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ABSTRACT. We consider some theoretical greedy algorithms for
approximation in Banach spaces with respect to a general dictio-
nary. We prove convergence of the algorithms for Banach spaces
which satisfy certain smoothness assumptions. We compare the
algorithms and their rates of convergence when the Banach space
is L,(T4) (1 < p < o0) and the dictionary is the trigonometric

system.
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1. INTRODUCTION

We continue the investigation of nonlinear m-term approximation.
In this paper we concentrate on studying convergence and rate of ap-
proximation of some theoretical greedy algorithms in Banach spaces.

Let X be a Banach space with norm || - ||. We say that a set of
elements (functions) D from X is a dictionary if each g € D has norm
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one ([lg[| = 1),
g €D implies —g e D,

and X is the closed linear span of D. We study in this paper a particular
case of the following Weak Chebyshev Greedy Algorithm with respect
to D [17]. For an element f € X we denote by F; a norming (or ‘peak’)
functional for f:

1Fll =1 Fr(f) = [If]-

The existence of such a functional is guaranteed by the Hahn-Banach
theorem. Let 7 := {t;}72, be a given sequence of positive numbers with
try <1 (k € N). We define the Weak Chebyshev Greedy Algorithm
(WCGA), which is a generalization for Banach spaces of the Weak
Orthogonal Greedy Algorithm for Hilbert spaces defined and studied
in [16] (see also [4] for the Orthogonal Greedy Algorithm), as follows.

Weak Chebyshev Greedy Algorithm (WCGA). We define f§ :=
o" = f. Then, for each m > 1, we inductively define
1). g, == ¢%" € D is any element of D satisfying

Fre (¢5,) > tmsup Fre_ (g).
geD

2). Define

®,, := @), == Span {pj}]L,,
and define G¢, := G&7 to be the best approximant to f from ®,,.

3). Denote
o= o= f G

We will consider the case 7 = {t} with 0 <t < 1 here. To stress this
we will write ¢ instead of 7 in the notation.

In Section 2 we discuss the question of convergence of the WCGA in
Banach spaces which satisfy certain smoothness hypotheses. In order
not to disrupt the flow of this Introduction unduly, we defer until Sec-
tion 2 the precise definitions and comparisons of the various notions of
smoothness which will be used.

It is known (see [17]) that the WCGA with 7 = {¢} converges for all
elements f in a uniformly smooth Banach space. In uniformly smooth
Banach spaces we can even allow ¢, — 0 as n — oo without losing the



CONVERGENCE OF SOME GREEDY ALGORITHMS IN BANACH SPACES 3

convergence property [17]. It is also known [1, 5] that the assumption
of Gateaur smoothness is necessary to ensure that

e lf = egll < 171

for any f € X and any dictionary D. This means that Gateaux smooth-
ness is necessary for convergence of the WCGA for an arbitrary dic-
tionary. However, we do not know if it is a sufficient condition for
convergence in the case 7 = {t}.

In Section 2 we show that the WCGA converges in a large class
of reflexive Banach spaces satisfying some mild additional smoothness
conditions. In particular, we prove the following general convergence
result.

Theorem 2.8. Let X be a separable reflexive Banach space. Then X
admits an equivalent norm for which the WCGA converges for every
dictionary D and for every f € X.

In Section 3 we discuss convergence of the WCGA in the Hardy
space H;(T). This provides an interesting test case because H;(T) is
nonreflexive and does not satisfy the smoothness assumptions made in
Section 2. Nevertheless, we are able to prove convergence of the WCGA
for a large class of dictionaries, including the trigonometric system.

In Section 4 we present some results on convergence of the Weak
Dual Greedy Algorithm (WDGA), which is the analogue for Banach
spaces of the Weak Greedy Algorithm in Hilbert space. Here is the
definition of the algorithm for the special case 7 = {t} discussed in
Section 4.

Weak Dual Greedy Algorithm (WDGA). We define fP := f" :=
f. Then for each m > 1 we inductively define
1). 2 := pPt € D is any element of D satisfying

Fyo (o) > tsup Fo (g).
geD
2). Define a,, as follows:
||f£—1 - a’m¢£;,|| = %16% ||f£—1 - aqﬁﬁ”.
3). Denote

D D D D
fm = fmyt = Jm—-1— am¢m'
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Convergence of the WDGA is not very well understood, and we can
prove only a few scattered results in this direction.

In Section 5 we discuss greedy type approximation with regard to a
basis. Let X be a Banach space with basis ¥ = (¢5)%2,, ||¢k| = 1.
We compare the efficiency of the WCGA with the following theoreti-
cal greedy algorithm which we call the Thresholding Greedy Algorithm
(TGA) (see [11]).

Thresholding Greedy Algorithm (TGA). For a given f € X, we
consider the expansion

F=3 el

k=1
Suppose that f € X and that p, p(j) =k; (j =1,2,...), is a permu-
tation of the positive integers. We say that p is decreasing and write
p € D(f)if

ek (D] = lers (P = - -

In the case of strict inequalities here, D(f) consists of only one per-
mutation. We define the m-th greedy approximant of f with regard to
the basis ¥ corresponding to a permutation p € D(f) by the formula:
G (f, W) i= G (£, 0) 1= G (f, 0, p) i= >y (f) .
j=1

The general conclusion is that the WCGA is more efficient than the
TGA for approximation in L, for 2 < p < co. We also point out in
Section 5 that the WCGA provides a constructive (algorithmic) way
to get best possible m-term trigonometric approximation for different
smoothness classes of functions [3].

We use standard Banach space notation and terminology (see e.g.
[12]) and basic results from functional analysis (see e.g. [6]). For clarity,
however, we recall here the notation and results which will be used most
heavily. Let X be a Banach space. The unit sphere of X, denoted
S(X), is the set {z € X: ||z|| = 1}. The wunit ball of X, denoted
Ba(X), is the set {z € X: ||z|| < 1}. The dual space of X, denoted
X*, is the Banach space of all continuous linear functionals I’ equipped
with the norm:

|1F]] = sup{F(x): = € S(X)}.
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The closed linear span of aset A C X (resp., a sequence (z,,)) is denoted
[A] (resp. [z,]). A normalized Schauder basis for X is a sequence of
unit vectors U = (1), such that every f € X has a unique expansion
as a norm-convergent series

F=3 el

k=1

We say that a sequence (z,) in X converges strongly (resp. weakly)
tox € X if || — x,|| — 0 (resp. for all FF € X*, F(z — x,) — 0) as
n — oco. We say that a sequence (F},) in X* converges weak-star to F if
F,(x) = F(z) as n — oo for all z € X. A Banach space is reflezive if
Ba(X) is weakly compact (equivalently, if every bounded sequence has
a weakly convergent subsequence). It follows from the Banach-Alaoglu
theorem (see e.g. [6, p. 424]) that if X is separable, then Ba(X™*) is
weak-star sequentially compact (i.e. every bounded sequence in X* has
a weak-star convergent subsequence).

Finally, more specialized notions from Banach space theory, includ-
ing the various notions of smoothness used throughout, will be intro-
duced as needed.

2. CONVERGENCE RESULTS FOR THE WCGA

In this section we discuss convergence of the WCGA. It is known
that the WCGA converges (for an arbitrary dictionary) in all uni-
formly smooth Banach spaces [17]. The Banach spaces which admit
a uniformly smooth renorming (equivalent to the original norm) have
been studied extensively: they are the so-called super-reflexive spaces;
they coincide, in particular, with the spaces which admit an equivalent
uniformly conver renorming [7].

The class of super-reflexive spaces is properly contained, as the term
suggests, in the class of reflexive spaces: for example, the projective
tensor product £,&¢, (1/p + 1/q < 1) is a separable reflexive space
that is not super-reflexive. We prove below that the WCGA converges
in all reflexive spaces which satisfy some mild additional smoothness
hypotheses. In particular, we show that every separable reflexive space
admits an equivalent norm for which the WCGA converges.
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We start by recalling several notions of smoothness for Banach spaces
(see e.g. [2, p. 2]). For z,y € X, we define

_ et uyll + e — wyll = 2]l

We say that x is a point of Gateauxr smoothness if
 Pay(u)
1 lim ————= =0 € X).
(1) lim = (y € X)

It is known that (1) is equivalent to the wuniqueness of the norming
functional F. If every x # 0 is a point of Gateaux smoothness then X
is said to be smooth. The local modulus of smoothness at x is defined

as follows:
2) pa(w) = sup{pry(w): y € S(X)}  (ueR).
We say that x is a point of Fréchet differentiability if
(3) lim 22 _ g
u0 u

It is known that (3) is equivalent to
[l +yll = [lell + Fo(y) +o(lyl) (v € X).

If every x # 0 is a point of Fréchet differentiability then X is said to
be Fréchet differentiable. Finally, we define the modulus of smoothness
of X:

(4) px(u) = sup{ps(u): v € S(X)}  (u€eR).

X is said to be uniformly smooth if

. px(u)
(5) lin =

= 0.
It is known that (5) is equivalent to the following:

(6) 2 +yll = llell + Fo(y) + llylle(z, y),

where ¢(x,y) — 0 as y — 0 uniformly for = € S(X).

Suppose that 0 # f € X and that (Gy'), (¢"), and Fee, are as
defined in the Introduction. To simplify notation, we shall drop the
superscript ¢, so that G¢ := G%*, etc. It is clear that

1fall 4 =0
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as n — 00. The WCGA converges if and only if a = 0. Note also that
(7) a = dist(f, [¢7,]521)-

Lemma 2.1. Suppose that X is smooth and that o > 0. Then there
exists > 0 such that Fye (o5, ) > B for all sufficiently large n.

Proof. Since G¢ is the best approximant to f from [¢¢]",, it follows
that there exists F,, € S(X*) such that F,(¢§) =0 for 1 < i < n and
F.(fe) =||f¢]]. Clearly F, is a norming functional for f¢, and since X
is smooth it follows that F,, = F}.. Thus,

Fre(6) = Fu(¢f) =0 (1 <i<n).

Let D =D\ {+¢¢ : n > 1}. Since f € [D] there exist N > 1, m > 1,
"€ [¢]iL,, and

m

(8) f= Z a:9i

i=1
(for some g; € D and scalars a; # 0 (1 < i < m)) such that
If = "= Fll < a/2.

Suppose that n > N. Then Fy(¢f) = 0 for 1 < i < N, and so
Ffﬁ (f,) =0. ThuS,

Fro(f) = Fre(f' + ) = Fre (/) = I1f = f' = /Il
>a—af2=a/2.

From (8) and the above, we obtain
> lail|Fre(9:)] > /2,
i=1

and hence
«Q

Finally,

Fye (1) > tsup Fe(g) > t max Iy (9:)-
geD <i<m

So we can take § = ta/(2m maxi<j<p |ai).



8 S. J. DILWORTH, DENKA KUTZAROVA AND V. N. TEMLYAKOV

Lemma 2.2. Suppose that X is smooth and that y # f. If some
subsequence (Gka) converges strongly to y, then y — f is not a point of
Fréchet differentiability.

Proof. To derive a contadiction, we shall assume that y — f is a point
of Fréchet differentiability. By Smulyan’s Lemma [2, Thm. 1.4] the
duality mapping  — F, from X to X* is norm-to-norm continuous at
y — f. Thus, FG%k_f — Fy,_y strongly as &k — oo. For each n > 1, we
have

Fyg(65) = lim Foy _5(65) = 0.
Thus,

FG%,;f(@C;kH) - (FG‘;L,;f - Fy*f)(¢fzk+1) < ||FG$L,;f — Fy gl =0
as k — o0o. But by Lemma 2.1, FG%k,f(d)%Hl) > (3 > 0, which is the
desired contradiction. O

The following result is an immediate corollary. Following the method
of [17], a direct proof can also be given using the local modulus of
smoothness p,(u) defined in (2).

Proposition 2.3. Suppose that X is Fréchet differentiable. Then (G¢)
converges strongly to f if and only if it has a strongly convergent sub-
sequence.

Lemma 2.4. Suppose that (Gka) converges weakly to y for some sub-
sequence (G, ). Then ||y — f|| = limy, [|G}, — f]| = a.

Proof. Note that y € [¢£]>° |, since [¢¢]2° | is weakly closed. Hence (7)
gives

ly — fIl = dist(f, [¢,]521) =«
On other hand, since (Gj, ) converges weakly to f, we have

by~ fll= Fy sy~ ) = Jim F, (G5, — f) < lim |G, /]
O
Let us now recall the definition of the Kadec-Klee property in Banach
spaces. (This property is also called the Radon-Riesz property or Prop-

erty H.) A point x € X is said to be a Kadec-Klee point if the following
holds: whenever (z,) converges weakly to z and ||| = lim, .« ||z,
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then (x,) converges strongly to z. If every x € X is a Kadec-Klee
point then X is said to have the Kadec-Klee property. It is known
that every separable Banach space admits an equivalent norm with the
Kadec-Klee property (see e.g. [2, Th. 2.6]).

Lemma 2.5. Suppose that some subsequence (Gka) converges weakly
to y, where y is a Kadec-Klee point. Then (G%k) converges strongly to

Y.
Proof. This is immediate from Lemma 2.4 O

The following result combines Proposition 2.3 and Lemma 2.5.

Proposition 2.6. Suppose that X has the Kadec-Klee property and a
Fréchet differentiable norm. Then (G¢) converges strongly to f if and
only if it has a weakly convergent subsequence.

Theorem 2.7. Suppose that X is a reflexive Banach space which has
both the Kadec-Klee property and a Fréchet differentiable norm. Then
the WCGA converges for every dictionary D and for every f € X.

Proof. Since X is reflexive, (G¢) has a weakly convergent subsequence.
So the result follows from Proposition 2.6. O

Theorem 2.8. Let X be a separable reflexive Banach space and let
e > 0. There exists an equivalent norm |- | on X, with

ol <ol < X+ o)l (v € X),

for which the WCGA converges in (X, |- |) for every dictionary D and
every f € X.

Proof. Every separable reflexive Banach space admits such a norm | - |
which is both Fréchet differentiable and has the Kadec-Klee property
(see e.g. [2, Thm. 2.6]). O

Finally, we prove a result for non-reflexive Banach spaces. Suppose
that X is a smooth Banach space and that y € S(X). Recall that X
is said to be uniformly Gateauz differentiable in the direction y if

9) lim 22209 _

u0 u

uniformly for x € S(X); equivalently,
|+ wyl| = (||| + w(Fe(y) + o(u))  (u€R)
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uniformly for x € S(X).

We shall say that a dictionary D is minimal if D has no proper
subdictionary. Recall that every separable Banach space contains a
system (w,) C S(X) satisfying the following: {w, : n > 1} has dense
span and no proper subset has dense span. We shall say that (w,) is
quasi-minimal. (In fact, (w,) can be chosen to be both minimal and
total [12, p. 43], although we don’t need this). Clearly, (w,)>2, C
S(X) is quasi-minimal if and only if D = {£w,,: n > 1} is a minimal
dictionary.

Theorem 2.9. Suppose that X is a separable smooth Banach space
and that y € S(X). If X is uniformly Gateauz differentiable in the di-
rection y then there exists a minimal dictionary D such that the WCGA
converges for every f € X.

Proof. Let (w,) C S(X) be a quasi-minimal system for X with w; = y.
Let y, = (1/n)wy41 +y (n > 1), so that (y,) converges strongly to y.
Then (y,) is also quasi-minimal, and hence D = {£y,/||y.||: n > 1} is
a minimal dictionary.

We show that the WCGA converges for D. So suppose that f € X,
and, to derive a contradiction, that [|f¢|| | @ > 0. There exists a
choice of signs €, = 1 such that (¢,¢%) converges strongly to y. By
Lemma 2.1, there exists # > 0 such that F(¢5_,) > 3 for sufficiently
large n. Hence

(10) Fye(eny) > B for all sufficiently large n.

Since X is uniformly Gateaux differentiable in the direction y, it follows
from (10) and (9) that there exists so > 0 such that

720 = 1155 — ewsoll = 220

for sufficiently large n. Since (€,¢¢) converges strongly to y, we obtain

c C C 65
an” - ||fn - 680¢n—+—1|| Z ?0

for all sufficiently large n, which implies that

gl < 155l - 222

But this contradicts our assumption that || f<|| 4 a. O
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Theorem 2.10. Let X be a separable Banach space and let € > 0.
There exists an equivalent norm |- | on X, with

ol <ol < X+ o)l (v € X),

such that (X,]|-|) has a minimal dictionary D for which the WCGA
converges for every f € X.

Proof. Every separable Banach space admits such an equivalent norm
|- | which is uniformly Gateaux differentiable in every direction [2, Cor.
6.9]. O

3. CONVERGENCE OF THE WCGA 1IN Hy(T)

In this section we shall discuss convergence of the WCGA in the
Hardy space H;(T) defined below. This space is nonreflexive and is
nowhere Fréchet differentiable [2, Prop. 4.5], and so Theorem 2.7 does
not apply. Nevertheless, we are able to prove that the WCGA converges
for a large class of dictionaries, including the trigonometric system.

The WCGA was defined in the Introduction for real Banach spaces.
But since H;(T) is a complex Banach space, we must first explain how
the algorithm is to be applied in complex spaces. So suppose that X is
a complex Banach space with complex dual space X*. Let X R he the
real Banach space obtained from X by restricting scalar multiplication
to real scalars. To apply the WCGA in X, we simply apply the WCGA
in the real space X R It follows from the complex version of the Hahn-
Banach theorem (due to Bohnenblust and Sobczyk [6, p. 63]) that the
mapping z* — Raz* defines a real linear isometry from (X*)® onto
(X®)*. In particular, the norming functionals in (X®)* are precisely
the real parts of norming functionals in X*.

Now let us recall the definition of Hi(T). Let T denote the unit
circle in the complex plane and let m denote the normalized Lebesgue
measure on T. Let C(T) denote the Banach space of all complex-
valued continuous functions equipped with the supremum norm. The
disc algebra A(T) is the complex closed linear span of {z": n > 0} in
C(T). Let A denote the subspace of A(T) consisting of the mean zero
functions. The Hardy space H;(T) is the (complex) closed linear span
of {z": n > 0} in the complex Lebesgue space L, (T).

First we present an example which shows that the WCGA does not
converge in general in L;(T) for the trigonometric dictionary D =
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{xz", £iz": n > 0}. (A similar example works for the usual trigono-
metric system {cosnf},>o U (sinnb),>1.)

Example 3.1. Let f(e?) = 4x3r/a5m/4)(0) (0 < 0 < 27). Then, for
every g € D, we have

5]

If+sgli=1+2  (s€R).

Thus, s = 0 gives the unique best approximant to f from D. Hence
! — f, which of course implies that f&! = f for all n > 1.

Before we can proceed, it is necessary to recall some facts about
H,(T) as a Banach space.

Fact 3.2. (see e.g. [9, p. 137]) Hy(T) is the dual space of C(T)/A(T),
with the duality given by

<f,g>=/_rfgdm (f € C(T), g € Hy(T)).

Weak-star convergence in Fact 3.4 and in the proof of Theorem 3.5
below refers to the weak-star topology on H;(T) induced by its predual
C(T)/Ap.

Fact 3.3. H(T) is a smooth Banach space. For 0 # f € Hy(T), the
unique (real) norming functional Fy is given by

Fy(o) =% [ Senfyam.

Here sgn 0 := 0 and sgn z := z/|z| for z # 0.

Fact 3.4. [14] H,(T) has the weak-star Kadec-Klee property, i.e., if (f,,)
converges weak-star to f and || f|| = lim, 0 || fu]|, then (f,) converges
strongly to f.

Recall that a subset K C Li(m) is uniformly integrable if for every
e > 0 there exists § > 0 such that if £ C T satisfies m(E) < § then

[ilam<e (e
E

Theorem 3.5. Suppose that the dictionary D C Hy(T) satisfies the
following two conditions:

(a) D is uniformly integrable;
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(b) [E] is weak-star closed whenever E C D.

Then the WCGA converges for every f € H(T).
Proof. With the notation introduced above, suppose, to derive a con-
tradiction, that || f¢|| @ > 0. By Lemma 2.1 and Fact 3.3 there exists
B > 0 such that
(11) Fre(dpi) 2B (n>1).

There is a subsequence (G5, )72, which converges weak-star to some y €
H{(T). Let E = {¢5: n > 1}. Then, by assumption (b), [E] is weak-
star closed in H,(T), and so y € [E]. Thus ||y — f|| > dist(f, [F]) = a.
On the other hand, by weak-star lower semi-continuity of || - ||, we have
ly = fIl < limyo0 |G, = Fll = @ So

ly— fIl = lim (1G5, — /]l = o

Since H;(T) has the weak-star Kadec-Klee property (Fact 3.4), it fol-
lows that (G, ) converges strongly to y. Since H;(T) is smooth (Fact 3.3),
the mapping x — F} is norm-to-weak-star continuous. So

(12 Fiy(65) = lim Fye (6) =0 (n>1).

Recall that m({z: f(z) = 0}) = 0 for all f € H,(T) (see e.g. [9, p.
52]). So, by passing to a subsequence if necessary, we may assume that

sen(Gs, — f) s smly—f)  ae.
Hence the uniform integrability of D (assumption (b)) gives
13 [ e, =) = sealy = gl dm =0

as k — oo uniformly for all g € D. Now (11), (12), (13) and Fact 3.3
yield

0= klggo Fffy(@cz,ﬁ-l)
= lim R [ Sgu(y— F)5, 4 (2) dm
— 0 T
= kll)rgoﬂ ngn(Gfwc — )¢5, +1(2) dm
= lim Fyg (65,.1) > 6> 0,

which is the desired contradiction. O
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We now show that the trigonometric system D = {+2z", £iz" : n > 0}
satisfies the assumptions of Theorem 3.5. Uniform integrability is clear.
The second condition is verified in the next lemma.

Lemma 3.6. Suppose that A, B C N. Let X denote the real closed
linear span of {z":n € A} U{iz": n € B} in H\(T). Then X is a
weak-star closed subspace of Hi(T).

Proof. For n € Z, let a,(f) denote the n-th Fourier coefficient of f.
It is clear that the weak-star closure of X consists precisely of those
f € Hy(T) such that Ra,(f) =0 for alln € N\ A and Sa,(f) =0 for
all n € N\ B. So the Fejer polynomials

— _Z >
m=>(1-2)an* @z

k=0
all belong to X whenever f lies in the weak-star closure of X. But (p,)
converges strongly to f. Thus, f € X. O

Theorem 3.7. In H,(T) the WCGA converges for the trigonometric
system D = {xz", £iz": n > 0} and for every f € H\(T).

Remark 3.8. Hoffmann [10] proved that the multivariable Hardy space
H,(T?) has the weak-star Kadec-Klee property with respect to its nat-
ural predual. Using this fact it is a straightforward mattter to extend
Theorem 3.5 to the multivariate case. In particular, Theorem 3.7 is
valid for H;(T?) and the multivariate trigonometric system.

4. CONVERGENCE RESULTS FOR THE WDGA

We have only a few isolated results for convergence of the WDGA.

Proposition 4.1. Let X be a uniformly smooth Banach space. Then,
for every increasing sequence (ny) C N, either (G,?k) converges weakly
in X to f or (Ff/f;) has a weakly null subsequence in X*.

Proof. Suppose that (G} ) does not converge weakly to f. Since X
is uniformly smooth, and hence reflexive, by passing to a subsequence
and relabelling we may assume that (G}, ) converges weakly to y # f
and that (anDk) converges weakly to F', say. Suppose, to derive a
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contradiction, that F' # 0. Then there exists g € D such that F(g) =
> 0. By weak convergence Fyp (9) > /2, and hence

i

for sufficiently large k. Since X is uniformly smooth, it follows from
(6) that there exists sg > 0 such that

|| B <90Ff£,c (¢£k+1)

112 = byl < 152 2

for all k. Thus, for sufficiently large k, we have

tBso
172l < 152 - 2,
which contradicts the fact that ||f?|| | o > 0. Thus F = 0. O

Theorem 4.2. Suppose that X is uniformly smooth and satisfies the
following: (x,) C S(X) is weakly null whenever (F,,) is weakly null.
Then (GP) converges weakly to f.

Proof. From Proposition 4.1, the hypothesis implies that every subse-
quence of (GP) has a further subsequence which converges weakly to
f. But this implies that (G?) converges weakly to f. O

Since ¢, satisfies the hypotheses of Theorem 4.2, we get the following
corollary.

Corollary 4.3. The WDGA converges weakly in ¢, (1 <p < o) for
every dictionary D and for every f € {,,.

We have only one result for strong convergence of the WDGA. Say
that a Schauder basis (1) is strictly supression 1-unconditional if, for
every finite A C N, for every n € N\ A, and for all scalars (a;);ca, we

1D @il < 1Y aithi + eall-

1€EA 1€A

have

The standard basis of an Orlicz or Lorentz sequence space satisfies this
condition.

Theorem 4.4. Suppose that X s Fréchet differentiable and that ¥ =
(V) is a strictly suppression 1-unconditional basis for X. Then the
WDGA converges for D = {£,, : n > 1} and for every f € X.
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Proof. The fact that W is strictly suppression 1-unconditional implies
that GP = G¢ = P,(f), where P, is the natural projection of X onto
[¢¢]*_,. In particular, (G) coincides with one possible ‘branch’ (G¢)
for the WCGA. Moreover, since ¥ is unconditional, (P,(f)) converges
strongly to P(f), where P is the natural projection onto [¢¢]32,. By

Proposition 2.6, (G¢) (and hence (G?)) converges strongly to f O

5. AN APPLICATION OF THE WCGA

In this section we consider a particular case: the Banach space
X = L,(T% and the dictionary D = RT - the real trigonomet-
ric system {1/2,sinz,cos, ...} and its d-dimensional version RT% =
RT % ...RT. It is more convenient for us to consider the real L,(T¢)
and the real trigonometric system because the Weak Chebyshev Greedy
Algorithm is defined and studied in a real Banach space. Note that
the system R7 is not normalized in L, but only semi-normalized:
Cy < |Ifll, £ Cy for any f € RT with absolute constants Cj, Cy,
1 < p < oo. This is sufficient for application of the general meth-
ods developed in [17]. We will compare performance of the WCGA
with performance of the Thresholding Greedy Algorithm (TGA). It is
proved in [15] that in the case of the complex trigonometric system
T = {ek2)} for any f € L,(T%), we have that

(1) If = Gl £, T < Cml 2 oloy (£, 77, 1<p < oo,
with an absolute constant C. The same proof works for RT¢ and gives

(15) |If = Gu(f. RTl, < Cml'*"VPlg, (F,RT?),, 1<p< oo,

5.1. Convergence. It is shown in [15, Remark 4| that G,,(-, 7) may
not converge in L,, except p = 2. The same is true for G,,(-, RT).
The convergence of WCGA for 1 < p < oo follows from general results
(see [17, Th. 2.1] cited in Introduction). The divergence of G, (-, T)
and G,(-, RT) can be fixed by adding the “Chebyshev step” in these
algorithms. We describe this in the general case of G,,(-, ¥). At the
step m instead of taking the partial sum

Gm(f7 \Ij) = Z Ckﬂ/}kj
=1
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we take the best approximation B, (f, ¥, X) to f from Span {¢x,, ..., V%, }-

It is easy to see that in this case we have

as m — o0o. Thus, in the sense of convergence, the Weak Chebyshev
Greedy Algorithm and the Chebyshev Thresholding Greedy Algorithm
(CTGA) defined above are both effective in L,, 1 < p < 0.

5.2. Rate of approximation. We will compare the rate of approxi-
mation of TGA, CTGA, and WCGA for the class

A=A RT) ={f Zm O+ ()] <1}

where ag, by are the corresponding Fourier coefficients. From the gen-
eral results on convergence rate of the Weak Chebyshev Greedy Algo-
rithm (see [17, Th.2.2]) we get the following lemma.

Lemma 5.1. For f € A; we have
(16) 15y < Clp,tym™"2, 2 <p < oo,

This estimate and (15) imply, for f € A; and 2 < p < oo, that
(A7) If = Bulf. RT, Ly)lly < [If = Gl f,RT)Il, < Clp, t)m /7,

which is weaker than (16).
Let us give an example showing that (17) can not be improved in
the sense of order. Consider for a given m

2m
k
f=(2m)™" Z(l - m) coskr € A
k=1
Then B,,(f,RT,L,) is the best approximation to f in L, from
Span {cosz,...,cosmz}. It is not difficult to see that
(18) If = Bu(f, RT, Ly)llp > Cp)m™"".

This proves that (17) cannot be improved in the sense of the order of
m.

We will show now that the constant C'(p,t) in (17) can be replaced
by 1. We denote p' := p/(p — 1) and use the Hausdorff-Young theorem
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(see [18, Ch. 12, Sec. 2]): for g € Ly, 2 < p < 00, we have

(19) Z|ak )P+ 10 (9)P)P < lglly-

Then we have for any f € A;
Hf_Gm(f:RT)Hp: sup |<f_Gm(f7RT)79>|

gllgll, <1

20

(20) = s[> a(Harle) + Y bilfbilg)
gllgll,r <1 kA I¢As

where A, and A, are such that
Gu(f.RT) = ap(f)coskz + Y b(f)sinkz, #A, +#A, =m
keA. lEA,
Using the Hélder inequality we continue (20)
< sup O Nar(OF + ) IAHE)Y O alg) P+ 1bi(g)[P)'7
llgllpr <1 g, 1A, k¢Ae I¢As
By (19) we have
<O a(OF + > (I
kA 1A,
Using the definition of A; and A, A; we finish the estimate

Thus we have proved that for f € A; the inequality
(21) 1f = Gl £y RT)|lp, <m™"P, 2 <p < oo

holds.
The relations (16) and (18) show that the WCGA gives a better rate
of approximation in L, (2 < p < oo) than the CTGA.

5.3. Constructive approximation of function classes. In the pa-
per [3] two types of function classes were studied from the point of view
of best m-term trigonometric approximation. We begin with the first
class. For 0 < o < oo and 0 < ¢ < oo, let F* denote the class of those
functions in L;(T¢) such that

|f|fg = (Z(max(l, k1, - ..,|kd|)a4|f(k)|q)1/q <1

keZd

The following theorem has been proved in [3].
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Theorem 5.2. If a > 0 and A := a/d+ 1/q — 1/2, then for all 1 <
p<ooand all ) < g < oo

Cim < am(}"g‘,Td)p < Cym™, a>d(l—1/q),,
with Cy, Cy > 0 constants depending only on d, «, q.

The second class is defined as follows. Let a > 0, 0 < 7,5 < 00 and
B¢ (L.) denote the class of functions such that there exist trigonometric
polynomials 7}, of coordinate degree 2" with the properties

F=> Tw 2Tl o lles < 1.
n=0
The following theorem has been proved in [3] for these classes.

Theorem 5.3. Let 1 < p < oo, 0< 71,5 <00; and define

(p,7) = d(1/T=1/p)4, 0<71,s<o0candl <p<7 <00
P T = max(d/7,d/2), otherwise

Then for o > a(p, T), we have
Cym™" < o(B*(L,), T, < Com™,
where

pi=af/d—(1/7 —max(1/p,1/2))4
and Cy,Cy depend only on o, p, T, and d.

Remark 5.4. Theorems 5.2 and 5.3 hold with 7¢ replaced by RT*.

It was proved in [17] that in the case 1 < p < 2 the rate of best m-
term approximation in Theorem 5.2 can be realized by G,,(-,T%) for
the TGA, that is by a constructive method (the same is true for R7%).
In the same case 1 < p < 2 the rate of 0, (B%(L.), T?), can be realized

1/d in each

by approximating by trigonometric polynomials of degree m
variable. Thus, in the case 1 < p < 2, there exist constructive methods
which provide the optimal rate in Theorems 5.2 and 5.3. However, for
the case 2 < p < oo which is the most interesting case in Theorems
5.2 and 5.3 from the point of view of upper estimates (they do not
depend on p in this case) there was not a constructive proof of the
upper estimates. The existing methods in this case are based either
on a probabilistic approach (Yu. Makovoz, [13], 2 < p < oo) which

does not cover the most intersting case p = oo or on the geometry of
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finite-dimensional Banach spaces ([3], 2 < p < oo) which covers the
case p = oco. Both approaches contain a nonconstructive step. In [3]
this step is hidden in the following inequality (see [3, Corollary 5.1])
d

(22) (A1 (T4, T oo < Cm™2(1 + In* )12,

m
where 7,% denotes the subsystem of the trigonometric system 7¢ which
forms a basis for the space of trigonometric polynomials of coordinate
degree n. The inequality (22) was proved in [3] with the help of the
following theorem of Gluskin [8].

Theorem 5.5. There exist absolute constants Cy and 0 < § < 1 such
that for any finite collection V' of M wectors from the unit Euclidean
ball BY of RN, there is a vector z € RN with |z] =0,1,i=1,...,N,
|2]lev > ON, and
+ Moy
%?{ECKU’ZH <Ci(l+1n N) 2,
The major purpose of this section is to note that in the case 2 < p <
oo the Weak Chebyshev Greedy Algorithm provides a constructive way

to get an analog of (22). This follows immediately from Lemma 5.1:
for f € A{(RT?) we have

(23) £l < Clo, tym 2, 2 < p < oo

Thus the only nonconstructive step in the proof of upper estimates in
Theorems 5.2 and 5.3 can be made constructive for p < co. We do not
know a constructive proof of (22).
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