}(0, \delta)$. Then there is a linear mapping $T: \mathbb{R}^n \to \ell_2$ so that $||T(x) - f(x)|| \leq 7\delta$ for all $x \in B_{\mathbb{R}^n}$.

Proof. Let $P = P_{\mathbb{R}^n}$ be the orthogonal projection on \mathbb{R}^n . We can assume that $P: Z \to \mathbb{R}^n$ is a bijection; this can be achieved by an arbitrarily small perturbation of Z. Put $S = P^{-1}$; S has necessarily the form S(x) = (x, T(x)) with T linear. Choose orthonormal bases

 $\{u_1,\ldots,u_n\}$ of \mathbb{R}^n and $\{v_1,\ldots,v_n\}$ of Z, so that $T(u_i)=\lambda_i v_i$ for some $\lambda_1\geq\cdots\geq\lambda_n\geq0$. Choose $y\in\mathbb{R}^n$ so that

$$\frac{1}{2} > \delta \ge \operatorname{dist}((u_1, f(u_1)), Z) = (\|u_1 - y\|^2 + \|T(y) - f(u_1)\|^2)^{\frac{1}{2}}.$$

If $\langle z, u_1 \rangle < \frac{1}{2}$ for some $z \in \mathbb{R}^n$, then $||z - u_1|| \ge \frac{1}{2}$. Hence $\langle y, u_1 \rangle \ge \frac{1}{2}$, and

$$\frac{1}{2} \ge ||T(y) - f(u_1)|| \ge ||T(y)|| - ||f(u_1)|| \ge \lambda_1 \langle y, u_1 \rangle - 2.$$

This implies that $||T|| = \lambda_1 \le 5$, and $||S|| \le 6$.

Let $x \in B_{\mathbb{R}^n}$; denote F(x) = (x, f(x)). For $y = P(P_Z(F(x)))$ it holds

$$||x - y|| = ||P(F(x)) - P(S(y))|| \le ||P|| \cdot ||F(x) - S(y)||$$

= $||F(x) - P_Z(F(x))|| \le \delta$.

Hence

$$||T(x) - f(x)|| = ||S(x) - F(x)|| \le ||S(x) - S(y)|| + ||S(y) - F(x)||$$

$$\le ||S||\delta + \delta \le 7\delta.$$

If f is an ε rigid mapping, then by an elementary computation (which we perform below) the mapping $F(x) = \frac{1}{\sqrt{2}}(x, f(x))$ is 2ε -rigid. Suppose f is not well approximated by affine mappings, for example, f(0) = 0 and $\sup_{x \in B_{\mathbb{R}^n}} ||f(x) - T(x)|| \ge \delta > 0$ for all linear mappings T. Then by Lemma 3.5, the Kolmogorov n-diameter of $F(B_{\mathbb{R}^n})$ is large, namely $d_n(F(B_{\mathbb{R}^n}), \ell_2) \ge \delta/7$.

Lemma 3.6. Let $A \subset \ell_2$ and $f: A \to \ell_2$ ε -rigid for some $\varepsilon > 0$. Let K > 0 and $F: A \to \ell_2$ be the mapping which gives each $x \in A$ its image in the graph of $K \cdot f$; that is, F(x) = (x, Kf(x)) (here we write $\ell_2 = \ell_2 \oplus \ell_2$). Then for all $x, y \in A$

$$(\sqrt{1 + K^2} - \varepsilon K) \|x - y\| \le \|F(x) - F(y)\| \le (\sqrt{1 + K^2} + \varepsilon K) \|x - y\|.$$

Proof. If $x \neq y$, then

$$\frac{\|F(x) - F(y)\|^2}{\|x - y\|^2} = 1 + K^2 \frac{\|f(x) - f(y)\|^2}{\|x - y\|^2},$$

and

$$(1 - \varepsilon)^2 \le \frac{\|f(x) - f(y)\|^2}{\|x - y\|^2} \le (1 + \varepsilon)^2.$$

Moreover

$$\sqrt{1+K^2}-\varepsilon K \leq \sqrt{1+K^2(1-\varepsilon)^2} \text{ and } \sqrt{1+K^2(1+\varepsilon)^2} \leq \sqrt{1+K^2}+\varepsilon K.$$

4. A QUASI-ISOMETRY CAN BE FAR FROM ALL ISOMETRIES

Consider the following example by F. John [J] (see also [BL], p. 352). Let $0 < \varepsilon < 1$. The mapping h of the unit disc $B_{\mathbb{R}^2}$ onto itself defined in the polar coordinates by $h(r,\varphi) = (r,\varphi + \varepsilon \log r)$ for r > 0 and by h(0) = 0 is an ε -quasi-isometry; it actually satisfies $|(1+\varepsilon)^{-1}||x-y|| \le ||h(x)-h(y)|| \le (1+\varepsilon)||x-y||$ for all $x,y \in B_{\mathbb{R}^2}$. If we define h outside of the unit disc by h(x) = x, the above inequality holds for all $x, y \in \mathbb{R}^2$. This can be seen by direct checking; also, it follows immediately from Lemma 2 of [IP] applied to both h and the inverse of h. In the supremum norm, h can be well approximated by the identity. It rotates each $x \in B_{\mathbb{R}^2}$ around the origin by an angle $\varepsilon \log(||x||)$; close to the origin this changes a lot.

We will use h to construct an ε -quasi-isometry f of $B_{\mathbb{R}^{2n}}$ onto itself $(n \text{ is about } \exp \frac{1}{\varepsilon})$ so that the image of $B_{\mathbb{R}^n}$ nearly contains the unit ball $B_{\ell_1^{2n}}$. As any affine mapping carries \mathbb{R}^n to an affine subspace of dimension at most n, the mapping f can not be well approximated by an isometry.

Theorem 4.1. Let $0 < \varepsilon < 1$ be given. There exists $n \in \mathbb{N}$ and a norm preserving ε -quasi-isometry f of \mathbb{R}^{2n} onto itself so that f(x) =-f(-x) for $x \in \mathbb{R}^{2n}$, and $f(B_{\mathbb{R}^n})$ contains an orthonormal basis of \mathbb{R}^{2n} . Consequently,

- $\begin{array}{l} \text{(i)} \ d_k(f(B_{\mathbb{R}^n}),\ell_2^{2n}) \geq \sqrt{1-\frac{k}{2n}} \ for \ 1 \leq k \leq 2n; \\ \text{(ii)} \ \ \textit{if} \ T: \mathbb{R}^{2n} \to \mathbb{R}^{2n} \ \ \textit{is affine, then} \ \sup_{x \in B_{\mathbb{R}^{2n}}} \|T(x) f(x)\| \geq \frac{1}{\sqrt{2}}, \end{array}$
- (iii) $B_{\ell_1^{2n}} \subset f(B_{\mathbb{R}^n}) + B_{\mathbb{R}^{2n}}(0, 2\sqrt{\varepsilon}).$

Proof. We can assume that ε is of the form $\varepsilon = \frac{\pi}{\log 2} \cdot \frac{1}{K}$, where $K \in \mathbb{N}$ is large enough, and put $n=2^K$. We write \mathbb{R}^{2n} as $\mathbb{R}^n \oplus \mathbb{R}^n$. Let e_1, \ldots, e_n be the standard orthonormal basis of the first copy of \mathbb{R}^n , and let $e_{n+1}, e_{n+2}, \ldots, e_{2n}$ be the standard orthonormal basis of the second copy of \mathbb{R}^n . Let u_1, \ldots, u_n be the orthonormal basis of the first \mathbb{R}^n which corresponds to the columns of the Hadamard matrix; that is, each u_j is of the form $u_j = \frac{1}{\sqrt{n}} \sum_{i=1}^n \varepsilon_{i,j} e_i$, where $\varepsilon_{i,j} \in \{1, -1\}$ are suitably chosen. Similarly, let v_1, \ldots, v_n be an orthonormal basis of the second \mathbb{R}^n for which $v_j = \frac{1}{\sqrt{n}} \sum_{i=1}^n \varepsilon_{i,j} e_{n+i}$.

Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping defined above; let $g = e^{\pi i/2}h$ be h composed with the rotation by $\pi/2$ around the origin. Then g rotates by $\pi/2$ all $z \in \mathbb{R}^2$ with $||z|| \geq 1$ and g(z) = z for all $z \in \mathbb{R}^2$ with

FIGURE 3. Illustration to the proof of Theorem 4.1.

$$||z|| = 1/\sqrt{n}$$
, as

$$\frac{\pi}{2} + \varepsilon \log \frac{1}{\sqrt{n}} = \frac{\pi}{2} + \frac{\pi}{\log 2} \cdot \frac{1}{K} \cdot \log \frac{1}{\sqrt{2^K}} = 0.$$

Below we will consider g written in the Cartesian coordinates. Now we will write \mathbb{R}^{2n} as the ℓ_2 -sum of n copies of \mathbb{R}^2 :

$$\mathbb{R}^{2n} = \mathbb{R}^2 \oplus \cdots \oplus \mathbb{R}^2 = \operatorname{span} \{e_1, e_{n+1}\} \oplus \operatorname{span} \{e_2, e_{n+2}\} \oplus \cdots \oplus \operatorname{span} \{e_n, e_{2n}\}.$$

We define f "coordinate-wise": if $x = \sum_{i=1}^{n} (x_i e_i + x_{n+i} e_{n+i})$ then

$$f(x) = f((x_1, x_{n+1}), (x_2, x_{n+2}), \dots, (x_n, x_{2n}))$$

= $(g(x_1, x_{n+1}), g(x_2, x_{n+2}), \dots, g(x_n, x_{2n})).$

Since g preserves the norm and g(z) = -g(-z) for $z \in \mathbb{R}^2$, it holds ||f(x)|| = ||x|| and f(x) = -f(-x) for $x \in \mathbb{R}^{2n}$. Since g is a bi-Lipschitz mapping of \mathbb{R}^2 onto itself, f is a bi-Lipschitz mapping of \mathbb{R}^{2n} onto itself and the Lipschitz constants are the same; that is, (1 + $|\varepsilon|^{-1} ||x - y|| \le ||f(x) - f(y)|| \le (1 + \varepsilon) ||x - y|| \text{ for all } x, y \in \mathbb{R}^{2n}.$ The projection of e_j , $j \in \{1, \dots n\}$ on each of the 2-dimensional blocks spanned by $\{e_k, e_{n+k}\}$ is either e_j itself (if j = k), or zero. As g(0) = 0and g rotates by $\pi/2$ on the unit circle, we have $f(e_i) = e_{n+j}$ for $j=1,\ldots,n$. The projection $p_k(u_j)$ of u_j on each of the 2-dimensional blocks spanned by $\{e_k, e_{n+k}\}$ is $p_k(u_j) = \frac{1}{\sqrt{n}} \varepsilon_{k,j} e_k$, hence $||p_k(u_j)|| =$ $\frac{1}{\sqrt{n}}$. Therefore $g(p_k(u_j)) = p_k(u_j)$ for $k = 1, \ldots, n$ and $f(u_j) = u_j$ for each $j=1,\ldots,n$. Consequently, as f(x)=-f(-x), the image of the first copy of \mathbb{R}^n contains (both plus and minus) the orthonormal basis $Q = \{u_1, u_2, \dots, u_n, e_{n+1}, e_{n+2}, \dots, e_{2n}\}$ of \mathbb{R}^{2n} . For completeness, let us mention, that this way we also obtain that $f(e_{n+j}) = -e_j$ and $f(v_j) = v_j \text{ for } n = 1, ..., n.$

Since $\pm Q \subset f(B_{\mathbb{R}^n})$, and $B_{\ell_1^{2n}} = \text{conv} \pm Q$, the statement (i) follows from the estimate $d_k(B_{\ell_1^{2n}}, \ell_2^{2n}) = \sqrt{1 - \frac{k}{2n}}, \ k \in \{1, \dots, 2n\}$ for the Kolmogorov diameter of the ball of ℓ_1^{2n} (see e.g. [T], p. 237). In particular, since $\pm Q$ is symmetric, if Z is an n-dimensional affine subspace of

 \mathbb{R}^{2n} , then there exists $q \in \pm Q$ so that dist $(Z,q) \geq 1/\sqrt{2}$. This implies (ii), as $Z = T(\mathbb{R}^n)$ is an at most *n*-dimensional affine subspace of \mathbb{R}^n . The statement (iii) follows from Lemma 2.4, since $\pm Q \subset f(B_{\mathbb{R}^n})$. \square

Let $f: B_{\mathbb{R}^n} \to \mathbb{R}^n$ be an ε -quasi-isometry for some $0 < \varepsilon < 1$. Denote by $\alpha(f) = \inf_T \sup_{x \in B_{\mathbb{R}^n}} \|T(x) - f(x)\|$, where the infimum is taken over all affine mappings $T: \mathbb{R}^n \to \mathbb{R}^n$. Let $\alpha(n, \varepsilon) = \sup_f \alpha(f)$, the supremum being taken over all f as above. By [J] and [Ve], $\alpha(n, \varepsilon) \le c\sqrt{n}\varepsilon$. If we similarly define $\beta(n, \varepsilon)$ for ε -rigid mappings, then by [Ve], $\beta(n, \varepsilon) \le c\sqrt{n}\sqrt{\varepsilon}$. Theorem 4.1 implies, that if we wish to write $\alpha(n, \varepsilon)$ in the form $\alpha(n, \varepsilon) = \varphi(n)\varepsilon$, then it holds $\varphi(n) \ge c\log n$, where c > 0 is a suitable constant. Indeed, if $n \in \mathbb{N}$, choose $K \in \mathbb{N}$ so that $2^{K+1} \le n < 2^{K+2}$, that is, $K = \lfloor \log n/\log 2 \rfloor - 1$. In the proof of Theorem 4.1 we constructed an ε -quasi-isometry $f: \mathbb{R}^{2^{K+1}} \to \mathbb{R}^{2^{K+1}}$, with $\varepsilon = \frac{\pi}{\log 2} \cdot \frac{1}{K}$, so that $\alpha(f) = 1/\sqrt{2}$. If we write $\mathbb{R}^n = \mathbb{R}^{2^{K+1}} \oplus \mathbb{R}^{n-2^{K+1}}$ and define $F: \mathbb{R}^n \to \mathbb{R}^n$ by F(x,y) = (f(x),y), then F is also an ε -quasi-isometry with $\alpha(f) = 1/\sqrt{2}$. Hence

$$\frac{1}{\sqrt{2}} \le \varphi(n)\varepsilon = \varphi(n) \cdot \frac{\pi}{\log 2} \cdot \frac{1}{\lceil \log n / \log 2 \rceil - 1},$$

and $\varphi(n) \geq c \log n$ for a suitable c > 0. Similarly, if we wish to write $\beta(n,\varepsilon)$ in the form $\beta(n,\varepsilon) = \psi(n)\sqrt{\varepsilon}$, then it holds $\psi(n) \geq c \log^{\frac{1}{2}} n$, where c > 0 is a suitable constant. This shows that the approximation error for near-isometries which was estimated in [ATV] also does depend on the dimension.

A natural approach how to try to approximate an ε -quasi-isometry f defined on $B_{\mathbb{R}^n}$ by a linear mapping T is to fix an orthonormal basis of \mathbb{R}^n (for example $\{e_1, \ldots, e_n\}$), and put $T(e_i) = \frac{1}{2}(f(e_i) - f(-e_i))$ for $i = 1, \ldots, n$. This is basically used in both [J] and [Ve]. Again, if we wish the approximation error to be of the form $\alpha(n, \varepsilon) = \varphi(n)\varepsilon$ with $\varphi(n)$ as small as possible, the best this approach can give to us is $\varphi(n) = c\sqrt{n}$, as was achieved in [Ve].

Lemma 4.2. Let n be large enough. There exists an isometry S of \mathbb{R}^n with $\|S - \operatorname{Id}\| = 2$ and $\frac{8}{\sqrt{n}}$ -quasi-isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(0) = 0, so that $\|S(x) - f(x)\| \leq \frac{2}{\sqrt{n}}$ for $x \in B_{\mathbb{R}^n}$ and at the same time $f(\pm e_i) = \pm e_i$ for $i = 1, \ldots, n$.

Moreover, if $n = 2^k$ for some $k \in \mathbb{N}$, and u_1, \ldots, u_n is the orthonormal basis of \mathbb{R}^n which corresponds to the columns of the Hadamard matrix then $f(\pm u_1) = \mp u_1$, and $f(\pm u_i) = \pm u_i$ for $i = 2, \ldots, n$.

Proof. Let $v = \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i$. Then ||v|| = 1 and v is "almost orthogonal" to all e_i 's; that is, $\langle v, e_i \rangle = \frac{1}{\sqrt{n}}$ for all $i = 1, \ldots, n$. Let $S : \mathbb{R}^n \to \mathbb{R}^n$ be the isometry which coincides with the identity on Ker v and S(v) = -v; that is, $S(x) = x - 2\langle x, v \rangle v$. Let φ be the function supported on the interval $[-\frac{1}{2}, \frac{1}{2}]$, for which $\varphi(0) = \frac{2}{\sqrt{n}}$ and φ is linear on $[-\frac{1}{2}, 0]$ and on $[0, \frac{1}{2}]$. Define $\varphi_i^+ : \mathbb{R}^n \to \mathbb{R}$ by $\varphi_i^+(x) = \varphi(||x - e_i||)$, and, similarly, $\varphi_i^-(x) = -\varphi(||x + e_i||)$. As the distances of different $\pm e_i$'s are at least $\sqrt{2}$, the functions φ_i are disjointly supported. Consequently, as the function φ is $\frac{4}{\sqrt{n}}$ -Lipschitz, the function $\Phi = \sum_{i=1}^n (\varphi_i^+ + \varphi_i^-)$ is $\frac{4}{\sqrt{n}}$ -Lipschitz as well, with $|\Phi| \leq \frac{2}{\sqrt{n}}$. For $x \in B_{\mathbb{R}^n}$ put $f(x) = S(x) + \Phi(x)v$. Then f is $\frac{8}{\sqrt{n}}$ -rigid and $||S(x) - f(x)|| \leq |\Phi(x)| \leq \frac{2}{\sqrt{n}}$ for $x \in \mathbb{R}^n$. Moreover, f(0) = 0 and $f(\pm e_i) = \pm e_i - 2\langle \pm e_i, v \rangle v + \varphi_i^\pm(e_i)v = \pm e_i$. Suppose that $n = 2^k$. We can assume that $u_1 = v$. As $S = \mathrm{Id}$ on Ker v and $||u_i \pm e_j|| \geq \sqrt{(n-1)/n} > 1/2$, $f(\pm u_i) = \pm u_i$ for $i = 2, \ldots, n$.

To present a modification of Theorem 4.1 we recall a few basic facts about permutations. A permutation p on a finite set Ω is a bijection of Ω onto itself. Each permutation can be decomposed uniquely, except for order, into disjoint cycles. For example,

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 4 & 6 & 7 \end{pmatrix} = (1, 2, 3)(4, 5)(6)(7) = (1, 2, 3)(4, 5);$$

in the last expression the single point cycles (that is, the fixed points of the permutation) are omitted. A transposition is a permutation which consists of one cycle of length two; all the other cycles have length one. Every permutation can be written as a composition of (enough many) transpositions. Each permutation can be composed from four permutations each of which consist only of disjoint transpositions (and of single point cycles). For convenience we include a simple proof of this.

Lemma 4.3. Let p be permutation on a finite set Ω . Then $p = p_4 \circ p_3 \circ p_2 \circ p_1$, where each of the permutations p_1, \ldots, p_4 consists of disjoint cycles of length at most two.

Proof. We can assume that p is a cycle. For cycles of length up to five it holds: $(1,2,3) = (2,3) \circ (1,2)$; $(1,2,3,4) = (2,4) \circ [(1,2)(3,4)]$; and $(1,2,3,4,5) = (4,5) \circ (2,4) \circ [(1,2)(3,4)]$.

FIGURE 4. The permutations p' and p for n = 13.

If $|\Omega| = n > 5$, we write n = 3k + l, where $k \in \mathbb{N}$ and $l \in \{3, 4, 5\}$, and put

$$p' = (1, 2, 3)(4, 5, 6)(7, 8, 9) \dots (3k - 2, 3k - 1, 3k)(3k + 1, \dots, 3k + l),$$

$$p_4 = (3, 4)(6, 7) \dots (3k, 3k + 1).$$

By the special cases mentioned above, $p' = p_3 \circ p_2 \circ p_1$, where each of the permutations p_1, \ldots, p_3 consists of disjoint cycles of length at most two. The permutation p_4 joins the k triangles and one l-gon of the permutation p' into a single cycle:

$$p_4 \circ p' = (1; 2, 4, 5, 7, \dots, 3k-1, 3k+1; 3k+2, \dots 3k+l; 3k, 3(k-1), \dots, 3).$$

By denoting the elements of Ω successively (according to the cycle p) by $1, 2, 4, 5, 7, \ldots, 3$ we get that $p = p_4 \circ p_3 \circ p_2 \circ p_1$.

Theorem 4.4. Let $0 < \varepsilon < 1$ be given. There exist $n \in \mathbb{N}$ and two orthonormal bases $\{e_1, \ldots, e_n\}$ and $\{u_1, \ldots, u_n\}$ of \mathbb{R}^n with the following property. Let p be a permutation on $\{1, 2, \ldots, n\}$, and let $\alpha_i \in \{-1, 1\}$. There exists an ε -quasi-isometry f of \mathbb{R}^n onto itself so that $f(\pm e_i) = \pm \alpha_i e_{p(i)}$ and $f = \mathrm{Id}$ on $\{0, \pm u_1, \ldots, \pm u_n\}$.

Proof. Choose $K \in \mathbb{N}$ so that $(1 + \frac{2\pi}{\log 2} \cdot \frac{1}{K})^6 \leq 1 + \varepsilon$ and put $n = 2^{K+2}$. Let e_1, \ldots, e_n be the standard orthonormal basis of \mathbb{R}^n . Let u_1, \ldots, u_n be the orthonormal basis of \mathbb{R}^n which corresponds to the columns of the Hadamard matrix; that is, each u_j is of the form $u_j = \frac{1}{\sqrt{n}} \sum_{i=1}^n \varepsilon_{i,j} e_i$, where $\varepsilon_{i,j} \in \{1,-1\}$ are suitably chosen. We will prove two special cases of the theorem:

(A) Suppose p consists of disjoint cycles of length at most two. Then there exists a norm preserving $(\frac{\pi}{\log 2} \cdot \frac{1}{K})$ -quasi-isometry f of \mathbb{R}^n

- onto itself so that f(x) = -f(-x) for $x \in \mathbb{R}^n$, $f(e_i) \in \{\pm e_{p(i)}\}$ and f = Id on $\{u_1, \ldots, u_n\}$.
- (B) Suppose that $|\{i: \alpha_i = -1\}|$ is even. Then there exists a norm preserving $(\frac{2\pi}{\log 2} \cdot \frac{1}{K})$ -quasi-isometry f of \mathbb{R}^n onto itself so that f(x) = -f(-x) for $x \in \mathbb{R}^n$, $f(e_i) = \alpha_i e_i$ and f = Id on $\{u_1, \ldots, u_n\}$.

To get the general case, we write as in Lemma 4.3 $p = p_4 \circ p_3 \circ p_2 \circ p_1$, where each of the permutations p_1, \ldots, p_4 consists of disjoint cycles of length at most two. For each $j \in \{1, \ldots, 4\}$, let f_j be the quasi-isometry which exists by (A) for the permutation p_j . The quasi-isometry $\tilde{f} = f_4 \circ f_3 \circ f_2 \circ f_1$ satisfies $\tilde{f}(e_i) = \beta_i e_{p(i)}$ for some $\beta_i \in \{-1, 1\}$, and $\tilde{f} = \mathrm{Id}$ on $\{u_1, \ldots, u_n\}$. If $|\{i : \alpha_i \neq \beta_i\}|$ is even, there exists by (B) a quasi-isometry f_5 so that $f = f_5 \circ \tilde{f}$ satisfies the conclusion of the theorem. Suppose $|\{i : \alpha_i \neq \beta_i\}|$ is odd; we can assume that $\alpha_1 \neq \beta_1$. By (B) there exists a quasi-isometry f_5 so that $f_5 \circ \tilde{f}$ satisfies the conclusion of the theorem but for $(f_5 \circ \tilde{f})(e_1) = -\alpha_1 e_1$. By Lemma 4.2 (with the bases $\{e_1, \ldots, e_n\}$ and $\{u_1, \ldots, u_n\}$ interchanged), there exists a quasi-isometry f_6 , so that $f = f_6 \circ f_5 \circ \tilde{f}$ is as required.

Proof of (A). Let $p = (a_1, b_1) \dots (a_k, b_k)$. To keep the notation more transparent, we will treat the concrete case when $p = (1, 2)(3, 4) \dots (n-1, n)$; the generalization is obvious. Let $h : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping defined above Theorem 4.1 with $\varepsilon = \frac{\pi}{\log 2} \cdot \frac{1}{K}$. Let $g = e^{\pi i/2} \cdot h$ be h composed with the rotation by $\pi/2$ around the origin. Then g rotates by $\pi/2$ all $z \in \mathbb{R}^2$ with $||z|| \geq 1$ and g(z) = z for all $z \in \mathbb{R}^2$ with $||z|| = 2/\sqrt{n}$, as

$$\frac{\pi}{2} + \varepsilon \log \frac{2}{\sqrt{n}} = \frac{\pi}{2} + \frac{\pi}{\log 2} \cdot \frac{1}{K} \cdot \log \frac{2}{\sqrt{2^{K+2}}} = 0.$$

Below we will consider g written in the Cartesian coordinates. We write \mathbb{R}^n as the ℓ_2 -sum of n/2 copies of \mathbb{R}^2 and define f "coordinate-wise": if $x = \sum_{i=1}^n x_i e_i$ then

$$f(x) = f(x_1, x_2, \dots, x_n) = (g(x_1, x_2), g(x_3, x_4), \dots, g(x_{n-1}, x_n)).$$

Since g is a bi-Lipschitz mapping of \mathbb{R}^2 onto itself, f is a bi-Lipschitz mapping of \mathbb{R}^n onto itself and the Lipschitz constants are the same, that is, f is a $(\frac{\pi}{\log 2} \cdot \frac{1}{K})$ -quasi-isometry. Since g preserves the norm and g(z) = -g(-z) for $z \in \mathbb{R}^2$, f is also norm-preserving and f(x) = -f(-x) for $x \in \mathbb{R}^n$. The projection of e_j on each of the 2-dimensional blocks spanned by $\{e_l, e_{l+1}\}$ is either e_j itself (if $j \in \{l, l+1\}$), or zero. As g rotates by $\pi/2$ on the unit circle and g(0) = 0, we have $f(e_{2k-1}) = e_{2k}$ and $f(e_{2k}) = -e_{2k-1}$ for $k \in \{1, \ldots, \frac{n}{2}\}$. The projection

 $p_l(u_j)$ of u_j on each of the 2-dimensional blocks spanned by $\{e_l, e_{l+1}\}$ is $p_l(u_j) = \frac{1}{\sqrt{n}}(\varepsilon_{l,j}e_l + \varepsilon_{l+1,j}e_{l+1})$, hence $||p_l(u_j)|| = \frac{2}{\sqrt{n}}$. It follows that $g(p_l(u_j)) = p_l(u_j)$ and $f(u_j) = u_j$ for $j \in \{1, \ldots n\}$.

Proof of (B). Again, to keep the notation more transparent, we will treat a concrete case: assume that $\alpha_1 = \cdots = \alpha_n = -1$. The generalization is obvious. Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping defined above Theorem 4.1 with $\varepsilon = \frac{2\pi}{\log 2} \cdot \frac{1}{K}$. Let $g = e^{\pi i} \cdot h$ be h composed with the rotation by π around the origin. Then g rotates by π all $z \in \mathbb{R}^2$ with $||z|| \geq 1$ and g(z) = z for all $z \in \mathbb{R}^2$ with $||z|| = 2/\sqrt{n}$, as

$$\pi + \varepsilon \log \frac{2}{\sqrt{n}} = \pi + \frac{2\pi}{\log 2} \cdot \frac{1}{K} \cdot \log \frac{2}{\sqrt{2^{K+2}}} = 0.$$

Below we will consider g written in the Cartesian coordinates. We write \mathbb{R}^n as the ℓ_2 -sum of n/2 copies of \mathbb{R}^2 and define f "coordinate-wise": if $x = \sum_{i=1}^n x_i e_i$ then

$$f(x) = f(x_1, x_2, \dots, x_n) = (g(x_1, x_2), g(x_3, x_4), \dots, g(x_{n-1}, x_n)).$$

As in the proof of (A), f is a norm preserving $(\frac{2\pi}{\log 2} \cdot \frac{1}{K})$ -quasi-isometry of \mathbb{R}^n onto itself, and f(x) = -f(-x) for $x \in \mathbb{R}^n$. The projection of e_j on each of the 2-dimensional blocks spanned by $\{e_l, e_{l+1}\}$ is either e_j itself (if $j \in \{l, l+1\}$), or zero. As g rotates by π on the unit circle and g(0) = 0, we have $f(e_j) = -e_j$ for $j \in \{1, \ldots, n\}$. Exactly as in the proof of (A) we get that $f(u_j) = u_j$ for $j \in \{1, \ldots, n\}$.

If f is the ε -quasi-isometry from Theorem 4.4 for which $f=-\mathrm{Id}$ on the orthonormal basis $\{e_1,\ldots,e_n\}$ and $f=\mathrm{Id}$ on the orthonormal basis $\{u_1,\ldots,u_n\}$ (we treated this particular case in the proof of the statement (B)), then $\sup_{x\in B_{\mathbb{R}^n}}\|f(x)-T(x)\|\geq 1$ for any linear $T:\mathbb{R}^n\to\mathbb{R}^n$. Indeed, suppose that for some linear $T:\mathbb{R}^n\to\mathbb{R}^n$ we have $\|T(x)-f(x)\|<1$ for each $x\in B_{\mathbb{R}^n}$. Then

$$\langle T(e_i), e_i \rangle = \langle T(e_i) - f(e_i), e_i \rangle + \langle f(e_i), e_i \rangle \le -1 + ||T(e_i) - f(e_i)|| < 0.$$

Similarly,

$$\langle T(u_i), u_i \rangle = \langle T(u_i) - f(u_i), u_i \rangle + \langle f(u_i), u_i \rangle \ge 1 - ||T(u_i) - f(u_i)|| > 0.$$

Let A be the matrix of T with respect to the basis $\{e_1, \ldots, e_n\}$, and B be the matrix of T with respect to the basis $\{u_1, \ldots, u_n\}$. Then trace $A = \operatorname{trace} B$. At the same time

trace
$$A = \sum_{i=1}^{n} \langle T(e_i), e_i \rangle < 0,$$

and

trace
$$B = \sum_{i=1}^{n} \langle T(u_i), u_i \rangle > 0,$$

which is a contradiction. As the mapping f in the proof of (B) satisfies moreover f(x) = -f(-x) for $x \in \mathbb{R}^n$, it holds also that $\sup_{x \in B_{\mathbb{R}^n}} \|f(x) - T(x)\| \ge 1$ for any affine $T : \mathbb{R}^n \to \mathbb{R}^n$.

Acknowledgment.

I would like to thank Joram Lindenstrauss and Piotr Mankiewicz for stimulating discussions on the subject of this paper.

References

- [ATV] P. Alestalo, D.A. Trotsenko, J. Väisälä, *Isometric approximation*, University of Helsinki, Preprint 247, 1999.
- [BL] Y. Benyamini, J. Lindenstrauss, Geometric non-linear functional analysis, Colloquium publication No. 48, Amer. Math. Soc., 1999.
- [BP] C. Bessaga, A. Pelczynski, Selected topics in infinite-dimensional topology, PWN, Warszawa 1975.
- [IP] D.J. Ives, D. Preiss, Not too well differentiable Lipschitz isomorphisms, Israel J. Math. 115 (2000), 343-353.
- [J] F. John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391-413; [Collected papers Volume 2, J. Moser, ed., Birkhäuser, (1985), 643-665].
- [Lo] G.M. Lövblom, Isometries and almost isometries between spaces of continuous functions, Israel J. Math. 56 (1986), 143-159.
- [Pi] A.Pinkus, n-Widths in approximation theory, Springer-Verlag, Berlin 1985.
- [T] V.M. Tikhomirov, Some questions of the approximation theory (in Russian), Moscow Univ. Press, Moscow 1976.
- [Ve] I.A. Vestfrid, Linear approximation of approximately linear functions and injectivity of quasi-isometries, thesis, Technion, Haifa 2000.
- [Za] E.H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, Contributions to nonlinear functional analysis, (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1971), 237-341, Academic Press, New York, 1971.

MATHEMATICAL INSTITUTE, CZECH ACADEMY OF SCIENCES, ŽITNÁ 25, CZ-11567 PRAGUE, CZECH REPUBLIC

AND

Department of Mathematics, University of South Carolina, Columbia, S.C. 29208, USA

E-mail address: matouse@matsrv.math.cas.cz