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ALMOST ISOMETRIES OF BALLS
EVA MATOUSKOVA

ABSTRACT. Let f be a bi-Lipschitz mapping of the Euclidean ball
Bgr into ¢ with both Lipschitz constants close to one. We inves-
tigate the shape of f(Bgn). We give examples of such a mapping
f, which has the Lipschitz constants arbitrarily close to one and
at the same time has in the supremum norm the distance at least
one from every isometry of R™.

1. INTRODUCTION

By the classical theorem of Mazur and Ulam, every surjective isom-
etry f of two Banach spaces X and Y is affine. There are various
possibilities how to slightly relax the isometry condition on f and still
ask if f can be well approximated by an affine mapping (see [BL] for
an exposition and literature on this subject). Here we will consider the
case when both X and Y are Euclidean spaces and f: Bx — Y is a
bi-Lipschitz mapping with both Lipschitz constants 1 + ¢ for some
0 < & < 1 (for exact definitions of an e-rigid mapping, or of an
e-quasi-isometry see Section 2). If dimX = dimY = n, then by
a result of F. John [J], there is an isometry 7" : X — Y so that
| f(z)=T(z)|| < cn2e for z € By, where c is an absolute constant. The
estimation of the approximation error a(n, ) was improved by Vestfrid
[Ve] to a(n,e) < cnze. He proved also that in the general case when
n = dimX < dimY the approximation error is at most cn%\/g. (If
dim X < dimY, the order of magnitude of the error has to be at least
V€. To see this, it is enough to take the mapping f : [—1,1] — R? de-
fined by f(t) = (¢,0) if t € [-1,0] and f(t) = (¢,t/¢) if t € [0, 1]. This
mapping is e-rigid and its distance from any affine mapping T : R — R?
is at least 1/£/8.)

In Section 4 we give examples which show that the approximation
error really does depend on the dimension of X, answering thus a
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question in [BL]. For example, for any ¢ > 0 we construct an e-quasi-
isometry f : Bg» — R™ (n is about exp 1) such that f(Bgs/2) contains
an orthonormal basis of R*. This f has the distance at least 1/v/2
from every affine mapping of R*. Consequently, if we wish to write the
approximation error in the form a(n,s) = p(n)e, then p(n) > clogn
for some constant ¢ > 0.

This is very much unlike the situation when both X and Y are
Banach spaces of continuous functions on some compact metric spaces.
Here, by a result of Lovblom [Lo|, an e-rigid mapping of Bx into Y
can be approximated on (1 — 8¢)Bx by an isometry within an error of
8e.

We also investigate the shape of f(Bgn), if f is an e-rigid mapping. In
Proposition 3.1 and Proposition 3.2 an easy application of the theorem
of Borsuk and Ulam shows that f can not “squeeze” B close to a
space of dimension less than n: if Y is an affine space with dimY < n
then f(Bgs) is not contained in Y + B(0,1 — 44/¢). In Proposition 3.4
we show a counterpart to Proposition 3.1: the convex hull K of an
e-rigid image of Brn can not fill up too much of Bgm if n < m.

If Z is a closed linear subspace of a Hilbert space H, we denote by
Py the orthogonal projection on Z. By Bx(x,r) we denote the closed
ball with the center at z and radius r in the Banach space X; B¢ (z,r)
is the open ball. By Sx(z,r) we denote the corresponding sphere. The
unit ball with the center at zero is denoted by Bx. We reserve the
notation Br» and Sg» for the Euclidean ball and sphere. By ey,... e,
we denote the standard orthonormal basis of R*. By ¢, c1,co,... we
denote absolute constants, which may have different values even in the
same formula.

2. PRELIMINARIES

Let f be a mapping from an open subset U of a Banach space X
into a Banach space Y. The local distortion of distances by f can be
measured by the functions

D7 f(z) = limsup —Hf(ﬁ; : iﬁx)n ;
Do) =ppr U= T

The following class of almost isometric mappings was introduced by
F. John [J] (see [BL] for many of their properties).
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Definition 2.1. Let € > 0. A mapping f from an open subset U of a
Banach space X into a Banach space Y is called an e-quasi-isometry if
it satisfies the following two conditions

(i) f is a local homeomorphism; i.e. every point z € U has an
open neighborhood V' such that f is a homeomorphism of V'
onto an open subset of Y.

(i) f satisfies (1 +¢) ! < D f(z) < DT f(z) < 1+ ¢ for every
rel.

We will mostly work simply with bi-Lipschitz mappings which have
the Lipschitz constants close to one:

Definition 2.2. Let € > 0. A mapping f from a subset A of a Banach
space X into a Banach space Y is called e-rigid if (1 + &)~ Y|z — y|| <
1f(z) = F)Il < (1 +¢)llz — yl| for all z,y € A.

We will usually assume that 0 € A and f(0) = 0. Also, we will
often use the trivial observation that 1 —e < (1 +¢)"! <1 —¢/2 for
0<e<l

If U C R* is open and f : U — R” is e-rigid then by the invariance
of domains f is an e-quasi-isometry (the invariance of domains says
that if V' C R™ is homeomorphic to an open set U C R", then V
itself is open in R" ). The other way round, if X,Y are Banach spaces
and f : B%(z,r) — Y is an e-quasi-isometry then f is e-rigid on
Bx(z,7/(14¢)%) and f(Bx(z,r)) D By(f(z),r/(14¢)) (see e.g. [BL],
p. 345).

It is an elementary, but useful fact that e-rigid mappings almost
preserve angles (see e.g. [BL], p. 349).

Lemma 2.3. Let X be a Hilbert space, 0 < e <1,0€ AC X, and let
f:A— X be e-rigid and such that f(0) = 0. Then

(f(@), F()) — (&, )] < 3elllz = ylI* + [[z]* + [ly[1*)
for all x,y € A.

Proof. Since f is e-rigid, [[|f(z) — f(y)II* — Iz — y?| < 3el|z — y]|* for
x,y € A. Hence
2/{f(z), f(y)) — (2, 9)|
< @) = FOI? = llz =yl + L@ = P+ L)1 = [lyl1?]
< 3e(llz = yll* + ll=l* + [lyl1*).

t
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The following lemma states that e-rigid mappings almost preserve
linearity for convex combinations. It is derived in [Ve| from a result of

[Za].

Lemma 2.4. Let X be a Hilbert space, A C X be convex, f : A — X
e-rigid. Then for any xy,...,z, € A, \; >0, D7 A\ =1 it holds

1P diw) = Y Nif (@)l < V2 - Vemax|a; — .
=1 =1

This means in particular, that e-rigid mappings of convex sets almost
preserve the mid-points of line segments: | f(3(z + y)) — 3(f(z) +
F@)I < V2yelle — gl for 2,y € A

Assume now that f is an e-rigid mapping of a convex symmetric
set A and f(0) = 0. Then f is almost antipodal; that is, ||f(z) +
f(=2)|| < 4v2y/€||z|| for = € A. Consequently, if \; € R are such that
Yor [Nl =1, then

||f(Z>\i$i) - Z/\if(l’i)ﬂ
< ||f(Z [Ail(zi - sgn ;) — Z (il f(z; - sgn )|
(1) Y Il F (@ sgn ) = > Aif (2|
=1 =1

< V2-yediam A+ ) NI f (i - sgn i) — f(x) - sgn |
=1

< V2 - y/ediam A + 4v/2 - /e max ||z;]|
< 3v/2y/ediam A.

This means that the image of a convex symmetric set by an e-rigid
mapping is again almost convex and almost symmetric.

Quasi-isometries preserve the mid-points of line segments with a
smaller error ce, instead of ¢/« for the e-rigid mappings. The following
lemma appears in [Ve| in a more general setting (f is a quasi-isometry
between two Banach spaces), and with a rather involved proof. As we
will use it only for quasi-isometries of Hilbert spaces, we provide here
an elementary proof of this case.

Lemma 2.5. Let 0 < a < 1. There exists ¢, > 0 wit the following
property. Let X be a Hilbert space, and let f : B%(0,1+a) — X be an
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FiGUure 1. Ilustration to the proof of Lemma 2.5.

e-quasi-isometry for some 0 < ¢ < ¢e,. Then

|F() — L) < 8l —y|
for x,y € Bx.
Proof. Let 0 < g, < i be such that
(2) l+e+2<(l+a)/(1+¢)°

for 0 < € < g,. By Theorem 14.7 of [BL],

(i) f is e-rigid on (11:“)2BX D By, and

(i) f(t2By) > B(f(0), kizs).
Let z,y € Bx be given. Let z be the orthogonal projection of f(“y)
on the line defined by f(z) and f(y). Since f(*3¥) € B(f(z), “x2y‘|(1+

£) N B(f(y), 1554 (1 +2)),
Wl

Iz — f(w)-gf(y)“ < Hw—yl\(l te)— Hf(CE);

(3)

<llite— ) <ellz -yl

Assume z # f(*3¥); we will estimate ||z — f(*3%)||. To this end define

a g lz —yll
vzt O (pem) -2 e Y

1 V5 RESEE]
From (3) it follows that z € conv{f(z), f(y)}. Since f(z), fly) €
B(f(0),1 + ¢) we get by (2) and (ii) that v € f( — 7z Bx). Conse-
quently, fisan e-rigid mapping of the set A = {z, y, ”y, 42), f(v)}.
As we are interested only in estimating of distances of points in the set
f(A), we can by translation of A and of f(A) assume that 0 = z =

f71(2). Then, clearly, |[f(z)Il < |If(z) = f(W)ll < (1 +¢)llz — yl| and
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lv = f(@)]| < [l = yll(§ + (1 +¢€)). Since (v, f()) = (v, f(y)) =0, by
Lemma 2.3
(), 2)| < SellF @)1 + ol + (1 (2) — vll?) < 6elle — yll?,
and, similarly, |(f (v),9)] < 6ellz — y|. Hence |(f *(v),%¥)| <
6¢]lz — y||?, and again by Lemma 2.3
o, S < 1 0), 250
+ 3l I+ 2P+ 1 ) = 5201
< 6ellz —yll* + Ze - 201/~ )P + 152207+ 1l - 155210
< 6ellz —ylI* + 3ellz — ylI*((1 + €)%a®/16 + (1 + )" + (1 +€)°a/4)
< 16¢||z — y||.
By the definition of v

LFE) = (o, £ -4 o < 16efa—y] 2 s < Seeeffo—y],

and by (3)

| f(2hy) — L@@ <y JEEIO) 4 p (2t || < S|z — g,

t

Suppose that an e-rigid mapping f : Bre — {5 is well approximated
by an affine mapping. Then f is well approximated by an isometry.
This statement is used several times in [Ve]; for an easy reference we
state it as a lemma.

Lemma 2.6. Let € > 0, a > 0 be such thata+¢c < 1. Let f : Brn — {5
be e-rigid and T : R* — {ly linear such that ||f(x) — T(z)|| < a for all
x € Bgn. Then there ezists an isometry R* — {ly so that ||f(z) —
S(x)|| < e+ 2a for all x € Bgn.

Proof. Let wuy,...,u, be an orthonormal basis of R", v{,...,v,, an
orthonormal basis of T(R") and A\; > Ay > --- > X,, > 0 so that
T(u;)) = N\v; for i = 1,...,;m and T'(w;) = 0 and \; = 0 for i > m.
Then

X = |T(w)|| < || f(wi)]| +a<1+e+a and

Ai = 1T (ua)l| = [[f (i)l —a =1 —¢€ —aq,

hence 1+e+a>A\ > X >---> X, >1—¢e—a > 0; in particular,

.....

a + ¢, and the lemma follows from the triangle inequality. O
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F(SX)ﬂPY " RY + B(0,1— 4/)
b

FiGUre 2. Ilustration to the proof of Proposition 3.1.

3. £-RIGID MAPPINGS AND LINEAR SUBSPACES

Let X be a Banach space and A C X; let k£ € N. Recall, that the
Kolmogorov k-diameter di(A, X) of A expresses how well can A be
approximated by k-dimensional subspaces of X:

di(A, X) 1;}53&&23&“96 yll,
the left-most infimum being taken over all k-dimensional subspaces X}
of X. The sum of a linear subspace and of a ball is a convex set, hence
dip(A, X) = di(conv A, X) (for other properties of the Kolmogorov di-
ameter see e.g. [Pi]).

First we observe that an e-rigid mapping f can not squeeze the unit
ball of a k-dimensional Hilbert space inside of a small neighborhood
of a space with dimension [ < k. We will actually show that the
Kolmogorov [-diameter of f(Bpx) is almost one.

Proposition 3.1. Let 0 < ¢ < 1 and f : Brn — {2 be e-rigid, f(0) =
0. Let X C R", Y C ¥y with dimY < dimX. Then f(Bx) is not
contained in' Y + By, (0,1 — 44/¢).

Proof. Suppose that
f(Bx) CU:=Y + By, (0,1 — 4y/2).

Assuming this, we will construct a continuous antipodal mapping @ :
Sx — Y such that ®(z) # 0 for all z € Sx, which will contradict

the Borsuk-Ulam theorem. For z € Sx put F(z) = 3(f(z) — f(—z))

and define ® = Py o F. The mapping F is antipodal, as F(—z) =

$(f(—=z)— f(z)) = —F(x), hence @ is antipodal as well. By the remark

after Lemma 2.4
IF(@)]| = [If(z) = 3(f(==z) + f@)]| > | f(x)]| — 2v2Vz
(4)
>1—e—2V2e > 1— 4y
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Since U is convex and symmetric, F'(Sx) C U, and

(5) 1Py (F(2))l| = [|F(z)]] - (1 - 4Ve).
By (4) and (5)

|0@)]| = [Py (F@)I| > 1 — 4v/ = (1 — 4v/2) = 0.
]

The midpoints of line segments are for e-quasi-isometries by Lemma 2.5
preserved with the error ce instead just cy/c as it was for e-rigid map-
pings. This enables slightly improve Proposition 3.1; the proof is the
same.

Proposition 3.2. Let 0 < a < 1. There exists ¢, > 0 with the follow-
ing property. Let f : B,(0,14+a) — R*, f(0) =0 be an e-quasi isom-
etry for some 0 < € < g,. Suppose X,Y C R" with dimY < dim X.
Then f(Bx) is not contained in'Y + Bgn (0,1 — 122 ¢).

To prove a counterpart to Proposition 3.1, we will need the following
version of the theorem of Bartle and Graves.

Theorem 3.3. Let X,Y be Banach spaces, T' : X — Y continuous,
linear and surjective and K C X closed and convex. Then there exists
a continuous mapping f : T(K) — K so that T(f(y)) = y for all
y € T(K). Moreover, if K is symmetric, f can be chosen so that

fly) = —f(—y) for ally € T(K).

Proof. (Sketch) We can simply follow the proof in ([BP], p. 86). Let @
be the inverse of T restricted to K. Then ® : T(K) — 2% is a complete
convex lower semi-continuous mapping. By Michael’s theorem & ad-
mits a continuous selection f. If K is moreover symmetric, we replace

fy) by 2(f(y) — F(=y)). O

Next we prove that the convex hull K of an e-rigid image of a k-
dimensional unit ball can not fill up too much of an I-dimensional unit
ball if / > k. Namely, the maximal inscribed ball of the projection
Py(K) onto any Y with dimY = [ > k has radius only ¢y/e. No-
tice however, that this does not mean that K is contained in a small
neighborhood of a k-dimensional space. This follows from Example 4.1.

Proposition 3.4. Let 0 < ¢ < % and f : Brn — ly be e-rigid,

f(0) = 0. Let X C R", Y C ¢y withdimY = dimX + 1, and
K =symconv f(Bx). Then max{r : By(0,7) C Py(K)} < 304/c.

Proof. Assume that By (0,301/) C Py(K). As in the proof of Propo-
sition 3.1, we will construct under this assumption a continuous an-
tipodal mapping ® : Sy (0,30y/c) — X such that ®(y) # 0 for all
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y € Sy (0,304/¢). This will contradict the Borsuk-Ulam theorem. The
mapping f ! : f(Bx) — X is (1 + ¢)-Lipschitz; by the theorem of
Kirszbraun (see e.g. [BL], p. 19) it can be extended to a (1 + ¢)-
Lipschitz mapping ¢ : ¢ — X. For v € {5 put F(v) = (p(v)—¢p(-v));
clearly, F' is antipodal. Let v € K. By (1), there exists € By so that
£ (z) = vll < 6v2y/E. Since [ f(z)]| < (1 + )|zl

]l > ([v]] = 6v2VE)(L+¢)7" > o]l — 4v2Ve.
By the definition of ¢ we have ||z — ¢(v)]| < (1 +¢)||f(z) — v]|, hence
le()|| = [lz]l = (1 +e)llv = f(2)]
> 2] - 13V3VE.

By Theorem 3.3, there exists a continuous mapping ¢ : Py (K) — K

such that Py(¢(y)) = y and ¥(y) = —¢(—y) for all y € Py(K).
As 1 is a selection from the inverse of an orthogonal projection, it

is also ||[¥(y)|| > |ly|l. Define ® : Py(K) — X by ® = po. Let
(VRS Sy(0,30\/g) C Py(K) Then by (6)

1Bl =l @)l > 2l ()l — 13v2y/E
> 2|ly|| — 13V2y/z > 0,

and this contradicts the Borsuk-Ulam theorem. [l

(6)

(7)

If T:R* — /¢, is affine, then, clearly, the graph of 7" is contained in
an n-dimensional affine subspace of R*@®/s. If some f : Brn — {5 is well
approximated by an affine mapping, then the graph of f is contained
in a small neighborhood of an n-dimensional affine subspace of R" & /5.
In Lemma 3.5 we observe that the converse also holds. If the graph of
a mapping f : Bgn — 2By, is contained in a small neighborhood of an
n-dimensional affine subspace of R* & {5, then f is well approximated
by an affine mapping.

Lemma 3.5. Let f : Bgn — {3 be a mapping with || f(x)|| < 2 for
T € Bgrn. Suppose there is an n-dimensional subspace Z C R™ @ {y and
0 < & < 5 such that the graph of f is contained in Z + Bgnge,(0,0).
Then there is a linear mapping T : R* — ly so that ||T(z)— f(z)|| < 70
for all x € Bgn.

Proof. Let P = Pgn be the orthogonal projection on R*. We can
assume that P : Z — R" is a bijection; this can be achieved by an
arbitrarily small perturbation of Z. Put S = P~!; S has necessarily
the form S(z) = (2,7 (z)) with T linear. Choose orthonormal bases
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{u1,...,up} of R® and {vy,...,v,} of Z, so that T'(u;) = A\;v; for some
A1 > - > )\, > 0. Choose y € R” so that
3 >0 > dist ((ur, f(wr)), 2) = (s = ylI* + 1 T(y) — () 1) 2.

If (z,u1) < § for some z € R”, then ||z — uy|| > 1. Hence (y,u;) >
and

1
29

3 2 1T(@) = Fu)ll 2 1T = 1 ()l = Aly, ur) — 2.
This implies that ||T]| = A; < 5, and [|S|| < 6.
ho%dest r € Bge; denote F(z) = (z, f(z)). For y = P(Pz(F(x))) it
lz =yl = 1P(F(z)) = P(SW)I < 1Pl - [ F(x) = Syl
= [|[F(z) — Pz(F(2))|| <.
Hence
1T () — f(@)| = |1S(z) — F(@)[| < [|S(z) = S| + [1S(y) = F(x)]|
< |IS]|0 + o < 76.
U

If f is an ¢ rigid mapping, then by an elementary computation
(which we perform below) the mapping F(z) = %(:p, f(z)) is 2e-rigid.
Suppose f is not well approximated by affine mappings, for example,
f(0) = 0and sup,cp,, |[f(z)=T(x)|| > 0 > 0 for all linear mappings 7T'.
Then by Lemma 3.5, the Kolmogorov n-diameter of F'(Bg-) is large,
namely d,(F(Bgn),¥ls) > /7.

Lemma 3.6. Let A C Uy and f : A — Uy e-rigid for some ¢ > 0. Let

K >0 and F : A — ly be the mapping which gives each x € A its

image in the graph of K - f; that is, F(x) = (x, K f(z)) (here we write
Uy =10y ®ly). Then for all z,y € A

(V1+ K2 —eK)|lz —yl| < [[F(z) = F(y)| < (VI+ K? +eK)[z —y.
Proof. If x # y, then

— 2 _ 2

|1 (z) F(2y)|| 4 g2l =) f(g)ll

lz =yl |z =yl

@ - S
S P ER

Y

and

(14 ¢)>.

Moreover

V1+K2—eK < +/1+K?(1 —¢)?and /14 K2(1+¢)2 <V1+ K2+¢K.
U
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4. A QUASI-ISOMETRY CAN BE FAR FROM ALL ISOMETRIES

Consider the following example by F. John [J] (see also [BL], p.
352). Let 0 < £ < 1. The mapping h of the unit disc Bgz onto
itself defined in the polar coordinates by h(r,¢) = (r,¢ + clogr) for
r > 0 and by h(0) = 0 is an e-quasi-isometry; it actually satisfies
(L+e)7Hlz =yl < lIh(z) = h(y)l| < (1+e)||z -yl for all 2,y € Bgo. If
we define h outside of the unit disc by h(z) = z, the above inequality
holds for all x,y € R?. This can be seen by direct checking; also, it
follows immediately from Lemma 2 of [IP] applied to both h and the
inverse of h. In the supremum norm, h can be well approximated by
the identity. It rotates each x € Bg: around the origin by an angle
elog(||x||); close to the origin this changes a lot.

We will use h to construct an e-quasi-isometry f of Bgen onto itself
(n is about exp %) so that the image of Bgn nearly contains the unit
ball Bpen. As any affine mapping carries R" to an affine subspace of
dimension at most n, the mapping f can not be well approximated by
an isometry.

Theorem 4.1. Let 0 < ¢ < 1 be given. There exists n € N and a
norm preserving e-quasi-isometry f of R*™ onto itself so that f(r) =
—f(=z) for x € R*™, and f(Bgn) contains an orthonormal basis of
R?". Consequently,

(i) di(f(Bre), 3") > /1 = 55 for L < k < 2n;
(if) o T : R* — R* is affine, then sup,ep,, |T(x) — f(z)| >

and
(lll) Bf%" C f(B]Rn) + BR2n (0, 2\/5)

1
V3’

Proof. We can assume that ¢ is of the form ¢ = @ . %, where K € N
is large enough, and put n = 2%, We write R*® as R* ® R*. Let
€1,-..,e, be the standard orthonormal basis of the first copy of R",
and let e,i1,€,49,...,62, be the standard orthonormal basis of the
second copy of R". Let uq,...,u, be the orthonormal basis of the first
R™ which corresponds to the columns of the Hadamard matrix; that
is, each u; is of the form u; = ﬁ Y or €ijei, where g;; € {1,—1} are
suitably chosen. Similarly, let vy, ..., v, be an orthonormal basis of the
second R" for which v; = % > oy EijCrti-

Let h : R2 — R? be the mapping defined above; let g = e™/2h be h
composed with the rotation by 7/2 around the origin. Then g rotates
by /2 all z € R?* with ||z|| > 1 and g(z) = 2 for all z € R? with
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€n+1 s €n+2 T €2n P
‘Y Y
Id Id
D o oo { D e

_en+1

Ficure 3. Ilustration to the proof of Theorem 4.1.

Izl = 1/+/n, as

s Ll 1 s . s 1 | 1

2 8/n 2 Tlog2 K ® K
Below we will consider g written in the Cartesian coordinates. Now we
will write R?" as the f5-sum of n copies of R?:

R = R*®- - -@R* = span {ey, en11}®span {es, €,12}®- - -®span {ey, €2, }.
We define f “coordinate-wise”: if x = Y1 (zie; + Tpii€nii) then

f(x) = f((xh xn+1)7 ($2,$n+2), sy (CL‘n, x2n))

=0.

= (g(x1,Tns1), 9(x2, Tnya)y - o, g(T0, Tan)).
Since g preserves the norm and g(z) = —g(—=z) for z € R?, it holds
|f(z)]| = ||z|| and f(z) = —f(—z) for z € R®*. Since g is a bi-

Lipschitz mapping of R? onto itself, f is a bi-Lipschitz mapping of
R2" onto itself and the Lipschitz constants are the same; that is, (1 +
e — yl < IF() — @Il < (1+2)lle — y| for all 2,y € R
The projection of e;, j € {1,...n} on each of the 2-dimensional blocks
spanned by {e, e, } is either e; itself (if j = k), or zero. As g(0) =0
and ¢ rotates by /2 on the unit circle, we have f(e;) = e,y; for
j=1,...,n. The projection pi(u;) of u; on each of the 2-dimensional
blocks spanned by {ex, et} is pr(u;) = ﬁewek, hence ||pk(u;)|| =
ﬁ. Therefore g(pr(uj)) = pr(u;) for k = 1,....,n and f(u;) = u;
for each j = 1,...,n. Consequently, as f(z) = —f(—=z), the image of
the first copy of R™ contains (both plus and minus) the orthonormal

basis Q = {uy, Uz, ..., Un, Eni1,Eni2, ..., e, } of R, For completeness,
let us mention, that this way we also obtain that f(e,;) = —e; and
flvj) =vjforn=1,...,n.

Since £@Q C f(Bgn), and Bgn = conv £ @, the statement (i) follows
from the estimate dy(Bgn, (3") = 1/1— Lk e {1,...,2n} for the

Kolmogorov diameter of the ball of /2" (see e.g. [T], p. 237). In partic-
ular, since (@) is symmetric, if Z is an n-dimensional affine subspace of
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R?", then there exists ¢ € +Q so that dist (Z, q) > 1/+/2. This implies
(i), as Z = T(R™) is an at most n-dimensional affine subspace of R".
The statement (iii) follows from Lemma 2.4, since £Q C f(Bge). O

Let f : Brn — R" be an e-quasi-isometry for some 0 < ¢ < 1. Denote
by a(f) = infrsup,cp., |T(z) — f(z)||, where the infimum is taken
over all affine mappings T : R* — R". Let a(n,e) = sup;a(f), the
supremum being taken over all f as above. By [J] and [Ve], a(n,e) <
cy/ne. If we similarly define 3(n,¢) for e-rigid mappings, then by [Ve],
B(n,e) < cy/ny/e. Theorem 4.1 implies, that if we wish to write a(n, ¢)
in the form a(n,e) = p(n)e, then it holds ¢(n) > clogn, where ¢ > 0 is
a suitable constant. Indeed, if n € N, choose K € N so that 2K+ <n <
2K+2 that is, K = |logn/log2| — 1. In the proof of Theorem 4.1 we

.. K+1 K+1 .
constructed an e-quasi-isometry f : R? — R?"T with e = o5 L
g2 K’

so that a(f) = 1/v2. If we write R* = R2“"" @ R* 2" and define
F:R* - R" by F(z,y) = (f(x),y), then F is also an e-quasi-isometry
with a(f) = 1/v/2. Hence

™ 1
log2 [logn/log2|—1’

< p(n)e = p(n)

Sl

and ¢(n) > clogn for a suitable ¢ > 0. Similarly, if we wish to write
B(n,e) in the form fB(n,e) = 1(n)+/e, then it holds (n) > clog% n,
where ¢ > 0 is a suitable constant. This shows that the approxima-
tion error for near-isometries which was estimated in [ATV] also does
depend on the dimension.

A natural approach how to try to approximate an e-quasi-isometry

f defined on Bgr- by a linear mapping 7" is to fix an orthonormal basis
of R* (for example {ey,...,e,}), and put T(e;) = 2(f(e;) — f(—e;))

2
for i = 1,...,n. This is basically used in both [J] and [Ve]. Again,
if we wish the approximation error to be of the form «a(n,c) = p(n)e
with ¢(n) as small as possible, the best this approach can give to us is

©(n) = ¢y/n, as was achieved in [Ve].

Lemma 4.2. Let n be large enough. There exists an isometry S of
R* with ||S —1Id|| = 2 and %—quasi—isometry f R - R" with
f(0) =0, so that ||S(z) — f(z)]] < % for x € Bgn and at the same
time f(+e;) = te; fori=1,...,n.

Moreover, if n = 2% for some k € N, and uy, ..., u, is the orthonor-

mal basis of R™ which corresponds to the columns of the Hadamard
matriz then f(+ui) = Fuy, and f(Fu;) = fu; fori=2,...,n.
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Proof. Let v = ﬁ > i €. Then |[v|| = 1 and v is “almost orthogonal”
to all e;’s; that is, (v, e;) = ﬁ foralli=1,...,n. Let S: R — R™ be
the isometry which coincides with the identity on Ker v and S(v) = —wv;
that is, S(z) = x — 2(z,v)v. Let ¢ be the function supported on the
interval [—1, 1] for which ¢(0) = % and ¢ is linear on [—1,0] and on
[0,2]. Define ¢ : R* — R by ¢ (z) = ¢(/|lz — €]|), and, similarly,
o; () = —p(||z + €;]|). As the distances of different +e;’s are at least
V2, the functions ¢; are disjointly supported. Consequently, as the
function ¢ is %—Lipschitz, the function ® = Y7 (o + ¢ ) is %—
Lipschitz as well, with |®| < % For x € Bgn put f(z) = S(z)+®(z)v.
Then f is %—rigid and ||S(z) — f(z)]| < |2(z)] < % for z € R".
Moreover, f(0) =0 and f(de;) = £e; — 2(Fe;, v)v + i (e;)v = *e;.
Suppose that n = 2¥. We can assume that u; = v. As S = Id
on Kerv and ||u; £ €| > v/(n—1)/n > 1/2, f(+u;) = Fu; for i =
2,...,n. 0

To present a modification of Theorem 4.1 we recall a few basic facts
about permutations. A permutation p on a finite set {2 is a bijection of
Q2 onto itself. Each permutation can be decomposed uniquely, except
for order, into disjoint cycles. For example,

@ s1sae D =(1,2,3)(4,5)(6)(7) = (1,2,3)(4,5);

in the last expression the single point cycles (that is, the fixed points of
the permutation) are omitted. A transposition is a permutation which
consists of one cycle of length two; all the other cycles have length
one. Every permutation can be written as a composition of (enough
many) transpositions. Each permutation can be composed from four
permutations each of which consist only of disjoint transpositions (and
of single point cycles). For convenience we include a simple proof of
this.

Lemma 4.3. Let p be permutation on a finite set 2. Then p = pyopzo
p2 © p1, where each of the permutations py,...,ps consists of disjoint
cycles of length at most two.

Proof. We can assume that p is a cycle. For cycles of length up to five
it holds: (1,2,3) = (2,3) o (1,2); (1,2,3,4) = (2,4) o [(1,2)(3,4)}; and
(1,2,3,4,5) = (4,5) 0 (2,4) o [(1,2)(3,4)].
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FIGURE 4. The permutations p' and p for n = 13.

If Q] =n > 5, we write n = 3k + [, where k € N and [ € {3,4,5},
and put

P =(1,2,3)(4,5,6)(7,8,9)...(3k — 2,3k — 1,3k)(3k + 1,...,3k + 1),
pa=(3,4)(6,7)...(3k, 3k +1).

By the special cases mentioned above, p’ = p3 o py o p1, where each of
the permutations py, . .., ps consists of disjoint cycles of length at most
two. The permutation ps joins the k triangles and one [-gon of the
permutation p’ into a single cycle:

peop’ = (1;2,4,5,7,...,3k—1,3k+1;3k+2,...3k+l; 3k, 3(k—1),...,3).

By denoting the elements of €2 successively (according to the cycle p)
by 1,2,4,5,7,...,3 we get that p = ps o p3 0 ps 0 p;. 0

Theorem 4.4. Let 0 < ¢ < 1 be given. There erist n € N and
two orthonormal bases {eq,...,e,} and {uq,...,u,} of R* with the
following property. Let p be a permutation on {1,2,...,n}, and let
a; € {—1,1}. There exists an e-quasi-isometry f of R* onto itself so
that f(Fe;) = £oyeps) and f =1d on {0, £uy, ..., Tu,}.

Proof. Choose K € N so that (1+ 275 - £)° < 1+¢ and put n = 25+,
Let ey, ..., e, be the standard orthonormal basis of R*. Let uy,...,u,
be the orthonormal basis of R™ which corresponds to the columns of the
Hadamard matrix; that is, each u; is of the form u; = ﬁ Yo L Eij€
where ¢, ; € {1,—1} are suitably chosen. We will prove two special
cases of the theorem:

(A) Suppose p consists of disjoint cycles of length at most two. Then

there exists a norm preserving (107;2 - % )-quasi-isometry f of R™
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onto itself so that f(z) = —f(—z) for z € R™, f(e;) € {xep)}
and f =1d on {uy,...,u,}.

(B) Suppose that |{i : «; = —1}| is even. Then there exists a
norm preserving (102% . %)—quasi—isometry f of R™ onto itself so
that f(z) = —f(—z) for x € R, f(e;) = aye; and f = Id on

{ul, Ce ,U,n}.
To get the general case, we write as in Lemma 4.3 p = py o p3 o ps 0 py,
where each of the permutations py, ..., ps consists of disjoint cycles of
length at most two. For each j € {1,...,4}, let f; be the quasi-isometry
which exists by (A) for the permutation p;. The quasi-isometry f =
fa0 f30 fao fi satisfies f(e;) = Biep(i) for some f3; € {—1,1}, and f=1d
on {uy,...,u,}. If {i: a; # B;}| is even, there exists by (B) a quasi-
isometry f5 so that f = f5 o f satisfies the conclusion of the theorem.

Suppose |{i : «; # B;}| is odd; we can assume that «; # 5. By (B)

there exists a quasi-isometry f5 so that f5 o f satisfies the conclusion

of the theorem but for (fs o f)(e1) = —aye;. By Lemma 4.2 (with

the bases {ei,...,e,} and {uq,...,u,} interchanged), there exists a

quasi-isometry fg, so that f = fgo fs o f is as required.

Proof of (A). Let p = (a1,b1) ... (ag, bx). To keep the notation more

transparent, we will treat the concrete case when p = (1,2)(3,4) ... (n—

1,7n); the generalization is obvious. Let h : R? — R? be the mapping

defined above Theorem 4.1 with ¢ = %5 - L. Letg=e€"?-hbeh

composed with the rotation by 7/2 around the origin. Then g rotates
by /2 all z € R?* with ||z|| > 1 and g(z) = 2 for all z € R? with

2]l = 2/v/n, as
T Lol 2 T n T 1 ) 2 0
J— 6 0 J— _ . — . O =
2 & log2 K g\/2K+2

vn o 2
Below we will consider g written in the Cartesian coordinates. We write
R™ as the ¢y-sum of n/2 copies of R? and define f “coordinate-wise”:
if ¢ = )" | x;e; then

f(x) = f(x1,22,. .., 20) = (g(21,22), (w3, T4), . . ., g( @1, T0)).

Since g is a bi-Lipschitz mapping of R? onto itself, f is a bi-Lipschitz
mapping of R™ onto itself and the Lipschitz constants are the same,
that is, f is a (107;2 . %)—quasi—isometry. Since g preserves the norm
and g(z) = —g(—=z) for z € R?, f is also norm-preserving and f(z) =
—f(—z) for z € R". The projection of e; on each of the 2-dimensional
blocks spanned by {e;,e;41} is either e; itself (if j € {l,I + 1}), or
zero. As g rotates by 7/2 on the unit circle and ¢g(0) = 0, we have
f(ear—1) = e and f(ea) = —egp—1 for k € {1,...,%}. The projection
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pi(uj) of u; on each of the 2-dimensional blocks spanned by {e;, e;41}
. Rt 2
is py(u;) = %(6“61 + €141,5€141), hence ||pi(uj)|| = - It follows that
g(pi(uj)) = pi(u;) and f(u;) =u; for j € {1,...n}.

Proof of (B). Again, to keep the notation more transparent, we will
treat a concrete case: assume that a; = -+ = «,, = —1. The gener-
alization is obvious. Let h : R? — R? be the mapping defined above

Theorem 4.1 with ¢ = % + L. Let g =e™-h be h composed with the

rotation by 7 around the origin. Then g rotates by 7 all 2 € R? with
|lz|]| > 1 and g(2) = 2 for all z € R* with ||z]| = 2/y/n, as

felog e =nt 2 L 2o

™ g10 =T . — - ]0 —
& Vn log2 K & oKz

Below we will consider g written in the Cartesian coordinates. We write

R™ as the ¢y-sum of n/2 copies of R? and define f “coordinate-wise”:
if =) ", x;e; then

f(x) = f(x1,29,...,20) = (g(x1,22), (w3, T4), .. ., g( @1, T0)).

As in the proof of (A), f is a norm preserving (13; - £)-quasi-isometry

of R® onto itself, and f(z) = —f(—z) for x € R*. The projection of
e; on each of the 2-dimensional blocks spanned by {e;, e;41} is either
e; itself (if j € {l,1 + 1}), or zero. As g rotates by m on the unit circle
and ¢(0) = 0, we have f(e;) = —e; for j € {1,...,n}. Exactly as in
the proof of (A) we get that f(u;) =u; for j € {1,...n}. O

If f is the e-quasi-isometry from Theorem 4.4 for which f = —Id
on the orthonormal basis {ej,...,e,} and f =Id on the orthonormal
basis {u1,...,u,} (we treated this particular case in the proof of the
statement (B)), then sup,cp_, ||f(z) — T(z)|| > 1 for any linear T' :
R™ — R™. Indeed, suppose that for some linear 7' : R* — R" we have
IT(z) — f(z)]]| <1 for each & € Bgn. Then

(T(ei), ei) = (T(e;) — f(ei),ei) +(flei), er) < =1+ ||T(e;) — fles)|| <O.
Similarly,
(T(ui), ui) = (T(us) = fui), i) + (f (wi), wi) > 1=||T(w;) — f(us)|| > 0.

Let A be the matrix of T" with respect to the basis {ej,...,e,}, and
B be the matrix of 7" with respect to the basis {ui,...,u,}. Then
trace A = trace B. At the same time

trace A = Z(T(ei), e;) <0,
i=1
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and .
trace B = Z(T(ul), u;) > 0,
i=1

which is a contradiction. As the mapping f in the proof of (B) satisfies
moreover f(r) = —f(—z) for z € R", it holds also that sup,cg_,, ||f(7)—
T(z)|| > 1 for any affine T : R* — R™.

Acknowledgment.

I would like to thank Joram Lindenstrauss and Piotr Mankiewicz for
stimulating discussions on the subject of this paper.

REFERENCES

[ATV] P. Alestalo, D.A. Trotsenko, J. Viisdld, Isometric approzimation, Univer-
sity of Helsinki, Preprint 247, 1999.

[BL] Y. Benyamini, J. Lindenstrauss, Geometric non-linear functional analysis,
Colloquium publication No. 48, Amer. Math. Soc., 1999.

[BP] C. Bessaga, A. Pelczynski, Selected topics in infinite-dimensional topology,
PWN, Warszawa 1975.

[IP] D.J. Ives, D. Preiss, Not too well differentiable Lipschitz isomorphisms,
Israel J. Math. 115 (2000), 343-353.

[J] F. John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391-413;
[Collected papers Volume 2, J. Moser, ed., Birkhuser, (1985), 643-665].

[Lo] G.M. Lévblom, Isometries and almost isometries between spaces of con-
tinuous functions, Israel J. Math. 56 (1986), 143-159.

[Pi] A.Pinkus, n-Widths in approxzimation theory, Springer-Verlag, Berlin
1985.

[T) V.M. Tikhomirov, Some questions of the approzimation theory (in Rus-
sian), Moscow Univ. Press, Moscow 1976.

[Ve] I.A. Vestfrid, Linear approximation of approximately linear functions and
injectivity of quasi-tsometries, thesis, Technion, Haifa 2000.

[Za) E.H. Zarantonello, Projections on convez sets in Hilbert space and spectral

theory, Contributions to nonlinear functional analysis, (Proc. Sympos.,
Univ. Wisconsin, Madison, Wis., 1971), 237-341, Academic Press, New
York, 1971.

MATHEMATICAL INSTITUTE, CZECH ACADEMY OF SCIENCES, ZITNA 25, CZ-
11567 PRAGUE, CZECH REPUBLIC

AND

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA,
S.C. 29208, USA
E-mail address: matouse@matsrv.math.cas.cz



