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ABSTRACT. Our main interest in this paper is nonlinear approximation. The basic
idea behind nonlinear approximation is that the elements used in the approximation
do not come from a fixed linear space but are allowed to depend on the function
being approximated. While the scope of this paper is mostly theoretical, we should
note that this form of approximation appears in many numerical applications such
as adaptive PDE solvers, compression of images and signals, statistical classification,
and so on. The standard problem in this regard is the problem of m-term approx-
imation where one fixes a basis and looks to approximate a target function by a
linear combination of m terms of the basis. When the basis is a wavelet basis or a
basis of other waveforms, then this type of approximation is the starting point for
compression algorithms. We are interested in the quantitative aspects of this type
of approximation. Namely, we want to understand the properties (usually smooth-
ness) of the function which govern its rate of approximation in some given norm (or
metric). We are also interested in stable algorithms for finding good or near best ap-
proximations using m terms. Some of our earlier work has introduced and analyzed
such algorithms. More recently, there has emerged another more complicated form
of nonlinear approximation which we call highly nonlinear approximation. It takes
many forms but has the basic ingredient that a basis is replaced by a larger system of
functions that is usually redundant. Some types of approximation that fall into this
general category are mathematical frames, adaptive pursuit (or greedy algorithms)
and adaptive basis selection. Redundancy on the one hand offers much promise for
greater efficiency in terms of approximation rate, but on the other hand gives rise
to highly nontrivial theoretical and practical problems. With this motivation, our
recent work and the current activity focuses on nonlinear approximation both in the
classical form of m-term approximation (where several important problems remain
unsolved) and in the form of highly nonlinear approximation where a theory is only
now emerging.
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1. INTRODUCTION

We introduce some notations and orient the reader on the topics that we will be
discussing in this paper. We begin our discussion in this section by the case where
approximation takes place in a Banach space X equipped with a norm ||-|| := ||-||x.
We formulate our approximation problem in the following general way. We say a
set of functions D from X is a dictionary if each g € X has norm one (||g]|x = 1)
and the closure of Span D coincides with the whole X. We let X,,(D) denote
the collection of all functions (elements) in X which can be expressed as a linear
combination of at most m elements of D. Thus each function s € 3,,(D) can be
written in the form

s:chg, ACD, #A<m,
geA

with the ¢, are real or complex numbers. In some cases, it may be possible to write
an element from X,,(D) in this form in more than one way. The space %, (D) is
not linear: the sum of two functions from 3,,(D) is generally not in %, (D).

For a function f € X we define its approximation error

m 7D = inf - ’
on(FP)x = _ink I = slx

and for a function class F'

O'm(F, D)X ‘= sup O-m(fa D)X
fEF

The classical example of this type of approximation is the case X = L,([0, 27]) and
D = B is an orthogonal basis for X. In particular, B can be taken as the trigono-
metric system 7T := {e*** k€ Z} or the Haar system properly normalized. The
first results on error estimates in m-term approximation showed an advantage of
m-term approximation over approximation by polynomials of order m. R.S. Ismag-
ilov [I] (1974) studied m-term trigonometric approximation of individual functions,
namely, the Bernoulli kernels

Fo(x)=2) k "cos(kx —rm/2).
k=1

He proved that
am(F27 7')Loo S Cem_6/5+e

with arbitrary € > 0. It is known that the best approximation E,,(-)r_ by
trigonometric polynomials of order m in the L,,-norm has the asymptotic order
E,.(Fy)r.. =< 1/m. Further results in m-term trigonometric approximation proved
advantage of this type of nonlinear approximation over linear approximation. For
many traditional pairs of function class F' and orthogonal system B the orders of
om(F,B)x are known now. Investigation of the case F' = Bj(L,) (standard Besov
class), B =T and X = L, was completed in [DT1]. This investigation required new
technique (see [DT1] and [KT1]) which uses deep results from finite dimensional
geometry. Thus it is an example of interaction between theory of nonlinear m-term
approximation and contemporary functional analysis. We discuss these results in



detail in Section 6. In Section 6 we also consider a general optimization problem in
a spirit of Kolmogorov’s widths. For the reader’s convenience and for motivation of
nonlinear methods we give in Section 5 a brief discussion of optimization settings
in the Linear Approximation. Let ID be a collection of dictionaries. The classical
example of D is @ = {orthonormal bases on a given domain}. The optimization
problem asks to find (if possible) for a given pair of collection of dictionaries D and
function class F' a dictionary D € D such that

Um(Fv D)X = Um(Fa D)X = 11)%%) Um(Fap)X-

This problem is interesting and important for theoretical investigation and also for
practical applications where we often want to have a dictionary D with certain
structure (from a collection D) and do not want to stick to a particular one. In
Section 6 we discuss only theoretical aspect of this problem for the classical example
of D = Q.

The next problem that we propose to investigate is to find a universal dictionary
D €D, i.e. the one which is optimal for all F' from a given collection F of function
classes.

Definition 1.1. Let two collections F of function classes and D of dictionaries be
given. We say that D € D is universal for the pair (F,DD) if there exists a constant
C which may depend on F, D and X such that for any F € F we have

(1.1) om(F,D)x < Copm(F,D)x.

It may happen that for a given pair (F,D) there is no universal dictionaries. In
this case we define the index of universality and look for a dictionary which realizes
(in the sense of order) this index. Let m be fixed. Take a dictionary D € D and for
a fixed F' € F find the minimal N(m, D, F) such that

ON(m,D,F)(F,D)x < o (F,D)x.

We define index of universality by

N D, F
iu(F,D,m) := %ng) sup M
eD per m

This is a new concept in nonlinear approximation. The following observation mo-
tivates our interest in this setting. In practice we often do not know the exact
smoothness class F' where our input function (signal, image) comes from. Instead,
we often know that our function comes from a class of certain structure, for in-
stance, anisotropic Sobolev class. This is exactly the situation we are dealing with
in the universal dictionary setting. So, if for a collection F there exists a universal
dictionary D € D it is an ideal situation. We can use this universal dictionary
D in all cases and we know that it ajusts automatically to the best smoothness
class F' € F which contains a function under approximation. Next, if a pair (F,D)
does not allow a universal dictionary we have a trade off between universality and
accuracy provided by the index of universality. We discuss the universality results
in Section 7.
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We discussed above best m-term approximation with regard to a dictionary D in
a Banach space X. The sequence {o,,(f, D)x } gives the lower estimates of accuracy
for any sequence of algorithms A,,, that map X into %, (D), where, as above %, (D)
is the set of all functions in X which can be expressed as a linear combination of
at most m elements from D. Thus, the sequences {o,,,(f,D)x} and {o,,,(F,D)x}
may serve as the target accuracies in constructing approximating algorithms A,,
It is clear that the best algorithm (if exists) gives the error

(1.2) If = Am(f; D)llx = om(f, D)x

We call an algorithm A,,, near best or near best for individual functions if

(1'3) ||f_AM(f7D)||X < C(DaX)Um(f7D)X

for all f € X. Similarly, we say that A,, is near best for a function class F' if we
have for any f € F

(1'4) ||f - Am(fap)HX < C(Fava)Jm(Fv D)X

It is clear that an algorithm A, satisfying (1.3) is excellent from the point of veiw
of accuracy: it provides near best approximation for every individual function and,
therefore, for any function class. The property (1.4) is weaker than (1.3) but still
is very good. We present in Section 2 some results on linear approximation of
individual functions and function classes. The corresponding results for nonlinear
approximation with regard to a basis are discussed in Section 3. Let a Banach space
X with a basis ¥ = {x}32,, [[¥nll =1, k = 1,2,..., be given. We consider the
following theoretical greedy algorithm that we call Thresholding Greedy Algorithm
(TGA). For a given element f € X we consider the expansion

F=Yer(f)vn
k=1

Let an element f € X be given. We call a permutation p, p(j) = k;, 7 =1,2,...,
of the positive integers decreasing and write p € D(f) if

ey ()] > lewy (F)] > -

In the case of strict inequalities here D(f) consists of only one permutation. We
define the m-th greedy approximant of f with regard to the basis ¥ corresponding
to a permutation p € D(f) by formula

o, 9) = GE(f,0) i= GX(£, 0, ) : ch

It is a simple algorithm which describes theoretical scheme (it is not computation-
ally ready) for m-term approximation of an element f.

We have discussed above the general optimization setting to find a good basis
for nonlinear approximation. On the base of this discussion we suggest a three
step strategy to find a good basis (dictionary) for nonlinear m-term approximation.



The first step consists of solving an optimization problem for a given function
class F', when we optimize over a collection D of bases (dictionaries). The second
step is devoted to finding a universal basis (dictionary) D, € D for a given pair
(F,D) of collections: F of function classes and D of bases (dictionaries). The third
step deals with constructing a theoretical algorithm that realizes near best m-
term approximation with regard to D, for function classes from F. We worked
this strategy out in the model case of anisotropic function classes and the set
of orthogonal bases. The results are positive. We constructed a natural tensor-
product-wavelet type basis and proved that it is universal. Moreover, we proved
that Thresholding Greedy Algorithm realizes near best m-term approximation with
regard to this basis for all anisotropic function classes. We discuss these results in
Section 7.

It is also very important to find analogs of G (-, ¥) in the case of general dic-
tionary D and to study their efficiency. We start this discussion with confining
ourselves to Hilbert spaces. We define first the Pure Greedy Algorithm (PGA) in
Hilbert space H. We describe this algorithm for a general dictionary D. If f € H,
we let g(f) € D be an element from D which maximizes |(f, g)|. We shall assume for
simplicity that such a maximizer exists; if not suitable modifications are necessary
(see Weak Greedy Algorithm below) in the algorithm that follows. We define

G(f,D) == (f,9(F)g(f)

and
R(f,D) = f - G(f,D)

Pure Greedy Algorithm (PGA). We define Ry(f,D) := f and Go(f,D) := 0.
Then, for each m > 1, we inductively define

Gm(f7 D) = Gm—l(fa D) + G(Rm—l(fa 'D),'D)

Rn(f,D) := f = Gm(f, D) = R(Rm 1(f, D), D).

In Section 8 we consider the problem of efficiency of Pure Greedy Algorithms
with regard to general dictionaries in Hilbert space.

Remark 1.1. In this paper, we study only theoretical aspects of the efficiency of m-
term approximation and possible ways to realize this efficiency. The above defined
“greedy algorithm” gives a procedure to construct an approximant which turns out
to be a good approximant. The procedure of constructing a greedy approximant
is not a numerical algorithm ready for computational implementation. Therefore
it would be more precise to call this procedure a “theoretical greedy algorithm” or
“stepwise optimizing process”. Keeping this remark in mind we, however, use term
“greedy algorithm” in this paper because it has been used in previous papers and
has become a standard name for procedures like the above and for more general
procedures of this type (see for instance [D], [DT2]). Following [DDGS] we call an
algorithm “incremental” if at step m we add at most one more element ¢,,, € D and
approximate by linear combination cip1 + - + ¢m- We use the term “greedy
type” for an incremental algorithm with ¢,,, chosen to maximize a given functional
F(fm-1,9) over g € D with f,,_1 is a residual after the (m — 1)th step of the
algorithm. The form of F(-,-) determines the kind of greedy algorithm. We use
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the term “weak greedy” for an incremental algorithm with ¢,, satisfying a weaker
condition than maximizing the given functional. For instance,

F(fm 17()0m)>tmsupF(fm 179)7 Ogtmél
geD

The sequence 7 := {t;}72, is called the “weakness” sequence.
We begin with two definitions in a spirit of inequalities (1.3) and (1.4).

Definition 1.2. We call a dictionary D greedy dictionary for a Hilbert space H if
for any f € H and any realization of Pure Greedy Algorithm we have

||f - Gm(fap)H < C(Daﬂ)gm(fap)'

Definition 1.3. Let r > 0 be given. We call a dictionary D r-greedy dictionary
for H if D posses the property (G): for any f € H such that

om(f,D)<m™", m=12...,

we have

|f — Gm(f,D)]| <C(r,D)m ", m=1,2,....

A simple example of greedy dictionary is an orthonormal basis for H. There is a
nontrivial classical example of greedy dictionary. Let II be a set of functions from
L5([0,1]?) of the form u(z1)v(x2) with unit Ly-norm. Then for this dictionary and
H = Ly([0,1]?) we have for each f € H

||f - Gm(fa H)H = Jm(fa H)

This result and related results will be discussed in Section 11. We will discuss in
Section 8 the general setting for Pure Greedy Algorithm and modifications of PGA
some of which we define now. For other modifications see [DT2] and [DDGS].

Let a sequence 7 = {tx}32,, 0 < tx < 1, be given. Following [T20] we define
Weak Greedy Algorithm.

Weak Greedy Algorithm (WGA). We define fj := f. Then for each m > 1,
we inductively define:
1). @I, € D is any satisfying

[(fre1s @) | = tmsup (i1, 9)|;
g€eD

2).
fon = fne1 = (1 00

3).

m

GT f) Z Jj— 1’@]
J=1
We note that in a particular case ¢ = t, £k = 1,2,..., this algorithm was

considered in [J1]. We present convergence results and error estimates for PGA
and WGA in Section 8.
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Much less is known about greedy algorithms in the case of Banach space X. We
discuss here two versions of generalization of PGA from Hilbert space H to Banach
space X. The first one is a straightforward generalization of PGA. We call it Pure
Greedy Algorithm or X-Greedy Algorithm when we want to point out a Banach
space. For a given X and D we define G(f, D, X) := a(f)g(f) where af) € R and
9(f) € D satisfy (we assume existence) the relation

min || f —ag| = ||f — a(£)g(H-

aeR,geD

X-Greedy Algorithm. We define Ry(f,D,X) := f and Go(f,D,X) := 0. Then,
for each m > 1, we inductively define

Rm(f) = Rm(faan) = Rm—l(f) - G(Rm—l(f)7D7X)

(£, D, X) = G 1(f, D, X) + G(Ron1(f), D, X).

The second version of PGA in Banach space is based on the concept of peak
functional (norming functional). We call it Dual Greedy Algorithm (DGA). Let a
dictionary D in X be given. Take an element f € X and find a peak functional F,
i.e. a functional such that ||Fy||x» = 1 and Ff(f) = || f|]|x. The existence of such a
functional follows from the Hahn-Banach theorem. Now the basic step of PGA is
modified to the following. Assume that there exists gy € D such that

F = F )
|Fr(g7)] Igﬂea,gd #(9)]

We take this g¢ and solve one more optimization problem: find a number a such
that

| f —agsllx = min |f — bgrllx-

We put
GD(f’D) ‘=agf, RD(f,D) ::f_a'gf'

Repeating this step m times we get G2 (f, D) as an approximant and R2 (f, D) as
a residual. Some results on greedy algorithms in Banach spaces are presented in
Section 9.

In Section 10 we discuss some results on how the entropy numbers can be used
in estimating from below the quantities {o,,(F,¥)}. The idea of estimating the
Kolmogorov widths from below using the entropy numbers is well known (see [L],
[C], [Pi]). We used this idea in [T16] for estimating nonlinear best m-term approx-
imation. We proved that for good systems ¥ the estimate

en(F,X)>n"%logn)®, a>0,beR,

for the entropy numbers implies the same estimate for best m-term approximation:

om(F, ¥)x > m = “(logm)®

See Section 10 for more detail.
We mention two survey papers [Bab] and [D] where one can find detailed discus-
sion of numerical applications.
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2. APPROXIMATION BY LINEAR METHODS. INDIVIDUAL FUNCTIONS

Let us consider a Banach space X with a basis ¥ = {¢3}2°,, [|[¢Yk|| =1, k =
1,2,.... For a given element f € X we consider the expansion

F=Y" el )n

k=1
and the correspoding partial sums

n

S(f,0) = cx(F)Px-

k=1

In order to understand efficiency of approximating by S,, we introduce best approx-
imations with regard to Span{ty,..., ¥, }:

En(f,¥)x = inf|[f — > ant|x-

k=1

It is well known (see [LT]) that for a basis ¥ the operator S, is bounded as an
operator from X to X. Therefore, we have for any f,g € X

19n(f) = Sn(9)llx < C(X, V)| —gllx,

and for any f € X

If = Sn(f, ¥)llx < C(X, V)E,(f, ¥)x.

This means that the partial sums method provides near best approximation for
any individual f. Let us consider a classical example of ¥ = T - the trigonometric
system and X = L,, 1 < p < oco. The basis 7 is an orthonormal basis and,
therefore, orthoprojector S,, realizes the best approximation in Ly. By the Riesz
theorem (see [Z]) we know that 7 is a basis for 1 < p < oo and thus the Fourier
sums realize near best trigonometric approximation in Lp, 1 < p < oo. It is well
known that 7 is not a basis for Ly and L.,. In this case we have the Lebesgue
inequality:

1f = Su(f, Dl < Cln(n+ 2)En(f, T)p, p=1,00.

An extra factor In(2+n) is a slowly growing to infinity function on n but nonetheless
there are different settings where an attempt to get rid of In(2 4+ n) was done. We
will mention some of them. One can replace the partial sum S, (f,7) by the de la
Vallée-Poussin operator

2n—1

Vlf.T) = 1 3 S,(0.T).

It is not an orthoprojector anymore but one has the estimate

||f - Vn(f, T)HP < 4En(f7 T)pa b= 17007
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that is good if {E,(f,T),} does not decrease fast (note that V,(f,7) is a trigono-
metric polynomial of degree 2n — 1). The following estimate was obtained by
Oskolkov [02] for p = oo

2n E. -
I = 8.0l < 0 LT,

We note also that in the case of p = oo an extra In(2 + n) appears not only in the
estimates for individual functions as above but also for function classes. We present
here some well known results for the Sobolev classes

wi=A{f =1 _absolutely continuous, ||f(T)||q <1}.

Kolmogorov proved that

4
sup |[|f = Sn(f; T)llc = 5 (Inn)n~" +O(n™").
fewy, T

Favard, Akhiezer and Krein (see [Tim]) proved the equality

sup En(fa T)oo - KT(” + 1)771’
FEWZ

with K, is a number depending on the number r.

We discuss an interplay between approximation of individual functions and func-
tion classes. In this section we discuss certain aspects of the following question.
Suppose that F' is a function class and {4, (F)}22, is a corresponding sequence of
extremal quantities. In this section we take 6, (F') := sup;cp 6, (f) to be the supre-
mum e, (F') or E,(F) of the best approximation in the uniform norm of functions
in F' by algebraic e,(-) or trigonometric F,(-) polynomials of order n. In Sec-
tion 5 we will consider the case 6, (F) = d,(F') - the sequence of the Kolmogorov
widths of the class F'. We discuss the question of the extent to which the sequence
{6, (F)}52 1, which is connected with the whole function class F', characterizes the
corresponding properties of individual functions in F'. In this section we discuss
the question of the existence in F' of a function f such that

lim 8, (f)/6.(F) = 1.

n— oo

The first result in this direction is apparently due to Lebesgue. In [Le] he proved
the equality
sup By (f)oo =M,
1 £lloo <M
where sup is taken over continuous functions. This equality in combination with
the Weierstrass theorem shows that in the class of all continuous functions bounded
by the number M there is no asymptotically extremal function.

Let us make a historical remark due to Nikol’skii (see [N2]). S.N. Bernstein
discussed the role of function classes in constructive approximation in the opening
session of his seminar in Approximation Theory (Moscow, Spring 1945). His general
attitude to the role of studying the sequences of £, (F) := sup;cp E,(f) for a given
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function class F' was skeptical. One of his arguments was that the sequence {E,, (F') }
may not reflect the behavior of {E, (f)} for any individual f € F, because usually
the extreme function that realizes sup;c p E,(f) depends on n. He formulated a
problem of studying

. E.(f) .. En(f)
sup lim su and sup liminf
fEIF)‘ n—>oop En(F) feFF)‘ n—0o0 En(F)

and their analogs for approximation by algebraic polynomials for some function
classes. In particular he thought that the function |z| is an extremal function in
the sense of the above quantities in the class Lip;1 for approximation by algebraic
polynomials in the uniform norm. However, it turned out not to be the case. S.
M. Nikol’skii [N2] proved in 1946 that for W, classes there is a function f € W2,
such that
limsup E,(f)/E.(W5) = 1.
n—o0

It was proved in [T1], [T2] that for the class W there exists a function f € WZ,
such that

(2.1) lim B (f)/Ea(W5) = 1.

n—o0

Further results and some generalizations are obtained in [T3], [T5]. It is interesting
to compare the above result (2.1) with the following result of Oskolkov [O1]

max iminf([|f — Sn(f, T)lleo/ sup [If = Sn(f, T)lleo) = 1/2.

fews, m—oo fewl

Open problem 2.1. Is it possible to extend (2.1) from W2 to W"H* with arbi-
trary modulus of continuity w? We define here

WrHY ={f + |f72)—fy)| <w(z—y]), =zyeT}

3. GREEDY APPROXIMATION WITH REGARD TO BASES

3.1 Greedy Bases. We will study the algorithms G,,(f, ¥, p) defined in the In-
troduction. In order to understand the efficiency of this algorithm we compare its
accuracy with the best possible o,,,(f, V) when an approximant is a linear com-
bination of m terms from ¥. The best we can achieve with the algorithm G,,
is

||f - Gm(f7 \Ilap)H = O-m(fv \Il)v

or a little weaker

(3.1) If = Gm(f, ¥, )| < Gom(f, V)

for all elements f € X with a constant G = C(X, V) independent of f and m.

Definition 3.1. We call a basis ¥ greedy basis if for every f € X there exists a
permutation p € D(f) such that (3.1) holds.

The following proposition has been proved in [KoT1].
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Proposition 3.1. If ¥ is a greedy basis then (3.1) holds for any permutation
p € D(f).

We will discuss two the most interesting cases of basis W¥: the Haar basis H
as a representative of wavelet type bases and the trigonometric system 7 as a
representative of uniformly bounded orthonormal bases.

Denote H,, := {H7%}7°; the Haar basis on [0,1) normalized in L,(0,1): H} =1
on [0,1) and for k=2"+1[, n=0,1,...,1=1,2,...,2"

2n/P e (20 —2)27" 1 (20 —1)27 1)
HY =(¢ 27/ g e[(20—1)27 1 2127 1)

0, otherwise.

Denote by T := {e?**},cz the univariate trigonometric system in the complex
form and denote by 7% := 7 x --- x T the multivariate trigonometric system.

The following theorem (see [T'14]) establishes existence of greedy bases for L,(0, 1),
1<p<oo.

Theorem 3.1. Let 1 < p < oo and a basis ¥ be Ly-equivalent to the Haar basis
Hp,. Then for any f € L,(0,1) and any p € D(f) we have

||f - Gm(f7 \Ila p)“Lp S C(p7 \P)Um(fa ‘II)Lp
with a constant C(p, V) independent of f, p, and m.

We use in this theorem the following definition of the L,-equivalence. We say
that ¥ = {¢,}32; is Ly-equivalent to H, = {H}, }?°, if for any finite set A and any
coefficients ci, k € A, we have

Cr(p, O) Y exHY L, < 11D entelln, < Calp, ®)I1D ckHElL,
keA keA keA

with two positive constants C1(p, ¥), Ca(p, ¥) which may depend on p and V. For
sufficient conditions on ¥ to be Ly-equivalent to H, see [FJ] and [DKT].

Thus each basis ¥ which is L,-equivalent to the univariate Haar basis H,, is a
greedy basis for L,(0,1), 1 < p < co. We note that in the case of Hilbert space
each orthonormal basis is a greedy basis with a constant G =1 (see (3.1)).

We give now the definitions of unconditional and democratic bases.

Definition 3.2. A basis ¥ = {¢}?2, of a Banach space X is said to be uncon-
ditional if for every choice of signs 0 = {0}, 6 =1 or —1, k = 1,2,..., the
linear operator My defined by

Moy arthr) = arlkthn
k=1 k=1

s a bounded operator from X into X.

Definition 3.3. We say that a basis ¥ = {1} }72, is a democratic basis if for any
two finite sets of indices P and Q) with the same cardinality #P = #Q we have

1> el < DI vl
kcP keQ
with a constant D := D(X, V) independent of P and Q.
We proved in [KoT1] the following theorem.
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Theorem 3.2. A basis is greedy if and only if it is unconditional and democratic.

We remark that Definition 3.1 of greedy basis for a Banach space is an analog
of Definition 1.2 (see Introduction) of greedy dictionary for a Hilbert space. Let us
give an analog to Definition 1.3 of r-greedy dictionary.

Definition 3.4. We call a basis ¥ r-greedy basis for a Banach space X if for each
f € X such that
O-m(fa\II)XSmirv m:152a"'7

we have for every p € D(f)
||f_Gm(f7\I}7p)|| SC(T‘,\I})m_T, m:1727""

We construct the following example now.

Example 3.1. There exist a Banach space X and a basis ¥ such that ¥ is a
r-greedy basis for X for any r > 0 and U is not an unconditional basis.

Proof. We use the construction from [KoT1]|. Let X be the set of all real sequences
z = (x1,%2,...) € la such that

lz]|" =

S /v

sup
NeN
is finite. Clearly, X equipped with the norm

|- |l = max(|] - ||ez, 1 - 1)
is a Banach space. Let ¢, € X, k= 1,2,..., be defined as

1, n=k,

() :{ 0, n # k.

We take any r > 0 and prove that U is r-greedy basis for X. Indeed, the assumption
om(f, ¥)x < m~" implies o,,,(f, ¥);, < m~" and, therefore,

||f - Gm(fa\Il)Hh < m~".

Let us prove a similar estimate for || - ||. Let

G (£, ) = Y cr(f)vn-

Denote Q. (N) :=[1, N] \ A,,. Then
If = Gu(f, I =sup| Y (DR <D B mr k)T <m T
kEQm (N) k=1

This proves that ¥ is a r-greedy basis for X. It is proved in [KoT1] that ¥ is not
unconditional.
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3.2. The Trigonometric System. Let us consider nonlinear approximation with
regard to the trigonometric system 7. The existence of best m-term trigonomet-
ric approximation was proved in [Ba] (see also [T19]). The method G,,(f) :=
Gm(f, T?) has one more advantage over the traditional approximation by trigono-
metric polynomials in the case of approximation of functions of several variables.
In this case (d > 1) there is no natural order of trigonometric system and the
use of G, allows us to avoid the problem of finding natural subspaces of trigono-
metric polynomials for approximation purposes. We proved in [T19] the following
inequality.

Theorem 3.3. For each f € Ly(T?) we have

If = G H)llp < @+ 3m"P)o(f)p, 1< p< oo,

where h(p) :=|1/2 —1/p|.
Remark 3.1. Foralll <p <o

IGm(f)llp < m" @] £]lp.

Remark 3.2. There is a positive absolute constant C such that for each m and
1 < p < o there exists a function f # 0 with the property

(3-2) G (f)llp = Crn P £

The above results show that the trigonometric system is not a greedy basis for
L,, p # 2. This leads to a natural attempt to consider some other algorithms
that may have some advantages over TGA in the case of 7. We discuss here the
performance of WCGA (see Section 9) with regard to 7.

Let us compare the rate of approximation of TGA and WCGA for the class
A := A(RT) where RT denotes the real trigonometric system 1/2,sinz, cosz,....
We need to switch to this system from the complex trigonometric system because
the algorithm WCGA is defined for the real Banach space. We note that the system
RT is not normalized in L, but quasinormalized: C; < [|t||, < C; for any t € RT
with absolute constants C7, Cs, 1 < p < oco. It is sufficient for application of general
methods developed in Section 9. For a sequence 7 := {t;} with ¢, = ¢, k=1,2,...,
we replace 7 by t in the notation. Theorem 9.1 and (9.6) imply the following result.

Theorem 3.4. Let 0 <t <1. For f € A we have
(3.3) If = G, RT)lp < Clp, tym™ "2, 2 <p < oo
This estimate and Theorem 3.3 imply that for f € A we have
(3:4) |f = Gm(£,RT)p < Clp,ym™"/7, 2 <p < oo,
what is weaker than (3.3). It is proved in [DKTe| that (3.4) can not be improved.
Thus the WCGA works better than the TGA for the class A. We note that the

restriction p < oo in (3.3) is important. We give now a lower estimate for m-term
approximation in L.
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Proposition 3.2. For a given m define

2m
f= E cos 3*z.
k=0

Then we have

O (f, T)oo = m/4.
Proof. Consider the Riesz product
Dy (z) := H (1+cos3’z) — 1.
j€[0,2m]
This function has nonzero Fourier coefficients only with frequences of the form
j(s) _
k(s) = Zsj?)J, s =1(80y--,S2m),

=0

with 0 < j(s) < 2m, s; = —1,0,1 for j < j(s), sjs) = 1, and s; = 0 for j(s) < j <
2m. It is clear that k(s) is uniquely defined by s. Take any polynomial of the form

t(x) = Z ai coskx, #A=m.

keA

Then for each k € A we look for an s such that k = k(s). If we do not find such an
s we have

(coskx, o) = 0.
For those s that were found to satisfy k(s) = k, k € A, we form a set J consisting

of all j(s) and define the new Riesz product

o= H (1+cos3’z) — 1.

Then we have
t,®) =0
and

m+1<(f—1,®) <[|f —tlool|Pll1 < 4||f = #]|o-

This implies
Om(f, T)oo > m/4.

3.3 Greedy Bases. Direct and Inverse Theorems. Theorem 3.1 points out
the importance of bases L,-equivalent to the Haar basis. We will discuss now
necessary and sufficient conditions for f to have a prescribed decay of {o,,(f, ¥),}
under assumption that ¥ is L,-equivalent to the Haar basis H,, 1 < p < co. We
will express these conditions in terms of coefficients { f,,} of the expansion

f = Z fnwn-
n=1

The following lemma from [T14] plays the key role in this consideration.
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Lemma 3.1. Let a basis ¥ be L,-equivalent to H,, 1 < p < oo. Then for any finite
A and a <|cp| <b, n €A, we have

Ci(p, ©)a(F#HA)Y? < 1Y enthnlly < Calp, ©)b(#A)M/P.

neA

We formulate a general statement and then consider several important partic-
ular examples of rate of decrease of {o,,,(f, ¥),}. We begin by introducing some
notations. For a monotonically decreasing to zero sequence & = {e;}3>, of posi-
tive numbers (we write £ € M DP) we define inductively a sequence {N,}5°, of
nonnegative integers:

(3.5) No=0; Ngy1 isthe smallest satisfying
1
€N,y < 56]\/‘8; ng := Ngy1 — Ns.

We are going to consider the following examples of sequences.

Example 3.2. Takeeg =1 ande,=k=", r>0, k=1,2,.... Then
Nep1 =[2Y"NJJ+1 and n,=[2Y"N,]+1— N;.

What implies
N, =257 and ng=2°/".

Example 3.3. Fiz 0 < b < 1 and take € = 2_kb, k=0,1,2,.... Then
N, =s""+0(1) and n,=s'/""L.
Let f € L,. Rearrange the sequence || f,,%n ||, in decreasing order

[ fra s llp 2 (| fro o llp = -

and denote

a’k(fvp) = ||fnk¢nk ||p

We give now some inequalities for a(f, p) and o,,,(f, ¥),. We will use brief notation

om(f)p = om(f, ¥)p and o0(f)p = ||fllp-

Lemma 3.2. For any two positive integers N < M we have

apm(f,p) < C(p, ®)on(f)p(M — N)~V/P,

Lemma 3.3. For any sequence mg < mi < mo < ... of nonnegative integers we
have

Jms( < C p7 Zaml f7 mH—l - ml)l/p'
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Theorem 3.5. Assume a given sequence € € M DP satisfies the conditions
€N, 2012_8, Ng+1 S Cg’ns, 8:0,1,2,....
Then we have the equivalence

on(flp <en < an,(f,p) <270 VP,

Corollary 3.1. Theorem 3.5 applied to Examples 3.2, 3.3 gives the following re-
lations:

(3-6) on(fp < (m+1)"" = afp) <n TP,

(3.7) om(f)p <27 = an(f,p) < 27" 0"V,

Remark 3.3. Making use of Lemmas 3.2 and 3.3 we can prove a version of Corol-
lary 3.1 with the sign < replaced by <.

Theorem 3.5 and Corollary 3.1 are in spirit of classical Jackson-Bernstein di-
rect and inverse theorems in linear approximation theory, where conditions on the
corresponding sequences of approximating characteristics are imposed in the form

(38) En(f)p L €p, Or ||E'n(f)p/€n||l<><> < 0.

It is well known (see [D]) that in studying many questions of approximation theory it
is convenient to consider along with restriction (3.8) the following its generalization

(3.9) 1En(f)p/€nlli, < oo

Lemmas 3.2 and 3.3 are also useful in considering this more general case. For
instance, in the particular case of Example 3.2 one gets the following statement.

Theorem 3.6. Let 1 < p < oo and 0 < g < co. Then for any positive r we have
the equivalence relation

Zam(f)ngq_l <o = Zan(f,p)anq_lJrq/p < 0.

n

Remark 3.4. The condition

Z an(f, p)anqflJrq/p < 00

with ¢ = B := (r +1/p)~! takes a very simple form
(3.10) > _an(fip) = Y I fathnlly < oo

In the case ¥ = H,, the condition (3.10) is equivalent to f is in Besov space By(Lg).
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Corollary 3.2. Theorem 3.6 implies the following relation

Zam(f,’/'l)gm’“ﬁ_l <o <<= fe BE(LB),

where B := (r+1/p)~1.

The statement similar to Corollary 3.2 for free knots spline approximation was
proved by P. Petrushev [P]. Corollary 3.2 and further results in this direction can
be found in [DP] and [DJP]. We want to remark here that conditions in terms
of a,(f,p) are convenient in applications. For instance, the relation (3.6) can be
rewritten using the idea of thresholding. For a given f € L, denote

T(e) :=#{ar(f,p) : ar(f,p) > €}.

Then (3.6) is equivalent to
om(flp << (Mm+1)7" = T K e~ (r+1/p) 7t

For further results in this direction see [D], [CDH], [Os].

3.4 Stability. In this section we assume that a basis ¥ = {¢;}3, is an uncondi-
tional normalized (||¢g|| =1,k =1,2,...) basis for X (see Definition 3.2).
The uniform boundedness principle implies that the unconditional constant

K :=K(X,V):= Sup | M|

is finite.
The following theorem is a well known fact about unconditional bases (see [LT],

p.19).

Theorem 3.7. Let ¥ be an unconditional basis for X. Then for every choice of
bounded scalars {\}521, we have

1) Arartpr]| < 2K Sup el arr
k=1

= k=1

(in the case of real Banach space X we can take K instead of 2K ).

In numerical implementation of nonlinear m-term approximation one usually
prefers to employ the strategy known as thresholding (see [D, S.7.8]) instead of
greedy algorithm. We define and study here the soft thresholding. Let a real
function v(z) defined for = > 0 satisfies the following relations

1, forxz>1
(3.11) v(z) =
0, for0<z<1/2

(3.12) lv(z)] <A, =x€][0,1];
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there is a constant C, such that for any z,y € [0,00) we have
(3.13) v(z) —v(y)| < CLlz —yl.

Let -
F=Y" el )r.

k=1

We define a soft thresholding mapping 7 , as follows. Take € > 0 and set

Tew(f) = Y v(lex(H)/€)er(f) -

k

Theorem 3.7 implies that
(3.14) | Te,o (F)I] < 2K A[ f]].

It was proved in [T21] that the mapping 7. , satisfies the Lipschitz condition with
a constant independent of e.

Theorem 3.8. For any € and any functions f,g € X we have

1Te,o(f) = Tew(9)|l < (34 4 2CL)2K || f — g]|.

Open problems.
3.1. Does the inequality

If = G (£, RTp < Ci(p,t)on (£, RT)y

hold for any f € L,(T), 1 < p < oo, with m < Ca(p, t)n?
3.2. Does the inequality

1f— Gfﬁt(f, Hp)llp < Ci(p, t)on(f, Hp)p

hold for any f € L,(0,1), 1 < p < oo, with m < Cy(p,t)n?
3.3. Find the order of the quantity

sup ||f - G?ﬁt(faRT)“Pa 1< p < o0.
fewy

3.4. Find greedy type algorithm realizing near best approximation in the L, ([0, 1]%),
1<p<oo,d>2, with regard to Hg for individual functions.

4. SOME CONVERGENCE RESULTS

In Section 3 we discussed greedy bases. That is justified from the point of view
of efficient approximation. It follows from Proposition 3.1 that the inequality

(4.1) |G (f, T, )| < (G + DI

holds for all m and all f € X for every p € D(f).
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Definition 4.1. We say that a basis V is quasi-greedy if there exists a constant
Cq such that for any f € X and any finite set of indices A, having the property

(42) i e (/)] = mace i (1)

we have

(4.3) ISACF ) = 11> ex (£l < Coll£II-
keA

It is clear that the inequalities (4.1) and (4.3) are equivalent. P. Wojtaszczyk
[W2] proved that a basis W is quasi-greedy if and only if the sequence {G,,(f, ¥, p)}
converges to f for all f € X and any p € D(f). We constructed in [KoT1] an
example of quasi-greedy basis that is not an unconditional basis (and, therefore,
not a greedy basis). We have the following theorem for the trigonometric system.

Theorem 4.1. The trigonometric system T is not a quasi-greedy basis for L, if
p#2

This theorem has been proved in [T19] and for p < 2 it has been proved inde-
pendently and by different method in [CF]. We mention here that the method from
[T19] gives a little more than stated in Theorem 4.1.

Theorem 4.2. There exists a continuous function f such that G,,(f,T) does not
converge to f in L, for any p > 2.

Theorem 4.3. There exists a function f that belongs to any Ly, p < 2, such that
Gm(f, T) does not converge to f in measure.

The proof of both theorems is based on two examples (one for p > 2 and the
other for p < 2) constructed in [T19, pp 574-575]. We prove here only Theorem
4.3 where we use the example from [T19] for p < 2.

Proof of Theorem 4.3. We use the Rudin-Shapiro polynomials (see [KS])

N-1
Ry (x) = Z e e ==+1, zcT,
k=0
that satisfy the inequality
(4.4) IRN (e < CN'2,

with an absolute constant C. Denote for s = +1

Denote also

Then
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The inequality (4.4) implies
IRn [l > C1N'2.

Using this inequality we prove that there exist two positive constants c¢; and cy
such that for one of s = £1 we have

(4.5) m{z : |Dp,)(z)] > N2} > e

We define a function f from Theorem 4.3 as follows

f= 2271;/261'2%(1)1&5(2”) + 27" Rgv).

v=1

Then for appropriately chosen m; and mo we get
Gm1 (fa T) - sz (fa T) = 270/267221)1(1 + 27U)DAS(2’U)

and by (4.5)
mi{z |G, (f) = Gy (f)] Z e1} 2 e

what shows that {G,,,(f,7)} does not converge in measure. Further, for any 1 <
p < 2 we have
D, (2v) + 827 Rau||, < C2v1=1/P)

what implies that f € L,.

We also mention two interesting results on convergence almost everywhere. T.W.
Ko6rner answering a question raised by Carleson and Coifman constructed in [K1]
a function from Ly and then in [K2] a continuous function such that {G,,(f,7)}
diverges almost everywhere. T. Tao [Ta] proved that for the Haar system we have
convergence: the sequence {G,,(f,H,)} converges almost everywhere to f for any
feLly, 1<p<oo.

Open problems.

4.1. Does L,-Greedy Algorithm with regard to 7 converge in L,, 1 < p < oo,
for each f € L,(T)?

4.2. Does Dual Greedy Algorithm with regard to 7 converge in L,, 1 < p < oo,
for each f € L,(T)?

4.3. Does L,-Greedy Algorithm with regard to H, converge in L,, 1 < p < oo,
for each f € L,(0,1)?

4.4. Does Dual Greedy Algorithm with regard to H,, converge in L,, 1 < p < oo,
for each f € L,(0,1)?

5. WIDTHS. OPTIMAL METHODS IN LINEAR APPROXIMATION

In Sections 2 and 3 a basis ¥ was chosen a priori. In many problems when an
application to physical or engineering problems dictates the choice of a basis it is
the case. However, in many other problems we can choose an appropriate basis for
approximation. This leads to a search for optimal bases of approximation. The
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first result in this direction was obtained by Kolmogorov. In 1936 Kolmogorov
introduced the concept of width of a class F' in a space X :

An(F,X) = jui sup inf |f ; ¢jbillx-
This concept allows us to find for fixed n and for a class F' a subspace of dimension n,
optimal with respect to the construction of an approximating element as the element
of best approximation. In other words, the concept of width allows us to choose
among various Chebyshev methods having the same quantitative characteristic of
complexity (the dimension of the approximating subspace) the one which has the
greatest accuracy. The first result about widths, namely Kolmogorov’s result (1936)

dont1(W3, L2) = (n+1)7",

showed that the best subspace of dimension 2n + 1 for approximation of classes of
periodic functions is the subspace of trigonometric polynomials of order n. This
result confirmed that the approximation of functions in the class W3 by trigonomet-
ric polynomials is natural. Further estimates of the widths dan1(W,, Lp), 1 < g,
p < 0o, some of which are discussed here, showed that for some values of the pa-
rameters g, p the subspace of trigonometric polynomials of order n is optimal (in
the sense of order) but for other values of ¢, p this subspace is not optimal.

The Ismagilov [I] estimate for the quantity d,, (W7, L) gave the first example
where the subspace of trigonometric polynomials of order n is not optimal. This
phenomenon was thoroughly studied by Kashin [Kal].

In analogy to the concept of Kolmogorov width, that is, to the problem concern-
ing the best Chebyshev method, the problems concerning the best linear method
and the best Fourier method were considered.

Tikhomirov [Ti] introduced the concept of linear width :

M (F, X) = A;mﬁngn ,ch? If—Afllx,

and the concept of orthowidth (Fourier width) was introduced in [T4]

on(F,X) :=d (F,X) := inf _ sup

orthonormal system {u;}?_ ;| fcF

=1

X

All these widths have as a starting point a function class F'. Thus in this setting we
choose a priori a function class F' and look for optimal subspaces for approximation
of a given class. The following results are well known [Te2]. We present these
results for r positive integer. Similar results hold for any r greater than some
a(q,p) < 1, which is defined below in Theorem 5.1. Positive integers satisfy the
inequality » > a(q,p) for all 1 < ¢,p < oo, except ¢ = 1, p = 0o where we have
a(1,00) = 1. Thus in the case ¢ = 1, p = co we assume r > 1.
A.Inthecasel <p<g<ooorl<gqg<p<2one has

(51) Spn(ng Lp) = )\n(W;, Lp) = dn(W;, Lp) = n_T"Hl/q_l/P)Jr .
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B. In the case 1 < g < p < 00, p > 2, one has
dn (W, Ly) =< n-rtA/a=1/2)¢
(W, Ly) = p~rtmax(l/g=1/2,1/2-1/p)

SOn(W;,Lp) ~ p-Tt1/a-1/p

In the case A the classical trigonometric system provides the optimal orders for all
widths, except ¢, for ¢ = p =1, 00. Let us discuss a more interesting case B for a
particular choice of ¢ = 2 and p = co. We have

(5.2) dn, (W3 ,Lo) <n™",

(5.3) A (W, Leo) =< @on(W3, Loo) =< n~"H1/2,

These relations show that if we drop the linearity requiment for approximation
method we gain in accuracy a factor n='/2. However, there is a big difficulty in
realization of the estimate (5.2). We know by Kashin’s result that there exists a
subspace realizing (5.2) but we do not know a way to construct it. Thus it is only
an existence theorem for now.

Let us discuss one more special case ¢ = 1 and p = co. In this case we have

(5.4) dp(WT Loo) = My (W7, L) < n~"+1/2
and
(5.5) on(W7{, Loo) < n~ "t

Therefore, by (5.4) the best possible approximation (in the sense of order) can be
realized by linear method, say, A,,. However, by (5.5) this linear method A, is
certainly not an orthogonal projector. Moreover, by [Te2] it can not satisfy even
the following much weaker restriction ||A4, (e?*®)| < C, k € Z. This means that
the optimal linear operator A, is unstable. A small change in some of Fourier
coefficients of f may result in a big change of || A, (f)||2-

Let us make some conclusions now. In Linear Approximation of W7 in L, the
bottom line is given by gon(W; , L,) where the approximation method is the simplest
— orthogonal projection. Partial sums with regard to classical systems provide an
optimal error of approximation for this width. The trigonometric system works for
all 1 < ¢q,p < oo except (¢,p) = (1,1),(00,00). The wavelet systems (see [AT])
work for all 1 < ¢,p < 0o. On the example of the pair (W7, L,) we have seen that
we need to sacrifice important and convenient properties of approximating operator
in order to achieve better accuracy. On the example of (W3, L) we have seen that
we need to pay even bigger price for better accuracy in a form of proving only an
existence theorem instead of providing a constructive method of approximation.

Let us continue the discussion from Section 2 on interplay between approximation
of individual functions and function classes. Let us first try to associate with an
individual function f a sequence of the Kolmogorov widths. It is clear that the
choice F[f] := {f} does not work because d;(F[f]) = 0 for each f. The idea is to
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find a minimal reasonable class that contains f. In the periodic case it is natural to
associate with f(z) all translates f(z —y). Thus define F[f] := {f(z—y), ye€ T}
All known classes of periodic functions are shift invariant. In such a case we have

for f € F that F[f] C F and d,,(F|[f],X) < d,(F, X). We will present some results
from [T5]. For r € Z;, a € R} denote

WrH ={f F(") — absolutely continuous,

17 (@) = D Wllg < |z -yl @y €T}
Theorem 5.1. Let 1 < g<p< o0 or2<p<q<oo. Then each class WTH(‘I"
with 0 < a <1 andr+ a > a(q,p) contains a function f such that

liminf dn (F[f], Ly) /dn(W" H, L) > 0.

We define here a(q,p) := (1/q¢—1/p)4 for 1 <q<p <2,2<p<q< oo and
a(q,p) == max(1/q,1/2) for 1 <q<p<oo, p>2.

Let us consider one particular case ¢ = p = oo, a = 1, that is not covered by The-
orem 5.1. As established by Tikhomirov [Ti], the values of the Kolmogorov width
in this case are given by approximations by trigonometric polynomials. Results of
Nikol’skii and the author mentioned in Section 2 show that each class W contains
a function asymptotically extreme for the best approximation by trigonometric

polynomials. It turns that the picture is different for the asymptotic behavior of
the widths d, (F[f], Leo)-

Theorem 5.2. Any function f € W2, r > 1/2 satisfies
dn(F[f], Leo) = 0(dn (W3, Loo))-

It is intersting to note that for any periodic function f € L,(T) we have

(5.6) Om(f(x =), 1)p .00 = dmn(F[f], Lp) < 0m(f, T )p-

It is proved in [T5] that for 1 < g < p < oo one has

(5.7) EWTHS L) = sup du(FIf],L,) =
FEWTHZ

dm(W’"Hg’, L,) = m "ot (1/g—max(1/2,1/p))+
provided r + o > «a(q, p) with a(q,p) defined in Theorem 5.1. We proved in [DT1]
that
(5.8) oW HS, T), =< m— "o+ (1/g—max(1/2,1/p))+

under the same assumption r + a > «a(q,p). Relations (5.7) and (5.8) show that
for any pair of (¢,p), 1 < ¢ < p < oo, and for each function f € W"HZ the
trigonometric system 7 provides a subspace T (A), #A < m, with frequences in A
such that
dm (F[f],L,) < sup inf c—y) —t()|, € d"HWTHS, L,).
(FUf) L) < sup ind 17 =) =), < ARV 7. 1)
Open problems.
5.1. Construct a subspace realizing (5.2).
5.2. Does there exist f € W"HS, 0 < a < 1, such that

dn(F[f], L1) > n=""%7
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6. OPTIMAL METHODS IN NONLINEAR APPROXIMATION

In the widths problem of Linear Approximation we were looking for an optimal n-
dimensional subspace for approximating a given function class. A nonlinear analog
of this setting is the following. Let a function class F' and a Banach space X
be given. Assume that on the base of some additional information we know that
our basis for m-term approximation should satisfy some structural properties, for
instance, has to be orthogonal. Then similarly to the setting for the widths d,,
Ans ©n We get the optimization problems for m-term nonlinear approximation (see
Introduction). Let B be a collection of bases satisfying a given property.

I. Define an analog of the Kolmogorov width

om(F,B)x = qgré%;ggam(f, ¥)x.

I1. Define an analog of the orthowidth

m(F,B)x := inf — G (£, 0)]| x.
Y (F, B) x éuréﬁfc‘é‘}”f (f, ¥)||x

We present here some results in the case B = O - the set of orthonormal bases,
F =W/, X =1Ly 1<gqp< oo First of all we formulate a result (see [KT1],
[T18]) that shows that in the case p < 2 we need some more restrictions on B in
order to get meaningful results (lower bounds).

Proposition 6.1. For any 1 < p < 2 there ezists a complete in Ly(0,1) orthonor-
mal system ® such that for each f € L,(0,1) we have o1(f, ®), = 0.

Let us restrict our further discussion to the case p > 2. This case was also more
interesting in the Linear Approximation discussion (see Section 5). Kashin [Ka2]
proved that

(6.1) om (Wi, Q)2 >m™".

We proved (see [DT1]) that

(6.2) (W3, T)oo <m™".

The estimates (6.1) and (6.2) imply that for 2 < g,p < co we have
(6.3) om(W7,0)p < 0m(W,, T)p=xm™".

Let us compare this relation with (5.2). We see that best m-term trigonometric ap-
proximation provides the same accuracy as the best approximation from an optimal
m-~dimensional subspace. An advantage of nonlinear approximation here is that we
use a natural basis instead of existing but nonconstructive subspace. However, we
should note that the estimate (6.2) was proved in [DT1] as an existence theorem.
We did not give an algorithm to get (6.2) in [DT1] and do not know it now. The
Thresholding Greedy Algorithm does not provide the estimate (6.2). We have (see
T19)

sup ||f — G (f, T)lloo < m™71/2.
fewr
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It is known from different results (see [DJP], [D], [T21]) that wavelets are well
designed for nonlinear approximation. We present here one general result in this

direction. We consider a basis ¥ := {¢;};cp enumerated by dyadic intervals I
of [0,1]¢, I = I x +++ x I4, I; is a dyadic interval of [0,1], j = 1,...,d, which
satisfies certain properties. Let L, := L,(§) with normalized Lebesgue measure

on Q, |2 = 1. First of all we assume that for all 1 < ¢,p < oo and I € D,
D := D([0,1]%) is the set of all dyadic intervals of [0, 1]¢, we have

(6-4) [rllp = [rllglT1/P=4/4,

with constants independent of I. This property can be easily checked for a given
basis.

Next, assume that for any s = (s1,...,84) € Z%, s; >0, j = 1,...,d, and any
{cr} we have for 1 < p < o0

(6.5) 1Y ervrlls= > llerll?,

IeD, IeD,
where
Dy:={I=Lx---xIgeD : |[}|=27% j=1,...,d}.

This assumption allows us to estimate the L,-norm of a dyadic block in terms of
Fourier coefficients.

The third assumption is that ¥ is a basis satisfying the Littlewood-Paley in-
equality. This means the following. Let 1 < p < oo and f € L, has an expansion

F=> frir
I

We assume that

(6.6) lim [If— > ) frvbully =0,

min; pu;—>00
it s;<pjg=1,...,d I€D,

and

(6.7) £l = N1 Y freor) 2.

s IeDg

Let u € Z%, p; >0, j =1,...,d. Denote by ¥(u) the subspace of polynomials of

the form
b= > ey

SjS/J,j,j:l,...,dIEDS
We define now a function class. Let R = (Ry,...,Rq), R; >0,j=1,...,d, and

For natural numbers [ denote

We define the class H(¥) as the set of functions f € L, representable in the form

F=Y"t, teU(RI), |t <279®"
=1
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Theorem 6.1. Let1 < q,p < oo and g(R) > (1/q—1/p)+. Then for ¥ satisfying
(6.4)—(6.7) we have

sup  ||f — GEr(f,9)|, < m™9E).
FEHE(W)

In the periodic case the following basis U := U x - - - x U can be taken in place of
U in Theorem 6.1. We define the system U := {Ur} in the univariate case. Denote

2" —1 on
2’ _ 1

? —
U”j(x):zzelkw:eiwi_l’ n:0,1,2,...;
k=0

Ur‘:k(w) = eiQ%Urf(m —2rk2™™), k=0,1,...,2" —1;
U, p(@) =e?""Ut(—z+2rk27"), k=0,1,...,2" — 1.

We normalize the system of functions {U : w2 U, .} in Ly and enumerate it by dyadic
intervals. We write

Ur(z) :=2""?U} (z) with I=[(k+1/2)27", (k+1)27");

Ur(z) :=2""%U, (z) with T=I[k27",(k+1/2)27");

and

U[O,l) (m) = 1.

It is well known that H f(U 4) is equivalent to the standard anisotropic mul-
tivariate periodic Holder-Nikol’skii classes N Hf. We define these classes in the
following way. The class NHf, R = (Ry,...,Ry) and 1 < p < o0, is the set of
periodic functions f € L,([0,2n]%) such that for each I; = [R;] + 1, j = 1,...,d,
the following relations hold

L S
(6.8) Hf”p <1, HAtjijp < |t|R]7 j=1....4,
where Ai’j is the [-th difference with step ¢ in the variable z;. In the case d = 1

N Hﬁ coincides with the standard Holder class Hf. Then Theorem 6.1 gives.

Theorem 6.2. Let 1 < q,p < oo; then for R such that g(R) > (1/q — 1/p)+ we
have

sup ||f — GEr (f,U)], < m™9E),
fENHE

We also proved in [T21] that the bais U? is an optimal orthonormal basis for
approximation of classes N H, f in Ly:

(6.9) om(NHE, 0), < 00 (NHE, U?), < m9(F)

for1<g<o0,2<p<oo,g(R)>(1/qg—1/p)+. It is important to remark that
Theorem 6.2 guaranties that the estimate in (6.9) can be realized by TGA with
regard to U,

Open problem 6.1. Find a constructive proof of (6.2) (provide an algorithm).
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7. UNIVERSALITY

In this section we discuss in the model case of anisotropic function classes a gen-
eral approach formulated in Introduction of how to choose a good basis (dictionary)
for approximation. This approach consists of several steps. We concentrate here
on nonlinear approximation and compare realizations of this approach for linear
and nonlinear approximations. The first step in this approach is an optimization
problem. In both cases (linear and nonlinear) we begin with a function class F' in
a given Banach space X. A classical example of optimization problem in the linear
case is the problem of finding (estimating) the Kolmogorov width d,,(F, X). This
concept allows us to choose among various Chebyshev methods (best approxima-
tion) having the same dimension of the approximating subspace the one which has
the best accuracy. The asymptotic behavior (in the sense of order) of the sequence
{dm(F, X)}s°_; is known for a number of function classes and Banach spaces. It
turned out that in many cases, for instance, in the case F' = W] is a standard
Sobolev class and X = L,, the optimal (in the sense of order) m-dimensional sub-
spaces can be formed as subspaces spanned by m elements from one orthogonal
system. We describe this for the multivariate periodic Holder-Nikol’skii classes
NHE. Tt is known (see for instance [Te2]) that

(7.1) A (NHE, L,) < m™ 9 1< p< oo,

It is also known that the subspaces of trigonometric polynomials 7 (R,[) with fre-
quences k satisfying the inequalities

|kj| < 2g(R)l/Rja j = 17"'7d7

can be chosen to realize (7.1). In this case [ is set to be the largest satisfying
dim 7T (R,l) < m. We stress here that optimal (in the sense of order) subspaces
T(R,l) are different for different R and formed from the same (trigonometric)
system.

A nonlinear analog of the Kolmogorov m-width setting was discussed in Section
6. In this section we consider only the case D = O — the set of all orthogonal bases
on a given domain. In Section 6 we mentioned that

(7.2) om(NHE, 0)p, < m™9®)

for

l1<g<oo, 2<p<oo, ¢g(R)>(1/q—1/p)+.
It is important to remark that the basis U realizes (7.2) for all R (see the definition
of U? in Section 3).

The second step in our approach is to look for a universal basis (dictionary)
for approximation. The mentioned above result on the basis U? means that U? is
universal for the pair (F;([4, B]),0) and the space X = L, ([0, 27]¢) for A,B € Z¢
such that g(A) > (1/¢—1/p)+, 1 < g < 00, 2 < p < 00, where

Fo([A,B)):={NHF : 0<A;<R;<Bj<oo, j=1,...,d}.

It is interesting to compare this result on universal bases in nonlinear approximation
with the corresponding result in the linear setting. We define the index x(m, F, X)
of universality for a collection F with respect to the Kolmogorov width in X:

k(m,F,X):= L(m,F,X)/m,
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where L(m, F, X) is the smallest number among those L for which there is a system
of functions {p;}% | such that for each F € F we have

L

sup inf ||f = cipill < dm(F, X).
fchl,...,CL i1

It is proved in [T8] (see also [Te2, Ch.3, S.5]) that for any A, B € Z% such that
B; > A;,5=1,...,d, we have

(7.3) K(m, Fp([A, B]), Ly) > (logm)*™t, 1< p< 0.

The estimate (7.3) implies that there is no Chebyshev methods universal for a
nontrivial collection of anisotropic function classes. Thus, from the point of view
of existence of universal methods the nonlinear setting has an advantage over the
linear setting.

After two steps of realizing our approach in the nonlinear approximation we get a
universal dictionary D, for a collection of function classes F, say, U? for F,([A, B]).
This means that the dictionary D,, is well desinged for best m-term approximation
of functions from function classes in the given collection. The third step is to find
an algorithm (theoretical first) to realize best (near best) m-term approximation
with regard to D,,. It turned out that in the model case of F,([A, B]) and the basis
U? there is a simple algorithm which realizes near best m-term approximation for
classes NH f. This is Thresholding Greedy Algorithm (see Theorem 6.2).

Thus we have established that in the above model case the basis U? is optimal for
nonlinear m-term approximation in a very strong sense. The following two features
of U? are the most important: 1) U? is the tensor product of the univariate basis
U; 2) the univariate basis U is a wavelet type basis. It is known [W1] that U is
L,-equivalent, 1 < p < oo, to the Haar basis. Then by Theorem 3.1 U is a greedy
basis for L,, 1 < p < oo. The tensor product structure of U 4 is important in
making U? a universal basis for a collection of anisotropic Holder-Nikol’skii classes.
It would be ideal if U? is a greedy basis for L,(T%), 1 < p < co. Unfortunately, it
is not a case. We have that for 1 < p < oo

(74)  sup |f — L (£ UDllp/om(f.U%), = (logm)@DI/2-1/r
FELy

This relation follows from its analog with U? replaced by the multivariate Haar
system H? := H x --- x H. The lower estimate in (7.4) for H? was proved by
R. Hochmuth; the upper estimate in (7.4) for H¢ was proved in the case d = 2,
4/3 < p < 4, and was conjectured for all d, 1 < p < oo, in [T15]. The conjecture
was proved in [W2].

8. GREEDY ALGORITHMS IN HILBERT SPACES

Perhaps the first example of m-term approximation with regard to redundant
dictionary was considered by E. Schmidt in 1907 [S] who considered the approxi-
mation of functions f(x,y) of two variables by bilinear forms

Zui(w)vi (y)
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in Ly([0,1]?). This problem is closely connected with properties of the integral

operator
/ f(z,y)g

with kernel f(z,y). E. Schmidt [S] gave an expansion (known as the Schmidt
expansion)

(8:5) fla,y) =D i (Ti(@)is ()

where {s;(Jf)} is a nonincreasing sequence of singular numbers of Jy, i.e. s;(J¢) :=
)\j(J}‘Jf)l/2, {A;(A)} is a sequence of eigenvalues of an operator A, J} is the
adjoint operator to J;. The two sequences {¢;(x)} and {¢;(y)} form orthonormal
sequences of eigenfunctions of the operators JyJ} and J;Jy respectively. He also
proved that

m m

1f (2, ) ;%h@ Vi@l =, inf (@) g IE
It follows from the Schmidt expansion that the above best bilinear approximation
can be realized by the Pure Greedy Algorithm. This was observed and used in
several papers (see [Po| for history).

Another problem of this type which is well known in statistics is the projection
pursuit regression problem. We formulate the related results in the function theory
language. The problem is to approximate in Lo a given function f € Lo by a sum
of ridge functions, i.e. by

m
er(wj - T), T,w; eRY j=1,...,m,

i=1

where r;, j = 1,...,m, are univariate functions. The following greedy type al-
gorithm (projection pursuit) was proposed in [FS] to solve this problem. Assume
functions r1,...,r, 1 and vectors wq,...,w, 1 have been determined after m — 1

steps of algorithm. Choose at m-th step a unit vector w,, and a function r,, to

minimize the error
m
1£(z) = rj(w; - o)l

Jj=1

This is one more example of Pure Greedy Algorithm. The Pure Greedy Algorithm
and some other versions of greedy type algorithms have been intensively studied
recently (see [B], [DDGS], [DMA], [Du}, [DT2|, [DT3], [H], [J1], [J2], [T14-24)).
In this section we discuss PGA and some its modifications which make them more
ready for implementation. We call this new type of greedy algorithms Weak Greedy
Algorithms (see Introduction for definitions of PGA and WGA).

If Hy is a finite dimensional subspace of H, we let Py, be the orthogonal projector
from H onto Hy. That is Py, (f) is the best approximation to f from H,. We let
g9(f) € D be an element from D which maximizes |(f,g)|. We shall assume for
simplicity that such a maximizer exists; if not suitable modifications are necessary
(see Weak Orthogonal Greedy Algorithm below) in the algorithm that follows.
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Orthogonal Greedy Algorithm (OGA). We define R3(f) := R§(f,D) := f
and G§(f) :== G§(f,D) := 0. Then for each m > 1, we inductively define
Hp :=Hp(f) := span{g(R3(f)), ..., 9(Ry, 1(f))}
Go.(f) =G0, (f, D) := P, (f)
Ry (f) ==R7,(f, D) == f — G}, ()

We remark that for each f we have

(8.1) If = Go(f, D) < [|1B7i () = Gu(Bra (f), D)

Let a sequence 7 = {tx}7°,, 0 < t; < 1, be given. Following [T20] we define Weak
Orthogonal Greedy Algorithm.

Weak Orthogonal Greedy Algorithm (WOGA). We define f3'" := f. Then
for each m > 1 we inductively define:
1). ¢%7 € D is any satisfying

[(FonZas @ =t sup [(f 715 9)1;
geD

Gy (f, D) := Pgr (f), where H;, :=Span(p]",...,00");

ol = =Gy (1, D).
It is clear that G7, and G$7 in the case t,, =1, k = 1,2,..., coincide with PGA

G, and OGA G?¢, respectively. It is also clear that WGA and WOGA are more
ready for implementaion than PGA and OGA.

8.1. Convergence. The convergence of PGA and WGA with ¢, =¢, 0 <t <1,
was established in [J1] and [RW]. The first sufficient condition on 7 which includes
sequences with liminfy_, ., tx = 0 was obtained in [T20].

Theorem 8.1. Assume
=t
(8.2) ; Ek = .

Then for any dictionary D and any f € H we have
Tim ]~ G(/, D)) = 0.

In [T20] we reduced the proof of convergence of WGA with weakness sequence 7
to some properties of [3-sequences with regard to 7. Theorem 8.1 was derived from
the following two statements proved in [T20].

Proposition 8.1. Let 7 be such that for any {a;}52, € la, a; >0, j =1,2,... we
have

hnn_l)gf an, z; a;/t, = 0.
‘7:

Then for any H, D, and f € H we have

lim |[f7,]l = 0.
m—00
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Proposition 8.2. If 7 satisfies the condition (8.2) then T satisfies the assumption
of Proposition 8.1.

The following simple necessary condition

was mentioned in [T20]. The first nontrivial necessary conditions were obtained in
[LTe]. We proved in [LTe] the following theorem.

Theorem 8.2. In the class of monotone sequences T = {tp}%>,, 1 > t1 >ty >
- > 0, the condition (8.2) is necessary and sufficient for convergence of Weak
Greedy Algorithm for each f and all Hilbert spaces H and dictionaries D.

The proof of this theorem is based on a special procedure which we called Equal-
izer. In [LTe|] we gave an example of a class of sequences 7 for which the condition
(8.2) is not a necessary condition for convergence. We also proved in [LTe] a theorem
which covers Theorem 8.1.

Theorem 8.3. Assume

oo 25tl_1

e ) )V =cc.

s=0 k=23

Then for any dictionary D and any f € H we have
Jim_[If - GL(£.D)] = 0.

We proved in [T23] a criterion on 7 for convergence of WGA. Let us introduce
some notation.

We define by V the class of sequences z = {xx}72,, r > 0, k = 1,2,..., with
the following property: there exists a sequence 0 = gy < g1 < ... such that

oo

28
8.3 :
(8-3) ; g, <o
and
oo ds
(8.4) D 27 af < oo,
s=1 k=1

where Aqs := qs — qs_1.-

Theorem 8.4. The condition T ¢ V is necessary and sufficient for convergence of
Weak Greedy Algorithm with weakness sequence T for each f and all Hilbert spaces
H and dictionaries D.

The proof of the sufficient part of Theorem 8.4 is a refinement of the original proof
of Jones [J1]. The study of the behavior of sequences as, Z;.lzl a; for {a;}32, € la,
aj > 0,75 =1,2,..., plays an important role in the proof. It turns out that the class
) appears naturally in the study of the above mentioned sequences. We proved in
[T23] the following theorem.
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Theorem 8.5. The following two conditions are equivalent

(C.1) T¢V,
(C.2) V{a;}52, €2, a; >0, linrr_1>ioréf an, Zaj/tn =0.
j=1

We give a result on convergence of WOGA now.
Theorem 8.6. Assume
(8.5) S = oo

k=1

Then for any dictionary D and any f € H we have
(8.6) Tim_ I/ - G5 (£.D)]| = 0.

Remark 8.1. It is easy to see that in the case D = B - orthonormal basis the
assumption (8.5) is also necessary for convergence (8.6) for all f.

Theorems 8.4 and 8.6 show that conditions on the weakness sequence for con-

vergence of WGA and WOGA are different.

8.2 Rate of convergence. For a general dictionary D we define the class of
functions

A(f(DyM)ZZ{fEH:f:chwk, wg € D, #A < oo and Z|ck|§M}
kEA keA

and we define A; (D, M) as the closure (in H) of A9(D, M). Furthermore, we define
A1 (D) as the union of the classes A;(D, M) over all M > 0. For f € A;(D), we
define the norm

| fla, (D)

as the smallest M such that f € Ay (D, M).
It was proved in [DT2] that for a general dictionary D the Pure Greedy Algorithm
provides the following estimate

(8.7) If = G £, D) < [ f].ay(oym ™ VC.

(In this and similar estimates we consider that the inequality holds for all possible
choices of {G,,}.) The paper [DT2] contains also an example of a dictionary D and
an element f such that (see Subsection 8.3 below)

1 _
(59 IF = Gn(£, D) > S flasoym ™, m >4,
We proved in [KoT2| a new estimate

(8.9) If = G (£, D)|| < 4| f] 4, (pym ™1/
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which improves a little the original one (see (8.7)).
E. Livshitz [Li] proved that there exist § > 0, a dictionary D and an element
f e H, f+#0,such that

(8.10) If = Gu(£,D)|| = Cm ™20 f| 4, ()

with a positive constant C'. We developed and refined ideas from [Li| in [T24] and
proved the following lower estimate. There exist a dictionary D and an element
f € H, f+#0,such that

(8.11) If = G (£, D) = Cm ™3| f| 4, (p)

with a positive constant C'.
For the WGA we have the following estimate [T20].

Theorem 8.7. Let D be an arbitrary dictionary in H. Assume T := {tx}3>, is a
nonincreasing sequence. Then for f € Ay(D, M) we have

m

(8.12) If = G (£, D) < M(1+ Y #7)~tm/2@ T,
k=1

In a particular case 7 = ¢, (tx, =t, k=1,2,...), (8.12) gives
If — GL(f, D) < M1 +mt?)~/4+20 g <t <1.
This estimate implies the following inequality

(8.13) If = Go(£, D)l < Cr(t)ym™ " |flay(p), a<1/6,

with the exponent at approaching 0 linearly in t. We proved in [T24] that this
exponent can not decrease to 0 slower than linearly.

Theorem 8.8. There exists an absolute constant b > 0 such that for any t > 0 we
can find a dictionary Dy and a function f; € Ay (D) such that

liminf || £, — 1, (i, Do)lIm™ /|l ar o) > 0.

We formulate one result for WOGA from [T20]. In the case of OGA this theorem
was proved in [DT2].

Theorem 8.9. Let D be an arbitrary dictionary in H. Then for each f € A;(D, M)

we have
m

If - G (D)) < MO+ 3 )72,
k=1

There is one more greedy type algorithm which works well for functions from the
convex hull 4y(D):={f : |fla,(p) <1} of DE, where D* := {+g, g€ D}.

There are several modifications of Relaxed Greedy Algorithm (see for instance
[B], [DT2]). Before giving the definition of Weak Relaxed Greedy Algorithm (WRGA)
we make one remark which helps to motivate the corresponding definition. Assume
Gm—1 € A1(D) is an approximant to f € A;(D) obtained at the (m — 1)-th step.
The major idea of relaxation in greedy algorithms is to look for an approximant
at the m-th step of the form G,, := (1 — a)Gy—1 +ag, g € D*, 0 < a < 1. This
form guarantees that G, € A;1(D). We give now the definition of two versions of
WRGA.
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Weak Relaxed Greedy Algorithms (WRGA). We define f"* := f and GJ"* :
0 fori=1,2. Then for each m > 1 we inductively define
1). =l € D* is any satisfying

(814) <f7;117(10m Gm 1> >t7n||f:;bll||2
and
(8.15) lemt = Griall = 1fmlall;

@2 € D* is any satisfying
(8.16) <f'r7;z217(pm Gm 1) >tm||fT21||2

2).
Grl =GR (f,D) = (1 - am)Gol s + amell,

am = (frlys ot — Gulp)llen! =GRl

G2 =GR D) = (1= Bn) Gty + B

B = tm (1 + Zti)_l for m >1.

k=1

3).
fri=f—-Gr', i=1,2.

We formulate now some theorems on convergence rates of greedy type algorithms
WRGA for functions from A (D, M).

Theorem 8.10. Let D be an arbitrary dictionary in H. Then for each f € A;(D)
we have

(8.17) If =GP <20+ ) 65) V%, i=1.2
k=1

We present some results from [T17] on r-greedy dictionaries (see Definition 1.3).

Definition 8.1. We say D is a A-quasiorthogonal dictionary if for anyn € N and
any g; € D, 1=1,...,n, there exists a collection p; €D, j=1,..., M, M <
N := A\n, with the properties:

gi € XM = Spa’n(tpla s 7()0M)a
and for any f € Xpr we have

> 1/2
(max |(f, 00 = N £l
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Theorem 8.11. Let a given dictionary D be A-quastorthogonal and let 0 < r <
(2A)7! be a real number. Then for any f such that

om(f,D)<m™", m=1,2,...,

we have

If = Gum(f, D) S C(r,)m ™", m=1,2,....

Remark 8.2. [t is clear that an orthonormal dictionary is a 1-quasiorthogonal
dictionary.

Remark 8.3. Theorem 8.11 holds if an assumption that D is \-quastorthogonal
s replaced by an assumption that D is asymptotically A-quasiorthogonal. In order
to get the definition of asymptotically A-quasiorthogonal dictionary we replace N in
the Definition 8.1 by N(n) and instead of N = An we require

limsup N(n)/n = .

n—oo
Here are two examples of asymptotically A-quasiorthogonal dictionaries.

Example 8.1. The dictionary x := {f = |J|"Y?x;, J C [0,1)} where x is
the characteristic function of an interval J is an asymptotically 2-quasiorthogonal
dictionary.

Example 8.2. The dictionary P(r) that consists of functions of the form f =
pxJ, |fll =1, where p is an algebraic polynomial of degree r — 1 and xj is the
characteristic function of an interval J, is asymptotically 2r-quasiorthogonal.

Example 8.3. For given pu,y > 1 a dictionary D is called (u,y)-semistable if for
any g € D, i=1,...,n, there erist elements h; € D, j=1,...,M < un, such
that

gi € Spanf{hi, ..., hu}

and for any ci,...,cpy we have
M M 1/2
I enl =2 (24
j=1 j=1

A (p,7y)-semistable dictionary D is py-quasiorthogonal.

8.3. Saturation property of Pure Greedy Algorithm. We consider in this
subsection a generalization of the Pure Greedy Algorithm. Take a fixed number
n € N and define the basic step of the n-dimensional Greedy Algorithm as follows.
Find an n-term polynomial

n

pn(f) ::pn(fap)zzcigia giEDa izla"'ana

n=1

such that (we assume its existence)

If = pn(F)ll = on(f, D).

Denote

G(”a f) = G(”a faD) = pn(f)’ R(nv f) = R(nv va) = f _pn(f)'
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n-dimensional Greedy Algorithm. We define Ro(n, f) := f and Go(n, f) := 0.
Then, for each m > 1, we inductively define

Gm(n, f) L= Gm(n, f,D) = Gm_l(n, f) + G(TL, Rm_l(n, f))

(8.18) Ron(11, f) : = Ron(n, f, D) := f — Gon(nt, f) = R(n, Ron1(n, 1))

It is clear that a 1-dimensional Greedy Algorithm is a Pure Greedy Algorithm.
For a general dictionary D, and for any 0 < 8 < 1, we define the class of functions

AZ(D,M) :={feH: f= chwk, wy € D, |A] < 0o and Z|ck|ﬁ < MP},
keA keA

and we define Ag(D, M) as the closure (in H) of AZ(D, M). Furthermore, we define
Ag(D) as the union of the classes Ag(D, M) over all M > 0. For f € Ag(D), we
define the “quasinorm”

|flas (D)

as the smallest M such that f € Ag(D, M). The following general estimate for the
error in approximation of functions f € Ag(D), § < 1, was proved in [DT2].

Theorem 8.12. If f € Ag(D), B <1, then for a.:=1/5 —1/2, we have
(8.19) om(f, D) < Clflagmym™*, m=12,....

where C depends on [ if B is small.

In [DT2] we gave an example which showed that replacing a dictionary B given
by an orthogonal basis by a nonorthogonal redundant dictionary D may damage
the efficiency of the Pure Greedy Algorithm. The dictionary D in our example
differs from the dictionary B by only one suitably chosen element g.

Let {hr}52; be an orthonormal basis in a Hilbert space H and let B = {hy}32;
be the corresponding dictionary. Consider the following element

g:= Ahy + Ahy + aA) (k(k + 1))/ ?hy,
k>3

with
A:=(33/89)"/? and a:=(23/11)'/?

Then, ||g|| = 1. We define the dictionary D = B U {g}.
Theorem 8.13. For the function

f=h1+hs
which is in each space Ag(D), 0 < f <1, we have
(8.20) If = Gum(f, D) >m Y2 m>4

We proved in [T17] that the n-dimensional Greedy Algorithm, like the Pure
Greedy Algorithm has a saturation property.
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Theorem 8.14. For a given n and any orthonormal basis {hy}32 there exists an
element g such that for the dictionary D = gU{h}3>, there is an element f which
has the property: for any 0 < <1

1f = G (1, OI/IF| a0y > CBnYE (m +2)712,

Open Problems.
8.1. Find the order of decay of the sequence

Ym) = sup (If ~ Gl £ DIIFIZ o),
[ DAGm}

where sup is taken over all dictionaries D, all elements f € A;(D) \ {0} and all
possible choices of {G,}.
8.2. Is there greedy type algorithm realizing (8.19) for 0 < g < 17

9. GREEDY ALGORITHMS IN BANACH SPACES

In this section we present some results on greedy approximation with regard to
redundant dictionaries in Banach spaces. These results are fragmentary and should
be considered as an attempt to understand a role of redundancy and nonlinearity in
the general setting for Banach spaces. There is no general results on convergence of
X-Greedy Algorithm and Dual Greedy Algorithm. Some results about performence
of DGA can be found in [Du]. It is proved in [Du] that the assumption that X
is a smooth Banach space is a necessary and sufficient condition for the sequence
{IIR2(f,D)||x} to be strictly decreasing for each f € X and all dictionaries D.

9.1. Uniformly smooth Banach spaces. Recently, we proved in [T22] one
general convergence result for the generalization of WOGA to Banach spaces. We
call this generalization Weak Chebyshev Greedy Algorithm (WCGA). We will use
the notation D := {£g, g € D} here. Let a weakness sequence 7 = {t,}%° ,,
0 <t <1, be given.

Weak Chebyshev Greedy Algorithm (WCGA). We define f§ := f3" = f.
Then for each m > 1 we inductively define
1). @ := %7 € DT is any satisfying

Fre  (¢m) > tm sup Fre  (g).
geDE

2). Define

m

@, = @y, := Span{pj}7,

and define G¢, := G to be the best approximant to f from ®,,.
3). Denote

fo =T = — G

Let us give one more definition of weak greedy type algorithm. We will not
present results on it here.
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Weak Dual Greedy Algorithm (WDGA). We define f := f27 := f. Then
for each m > 1 we inductively define
1). P = D7 ¢ D* is any satisfying

Fip (o) > tm sup Fo (g).
geDE

2). Define a,, as
||f£—1 - am‘PnDz“ = min anDz—l - am@ﬁ”'
a€R

3). Denote
frm = I = fe1 — am@s

We define now the generalization for Banach spaces of the Weak Relaxed Greedy
Algorithm studied in [T20] in the case of Hilbert space.

Weak Relaxed Greedy Algorithm (WRGA). We define f§ := fy'" = f and
b =Gy  :=0. Then for each m > 1 we inductively define
1). o7 = @l7 € D* is any satisfying

Ff;,l(% —Gry1) 2 tm sup Ff;,l(g —Gr_1)-
geD*

2). Find 0 < \,, <1 such that

17 = (1= M)y + Al = B0 1F = (1= N Gs + AGT)
and define
=GrT = (1= An)Grq + Ampr,.

m

3). Denote
f = = =G

Remark 9.1. It follows from the definition of WCGA, WDGA, and WRGA that
the sequences {||fS 1}, {1121}, and {||f7,||} are nonincreasing sequences.

The term “weak” in these definitions means that at the step 1). we do not shoot
for the optimal element of the dictionary which realizes the corresponding sup but
are satisfied with weaker property than being optimal. The obvious reason for this
is that we don’t know in general that the optimal one exists. Another, practical
reason is that the weaker the assumption the easier to satisfy it and therefore easier
to realize in practice. The Weak Relaxed Greedy Algorithm provides incremental
approximants discussed in [DDGS]. In [DDGS] they also impose weaker assumptions
(e-greedy) on an element of the dictionary than being optimal. For instance, for a
given sequence {€,}22, €, >0, n =1,2,..., they take 0 < a,, <1 and ¢,, € D
satisfying

If = (1 = om)Gmr + amgm)|| < | _ inf _{If = (1= @)Gm-1+ag)| + em

instead of trying to find optimal ones. Their approach is different from ours.



39

We discuss in this section the questions of convergence and the rate of conver-
gence for the two above defined methods of approximation: WCGA and WRGA.
It is clear that in the case of WRGA the assumption that f belongs to the closure
of convex hull of DF is natural. We denote the closure of convex hull of D by
A(D) := A;(D). It has been proven in [T20] (see Theorems 8.9 and 8.10 from
Section 8) that in the case of Hilbert space both algorithms WCGA and WRGA
give the approximation error for the class A(D) of the order

m

L+ t) 12

k=1

We consider here approximation in uniformly smooth Banach spaces. For a Banach
space X we define the modulus of smoothness

1
p(u) = W Gzt uyll+llz =uyl) =1).
xz||=||YI||=

The uniformly smooth Banach space is the one with the property

lim p(u)/u = 0.

u—0

It is easy to see that for any Banach space X its modulus of smoothness p(u) is an
even convex function satisfying the inequalities

(9.1) max(0,u — 1) < p(u) <u, wu € (0,00).

It has been established in [DDGS]| that the approximation error of an algorithm
analogous to our WRGA with ¢, = 1, £ = 1,2,..., for the class A(D) can be
expressed in terms of modulus of smoothness of Banach space. Namely, if modulus
of smoothness p of X satisfies the inequality p(u) < yu?, ¢ > 1, then the error is of
O(m!'/2-1). Tt has been proven in [T22] that both algorithms WCGA and WRGA
provide approximation for the class A(D) in a Banach space X with modulus of
smoothness p(u) < yu?, 1 < q¢ < 2, of order

m

(9.2) L+ )P, pi= q%’l.
k=1

We also proved (see a version of [T22] submitted for publication in Advances of
Comp. Math.) that WCGA converges for any f € X and WRGA converges for
any f € A(D) if 7 satisfies the condition

(9.3) > bt (p, 7, 0) = .
m=1

The sequences {&,,(p, T,0)} are defined as follows.



40 V.N.TEMLYAKOV

Definition 9.1. Let p(u) be an even convez function on (—oo,00) with the prop-
erty: p(2) > 1 and
lim p(u)/u = 0.

u—0

For any 7 = {t}32, 0 <tr <1, and 0 < 0 < 1/2 we define &y, = En(p, 7,60) as a
number u satisfying the equation

(9.4) p(u) = 0t u.

In a particular case of p(u) < u?, 1 < ¢ < 2, the relation (9.3) is equivalent to
- q
(9.5) Zti =00, pi=—0.
k=1

We gave in [T22] an example which shows that (9.5) is a necessary condition for
convergence of WCGA in Banach spaces with modulus of smoothness of power type
q for all D and f € X.

It is well known (see for instance [DDGS], Lemma B.1) that in the case X = L,
1 < p < oo we have

(9.6) p(u) < { u? /p if 1<p<2,

(p—1)u?/2 if 2<p<oo.

It is also known (see [LT], p.63) that for any X with dim X = oo one has
plu) > (1+u?)t? —1

and for every X, dim X > 2,

p(u) > Cu?, C >0.

This limits power type modulus of smoothness of nontrivial Banach spaces to the
case 1 < g < 2. The following theorem gives the rate of convergence of WCGA for

fin A(D).

Theorem 9.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yu?, 1 < g < 2. Then for a sequence T := {tx}3>,, tr < 1,
k=1,2,..., we have for any f € A(D) that

m

I7 = GT (D) < Clam @+ 32 8) 7, pi= 2,
k=1

with a constant C(q,~y) which may depend only on q and .

9.2. Finite-dimensional spaces. We discuss some results from [DT3] on X-
Greedy Algorithms in a particular case of finite-dimensional space X = R", equipped
with one of standard norms ¢,. The reasons of our concentration on the finite di-
mensional problems are the following. It is well-known how one can apply the finite
dimensional results in studying the smoothness classes. Next, we are interested in
understanding an interplay of several parameters including a parameter measuring
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the redundancy of a system D. In this subsection it will be more convenient for us
to use systems D that are not necessarily normalized. We note that the definition
of X-Greedy Algorithm does not depend on normalization of a system.

We use the standard notation R™ for the n-dimensional space of real vectors and
the £,-norm is defined as follows

lzllp = Y lz;1P)H?, 1< p < oo,
j=1

o 1= max ;.

Let By denote the unit £,-ball of R".

We give first two theorems from [DT3] about the m-term approximation in R”.
In this subsection, we shall consider m-term approximation in the £, norm of certain
sets ' C R™. In Theorem 9.2, we use ideas from [KT1] to give a lower estimate
for m-term approximation in the ¢; norm from a general dictionary to general sets
F C R™. Lower estimates in the /; norm automatically provide lower estimates in
the other ¢, norms, ¢ > 1 (see Corollary 9.1).

We let Vol,,(S) denote the Euclidean n-dimensional volume of the set S C R”.
We recall that the volume of the unit ball B}, 1 < p < oo, in R" can be estimated
by

(9.7) Cy'n~ P < Vol,(By) < Cyn /P,

with Cp,Cy > 0 absolute constants.
Theorem 9.2. If F' C By satisfies

Vol,, F > K" Vol,, By,
for some 0 < K < 1, then for any dictionary D, #D = N, we have
om(F, D)1 > CK*nY?N~ 7w m < n/2,

with C > 0 an absolute constant.

Corollary 9.1. Let F and D be as in Theorem 9.2. For any 1 < q < oo, we have
om(F,D), > CK*nY 17 Y2N"75%  m < n/2.

with C an absolute constant.

Corollary 9.2. Let D be as in Theorem 9.2. For any 1 < p,q < 0o, we have
(9.8) om(By,D)q = CnY/"YPN~—==m | m < n/2.

with C an absolute constant.

Remark 9.2. In the case N = a™ and p = q, the lower bound in Corollary 9.2 can
be replaced by Ca=2™

We shall next consider upper estimates for o,,(F,D),. We begin with the fol-
lowing simple theorem.
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Theorem 9.3. Let X be any n-dimensional Banach space and let B be its unit
ball. For any N there exists a system D C X, #D = N, such that

(9.9) om(B,D)x < min(l,€y), en:= ﬁ

We consider now the £,-Greedy Algorithms, 1 < p < oo (see Inrtroduction for
the definition). In the case p = 2, the £,-Greedy Algorithm coincides with the
Pure Greedy Algorithm. Then, GP (z) := G (z,D) is an m-term approximation
to x from D which we call the m-th greedy approximant. We note that the best
approximation to € R™ from D is not necessarily unique and therefore GE,(x) is
not necessarily unique. We define

Vi (2, D)q := sup ||z — G7,(z, D)lq

where the supremum is taken over all possible resulting GP (x,D). Similarly, we
define
v (2,D)q := inf |z — GT,(, D)l

where the infimum is taken over all possible resulting G?,(z,D). Thus, 7 measures
the worst possible error over all possible choices of best approximations in the
greedy algorithm and v represents the best possible error.

More generally, for a class F C R” we define

’751(177 D)q i= Sup ig(fap)q
fer

with a similar definition for y*. (F,D)4. In upper estimates for greedy approximation
we would like to use 4 and for lower estimates ~.

Theorem 9.3 shows that for p = ¢ and for each a > 1 there exists a dictionary
D, #D =b", b = 2a + 1, such that

Vin(Bp: D)p <@ ™.

However, the dictionary D in that theorem is not very natural or easy to describe.
This estimate and Remark 9.2 to Corollary 9.2 indicate that systems D with #D
of order C'™ play an important role in m-term approximation in R™. We proceed
now to study a natural family of such systems. We present results from [DT3].

Let M > 3 be an integer and consider the partition of [—1,1] into M disjoint
intervals I; of equal length: |I;| =2/M,i=1,..., M. We let & denote the midpoint
of the interval I;, i = 1,..., M, and Z := {£,}¥,. We introduce the system

Vu:={zeR":z; €8, j=1,...n}.
Clearly |Vp| = M™. We shall study in this section the £..-Greedy Algorithm for
the systems Vj,.
Theorem 9.4. For any 1 < q < oo we have

(9.10) (B, Vi) <nMIM™™, m=1,2,....

We shall give results about the ¢; greedy algorithm for the system V3. We
consider this system in detail for the following reasons. It is a simple system which
is easy to describe geometrically. Also, it is fairly easy to analyze the approximation
properties of this system. Moreoever, it turns out that this system gives geometric
order of approximation (see for example Theorem 9.5 and Theorem 9.7) which we
know is the best we can expect for general dictionairies (see Corollary 9.2).
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Theorem 9.5. We have the estimate

Ny n 1 m
(9.11) Om(BY, Va)1 < Y (BT, Va)1 < (1 — Y,

where k := [logy(n + 1)] .

The following lower estimate shows that (9.11) can not be improved by replacing
log,(n + 1) by slower growing function.

Theorem 9.6. Let n = 4% — 1, with k a positive integer. For any m < 3k/8, we
have
lin(B?,Vg)l Z 1/2.

We want to carry out an analysis similar to the above for the /3-Greedy Algo-
rithm (Pure Greedy Algorithm) and the dictionary Vs.

Theorem 9.7. Let k := [logy n|. Then,

(9.12) 72.(By,V3)2 < (1 ™2 m=1,2,....

Ck+1
The following theorem shows that in a certain sense the estimates of Theorem
9.7 cannot be improved.

Theorem 9.8. Let n = 2% for some positive integer k. For any m < k/2, we have
72 (B3, V3)2 > 1/2.

Theorem 9.3 gives the upper estimate for o,,(B%,D)s. In the particular case
#D = C™, C' > 3, this theorem guaranties the existence of D such that

om(By, D)y < (m)m

It is interesting to compare this estimate with the following lower estimate in the
problem of selection of optimal basis (see [KT1]). For given K there exists a positive
C(K) such that for any set of S < K™ bases B?, j = 1,...,S in R" we have for
each m < n/2

sup inf oy, (f, B7)2 > C(K).

feBy 7
Open problems.

9.1. Characterize Banach spaces X such that X-Greedy Algorithm converges
for all dictionaries D and each element f.

9.2. Characterize Banach spaces X such that Dual Greedy Algorithm converges
for all dictionaries D and each element f.

9.3. Find necessary and sufficient conditions on a weakness sequence 7 to guar-
anty convergence of Weak Dual Greedy Algorithm in uniformly smooth Banach
spaces X with modulus of smoothness of fixed power type ¢, 1 < ¢ < 2, (p(u) < yu?)
for all dictionaries D and each element f € X.

9.4. Find the correct (in both parameters n and m) order of decay of quantities
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10. NONLINEAR m-TERM APPROXIMATION AND ¢-ENTROPY

In this section, we want to bring out the connection between approximation
from a dictionary and e-entropy. We begin with covering numbers N.(F,/,) for a
set F' C R™ and recall their definition. For each ¢ > 0,

Ne(F,lp) :==min{N : F C U Bg(yj,e)}

=1

with the minimum taken over all sets {y;}_; of points from R™. Here By (y’,¢)
denotes the £,-ball of radius € with center y. By considering systems D consisting
of the points y/, we find

10.1 inf F.D), <e.
(10.1) #Dzﬁ(F,zp)Ul( D, < ¢

In other words, the covering numbers immediately give estimates for 1-term approx-
imation. We can extend the above observation to m-term approximation by using
the concept of metric entropy. Let X be a linear metric space and for a set D C X,
let £,,,(D) denote the collection of all linear spaces spanned by m elements of D.
For a linear space L C X, the e-neighborhood U(L) of L is the set of all z € X
which are at a distance not exceeding e from L (i.e. those z € X which can be
approximated to an error not exceeding € by the elements of L). For any compact
set F' C X and any integers N, m > 1, we define the (N, m)-entropy numbers

EN,m(F,X) = #%l:fN inf{e: F C ULE,Cm(D)Ue(L)}-

We can express o,,(F, D) as
om(F,D) = inf{e: F C Upeg, (0)Ue(L)}
It follows therefore that

#glsz Om(F, D) = enm(F, X).

In other words finding best dictionaries for m term approximation of F' is the same
as finding sets D which attain the (N, m)-entropy numbers ey, (F, X). It is easy
to see that €, (F, X) = d,,,(F, X). This establishes connection between (N, m)-
entropy numbers and the Kolmogorov widths.

The present section contains an attempt to generalize the concept of classical
Kolmogorov’s width in order to be used in estimating best m-term approximation.
For this purpose we introduce a nonlinear Kolmogorov’s (N, m)-width:

do(F, X,N) := inf inf inf —
m(F, X, N) AN,#%NSN?EELIGHAN;&HJ( 9llx,

where Ay is a set of at most N m-dimensional subspaces L. It is clear that

dm(F,X,1) =d,,(F, X)
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and N
dm(F7X7< >)§6N,m(F7X)SUm(F7D)
m

for any D with #D = N. The new feature of d,,(F, X, N) is that we allow to
choose a subspace L € Ay depending on f € F. It is clear that the bigger N the
more flexibility we have to approximate f. It turns out that from the point of view
of our applications the following two cases

(I) N =< K™,
where K > 1 is a constant, and
(IT) N =xm"",

where a > 0 is a fixed number, play an important role.

We intend to use the (N, m)-widths for estimating from below the best m-term
approximations. There are several general results (see [L], [C]) which give lower
estimates of the Kolmogorov widths d,(F,X) in terms of the entropy numbers
ex(F, X). In [T16] we generalized the following Carl’s (see [C]) inequality: for any
r > 0 we have

. " < "dp— .
(10.2) 1?]?%(11]{: ex(F, X) < C(r) 1énﬂaécnm dm—1(F, X)

We denote here for integer k
ex(F, X) :=inf{e: 3f1,..., for € X : F C UL (f; + €B(X))},

where B(X) is the unit ball of Banach space X. For noninteger k we set ¢, (F, X) :=
ek (F, X) where [k] is the integral part of number k. It is clear that

di(F, X,2") < e,(F, X).
In [T16] we proved the inequality

(10.3) max k"ex(F,X) < C(r,K) max m"d,,_1(F,X,K™),
1<k<n 1<m<n

where we denote
do(F, X, N) := sup || x-
feF

This inequality is a generalization of inequality (10.2). In [T16] we also proved the
following inequality
(104) 1?,?%(” kTE(a—i—r)k log k(F7 X) <C 1?73%(” mrdm—l(Fa X, mam)
and gave an example showing that klog k in this inequality can not be replaced by
slower growing function on k.

In [T16] we applied inequalities (10.3) and (10.4) for estimating the best m-term
trigonometric approximation from below. As a corollary to the following version of
(10.3) (see Theorem 10.1 below) we gave a new proof (see [DT1]) for the estimate

O-m(Wgoa T)l > m_Ta

where W is a standard Sobolev class (see Section 2) with the restriction imposed
in the L,,-norm.
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Theorem 10.1. For any positive constant K we have

1?}?%(nk ex(F, X) < C(r,K)  nax m dm—1(F, X, (Kn/m)™).

We used in [T16] a version of (10.4) to get some new lower estimates of m-
term trigonometric approximation in the L;-norm of multivariate classes MW of
functions with bounded mixed derivative . We proved in [T16] that

(10.5) O (MW, T)1 > m™" (logm)"¢=2,

The inequality (10.5) gives a new estimate for small 7.

The above method can be applied to a general system ¥ instead of trigonometric
system T .

Assume a system ¥ := {t;}52, of elements in X satisfies the condition:

(VP) There exist three positive constants A;, 7 = 1,2, 3, and a sequence {nx}° ,,
ngr1 < Aing, kK =1,2,... such that there is a sequence of the de la Vallée-Poussin
type operators Vi with the properties

(10.6) Vi(¥5) = Ak j95,
Ak,] = ]_ fOI‘ J: ]_,’nk; Ak,] :0 for J >A2nk,
(10.7) WVellxox < A3, k=1,2,...

Theorem 10.2. Assume that for some a > 0 and b € R we have
em(F, X) > Cim™*(logm)®, m=1,2,...

Then if a system U satisfies the condition (VP) and also satisfies the following
condition

E,(F,¥):=sup inf |f— chz/)jHX < Con~%(logn)®, n=1,2,...;
fGF C1,4.--9Cn

j=1
then we have
om(F, ¥)x > m™%(logm)°®.

Open problem 10.1. The correct order of the quantity o,,(MWZ ,T); is un-
known.

11. BILINEAR APPROXIMATION

In this section we discuss one particular case of a dictionary. Denote by II the
system of functions of the form u(z;)v(xs). It is clear that 72 C II. It is also clear
that IT is a very redundant system. We already mentioned some results for this
system in Introduction and in Section 8. All those results concerned approximation
in Hilbert space Ly([0,1]?) and it was convenient for us to normalize elements of
IT in Ly (what made the system II a dictionary in Lo([0,1]?)). In this section we
consider approximation by II in all L,, 1 < p < oo, spaces. In order to make the
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system II a dictionary in L, we need to normalize it in L,. We will denote the
normalized in L, system II by II,. The most results of this section give estimates
for best m-term approximation. These results do not depend on normalization of II
and for convenience in such a case we will use notation II without an index p. In this
section we concentrate only on approximation of bivariate functions from standard
function classes. We note that the bilinear approximation is a well established
area now and many estimates are proved in general setting: f is a function of 2d
variables = = (z1,...,%4), ¥ = (Y1,---,va); IL is replaced by 11 := {u(z)v(y)}; L,

is replaced by Ly, p,, where

1f1lpr.p2 = NIFCs )l llps -

The key role in bilinear approximation is played by the Schmidt formula (see Section
8)

oo

(11.1) om(fi2 = ( Y salJp))2

n=m-+1

This formula implies in particular for a > 0
om(f,I)y < m™® = s,(J;) <m Y2,

The following classes are well known and important in studying integral operators.
We say that J¢ belongs to the Schatten v-class S, if

an(Jf)” < 00.

The Schmidt formula (11.1) allows us to prove the following result.

Theorem 11.1. For any v < 2 we have

Jr€S, <= D (om(fiMem ?)" < oo

This theorem is an analog of the following theorem (see [DT2]) for an orthonor-
mal basis B for a Hilbert space H.

Theorem 11.2. For any 8 < 2 and any orthonormal basis B we have

feAsB) = D (om(f,Bym/?)F < co.

Theorem 11.2 is the generalization of Stechkin’s result [St] that corresponds to
B =1 in Theorem 11.2. Let us present some general results for approximation in
Banach spaces and then get as a corollary error estimates for approximation by II
in L,. We remind that A;(D) is a convex hull of D*. Similarly to the definition of
Ag(D) in Subsection 8.3 we define Ag(D) in a Banach space X with a dictionary
D. It is easy to derive (see an idea in [DT2, Theorem 3.3]) from Theorem 9.1 the
following statement.
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Theorem 11.3. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yu?, 1 < ¢ <2. Then for any f € Ag(D), 0 < <1, we have

om(f,D)x < C(X, D)YmM T Y2 f| 4, (p).

In a particular case X = L,, 1 < p < oo, D = II,, Theorem 11.3 gives the
estimate

(11.2) O (f, 1)y < C(p)m™>*/PAR=VB £ o

This inequality gives the error estimate of best m-term approximation in terms of
| flas(m,) which is not well studied for p # 2. We will present some results on
estimates for o,,(f,1II), in terms of standard Sobolev-Nikol’skii classes. The results
from Section 5 (see (5.6)—(5.8)) indicate that bilinear approximation of f(x — y)
is closely connected with the Kolmogorov widths d,,(F[f], L,) and best m-term
approximation of f with regard to the trigonometric system. If f € Hf then

flx—y) € NH(ER’R). We get from [T9] that
(11.3) Um(NHéR’R), H)p <« m~ Bt (1/g-max(1/p,1/2))+

for 1 < ¢ < p < oo with R > R(q,p), R(g,p) = 2(1/g—1/p) for 1 < ¢ <p <2
and R(q,p) = 1/q + max(1/q,1/2) for p > 2. Comparing (11.3) with (5.7) we see

that the upper estimates for the wider class N HéR’R) have the same order as for

the class {f(z —y), f € HJ}. Further results for anisotropic classes N Héf;;RQ)
and their 2d-dimensional generalizations can be found in [T9].
In the case 1 < p < g < oo we have

(11.4) om(NHER ), < m =~

A nontrivial estimate in (11.4) is the lower estimate for p = 1, ¢ = co. This estimate
and generalizations of (11.4) are obtained in [T11]. Let us present now results in

approximation in the Lo-norm for general classes N Héf}l;Rz) (see [T9] and [T12]).

We note that the study of anl(N]iTg;:’}I;Rz),H)mm2 is not complete. One of open
problems in this area is given in Open problem 11.7. Known results can be found
in [T9] and [T12]. Denote n; := (1/¢; —1/2)4+,i=1,2.

Theorem 11.4. Let Ry < Ry and Ry > m1, Ry > n2(1 — 0y /n2) L. Then

a-m(NHéf’(lI;RQ)’ H)2 = m—Rz(l—n1/R1), 1 S q1,492 S .

Theorem 11.5. Let Ry, Ry be as in Theorem 11.4. Then

sup sm(Jf) < m_RQ(l_"l/Rl)_l/z, 1< q,q2 < .

Ry,R
FENH{ L)

Theorem 11.6. Let Ry > Ry, Ry > 12, Ry > n1(1 — 12 /Re)~t. Then

Um(NHéf?;;RQ),H)z = m_Rl(l—nz/R2)+7I1—W2, 1< q1,q < 0.
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Theorem 11.7. Let Ry, Ry be as in Theorem 11.6. Then

sup sm(Jf) < m~Fa=me/Ra)tm—m=1/2 =1 < ¢ g, < 0.
FENH T
We give now some historical remarks on estimating eigenvalues and singular
numbers of integral operators. We begin with the following theorem that is a
corollary to the Weyl Majorant Theorem (see [GK, p.41]).

Theorem 11.8. Let A be a compact (completely continuous) operator in a Hilbert
space H. Suppose that
sn(A) <n™", r>0.

Then
IAn(4)] < n™".

Fredholm [F] proved that if the kernel f(z,y) is a continuous function and sat-
isfies the condition

sup | f(z,y +1) — f(z,y) < Clt|¥, 0<a<l,
x,Y

then for an arbitrary p > 2/(2a+ 1) the series

> (IR < oo
j=1

converges.
Starting with that article, smoothness conditions with respect to one variable
were imposed on the kernel. Weyl [We] proved the estimate

Au(Jg) = o(n™"71/?)

under the condition that the kernel f(z,y) is symmetric and continuous and that
0" f/0x" is continuous. Let us introduce some more notation. Define N Héf 2102)
as follows: f(z,y) belongs to this class if for all y € T the function f(-,y) of =
belongs to the class HEB(y), and B(y) is such that [|B(y)llq, < 1. We use here
the following notation. For a function class F' and a number B > 0 we define
FB:={f:f/Be€F}.

Hille and Tamarkin [HT] achieved significant progress. They proved, in partic-
ular, that for Ll <g<2and R>1

sup A (Jp)| < n BT Y9 (logn) B, ¢ =q/(q¢ - 1),
feNHF
q9,9

and they conjectured that the extra logarithmic factor can be removed or even
replaced by a logarithmic factor with a negative power.
The next important step was taken by Smithies [Sm]. He proved the estimate

(11.5) sup  sp(Jp) <n BV 1 <g<2, R>1/q—1/2.
feNHL
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Of later results we mention those of Gel’fond and M.G. Krein (see [GK, Ch.III,
S10.4]), Birman and Solomyak [BS], and Cochran [Co].
We proved in [T9] the following estimate

O’m(Nﬂéfzg)’ 1), ., = m~ Rt (/a-max(/21/p)

for1 < g3 <p; <00,1< g2 =py <ooand R > r(qi,p1). We denote here r(q, p) :=
(1/g—1/p)y for 1 <g<p<2o0rl<p<gqg< oo andr(qp):=max(1/2,1/q)
otherwise. This inequality implies in particular that (11.5) holds also for ¢ = 1.

We discuss now an application of bilinear approximation to the theory of widths.
As we know the starting point of this theory is a function class, say, the function
class W;. This function class can be associated with one function - the Bernoulli
kernel F.(z — y) with

F.(t):=2 i k" cos(kt — rm/2).
k=1

We have
wr={f :‘mwzfm»+@m—10”ﬁm—ywwm% lolle < 13.

In the development of approximation by trigonometric polynomials it was under-
stood that the rate of decay of E,(f) of individual functions, say E,(F,), is gov-
erned by smoothness properties of the function. It turned out that we have similar
phenomenon on the much more general level.

For a function g € L1(T?) define a function class

Wi =1f s f@ =0 [ aenemds el < 1.

We proved in [T7] that F,(z — y) is a typical representative of the following class
of functions. Denote M H;*""* B the class of functions g(z,y) such that ||g|j; < oo,

2T 2T
/ g@wﬂx:/'gwymyzo
0 0

(this condition is imposed only for convenience), and
1AL e, 9yl < Blta[™ [t 71,72 >0, 1= max([r1], [ra]) + 1,

where Ail,h denotes the operator of the mixed difference of order [ in each variable
with step ¢; in z and step t5 in y. We remark that the function F,(z —y) belongs
to M H{"" B for any r1,r3 such that ry + ro = p. We proved in [T7] the following
statement.

Theorem 11.9. For all1 < q,p < oo we have

sup  d, (W7, Lp) < dm(W;””’2 ,Lyp)
geMHl'l sT2

forry >1,ry >1+max(1/q,1/2) for2<g<p< o0 orl<qg<2<p<ooand
ro > 1 otherwise.
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Open problems.

11.1. Find necessary and sufficient conditions on a weakness sequence 7 to
guaranty convergence of Weak Greedy Algorithm with regard to Ils for each f € Lo.

11.2. Does L,-Greedy Algorithm with regard to II, converge for each f € L,
1<p<oo?

11.3. Does Dual Greedy Algorithm with regard to II, converge for each f € Ly,
1<p<oo?

11.4. If the answer to Problem 11.3 is “yes” then find necessary and sufficient
conditions on a weakness sequence 7 to guaranty convergence of Weak Dual Greedy
Algorithm with regard to II, for each f € L,.

11.5. Find necessary and sufficient conditions on a weakness sequence 7 to
guaranty convergence of Weak Chebyshev Greedy Algorithm with regard to IL, for
each f € L,.

11.6. Let Ry be the Rudin-Shapiro polynomials (see Section 4). Prove that

om(Ry(z —1y), ) > N/2.
11.7. Find the order of the sequence
(11.6) om(NHEE) ) m=1,2,...

in the case Ry < Ry, 2 < p; < 0.
Comment. In the case Ry > Ry the order of (11.6) is known (see [T9]).
11.8. Study efficiency of Pure Greedy Algorithm (Lo-Greedy Algorithm) with

regard to Il for approximation of function classes N Héﬁ;fz) in the L,, ,,-norm.

DP1,p2

12. RIDGE APPROXIMATION

This section similarly to Section 11 is devoted to approximation of functions of
two variables. The results discussed here may be seen as one more (in addition to
Section 11) example in the development of the following general approach in mul-
tivariate approximation. Approximate functions of several variables by univariate
functions. This idea is interesting from theoretical point of view and also looks
reasonable from computational point of view. There is a number of different real-
izations of this approach in approximation theory. We mention some of them for
illustration. We begin with the simplest one. S.N. Bernstein (see [Be|) suggested to
study the following type of approximation to a continuous periodic function f(z,y)
on two variables

(12.1) Epnoo(f) == inf_||f(z,y) = D cr(y)e™|
{er ()}
|k|<n
in the uniform norm || - ||. The approximant in (12.1) is a linear combination of

products of univariate functions. The Bernstein setting of the problem (12.1) is
a variant of the classical problem of bilinear approximation which was discussed
in Section 11. The important feature of the problem of bilinear approximation is
that the approximating system {u(x)v(y)}uver, is highly redundant. However,
as we have seen in Section 11 the redundancy did not hinder the development of
nice theory to solve the problem of best bilinear approximation in the Ls-norm.
What really allowed to do it is the structure of the system. In this section we
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discuss approximation by a redundant system with quite different structure. We
approximate by linear combinations of ridge functions, i.e. functions G(z),z € R?,
which can be represented in the form

(12.2) G(z) = g((z,e))

where g is a univariate function and its argument (x,e) is the scalar product of z
and a unit vector e € R?. We denote the set of functions of the form (12.2) by
R and call it the system of ridge functions. The above mentioned approximation
(approximation by ridge functions) also uses univariate functions and the system
R of all ridge functions is highly redundant. Unlike the bilinear approximation
problem we do not have a theory which provides (describes) the solution to the
problem of best ridge approximation. In this section we confine ourselves to the
case of functions of two variables and approximate only in Hilbert space L,. We
note that approximation by ridge functions got much attention recently for the
following two reasons. The first is that a ridge function can be interpreted as a
plane wave. This means that the problem of ridge approximation can be seen as
a problem of representation of a general wave by plane waves. The second reason
is that ridge approximation proved to be useful in neural networks approximation
(see [DOP]).

There are some general results on approximation by linear combinations of el-
ements of a redundant system in Hilbert space (see Theorem 11.3). These results
are expressed in terms of the Ag(D)-quasinorm determined by a dictionary D. Let
D := {(x1,x3) : #2 + 2% < 1} be the unit disk and L,(D), 1 < p < oo, denote the
Banach space with the norm

1
Il = 1oy = 5 [ [Pyt

From this point on we denote by R, the dictionary for L,(D) which consists
of elements of the system R normalized in L,(D). Similarly to the bilinear ap-
proximation we use the notation R instead of R, when we talk about best m-term
approximations. In a particular case X = L,(D), 1 < p < oo, D = R, Theorem
11.3 gives the estimate

(12.3) om(f,R)p < C(p)mmax(l/p,l/@*l/ﬂ|f|AB(RP)_

This inequality gives the error estimate of best m-term approximation in terms of
|flas(r,) which is not well studied. In order to use this general result we need
to varify that a given function f can be approximated by functions which have
special representation (see definition of Ag(D)), what in turn could be a nontrivial
problem. We will present some results on estimates for o,,(f,R), in terms of
standard classes of functions. In this section we deal with the function class which
is defined in a way standard for constructive approximation. We define the class
of functions H, (D) using the classical means of approximation, namely, algebraic
polynomials. Let P(n,2) denote the set of algebraic polynomials

§ : k.l
Ck’lxl xz

k+1<n—1
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of total degree n — 1. Denote by H; (D), r > 0, the set of all functions f € L,(D)
which can be repsented in the form

F=>pu  pa€P@,2), n=12,...,
n=1

with p,, satisfying the inequalities
[pnll, <277

The following result (see [LS]) gives the upper estimates for o,,(H, (D), R), auto-
matically.

Theorem 12.1. For any algebraic polynomial p € P(N,2) there exist N univariate
polynomials g7, j = 0,...,N — 1, of degree N — 1 with the following property

N-1
(12.4) plz)= ) (=€),
j=0
where ej-v := (cos jﬁ, sin %)
This gives the estimate
(12.5) om(Hy (D), R)p < C(r)m™".

It turned out that in the case p = 2 the estimate (12.5) is sharp:
(12.6) om(H3(D),R)2 > C(r)m™".

The first result in this direction a little weaker version of (12.6) was obtained in
[T13]. The estimate (12.6) was proved in [Ma]. The estimate (12.6) also follows
from the relation

12.7 m(f,R)2 > C  inf —
(12.7) om(f,R)2 > peggm,2)||f |2

established in [O3] for radial functions f, f(z1,z2) = h((z? + 23)1/?).
We proved recently (see [MOT]) that the estimate (12.5) in the case p = 2 can
be realized by PGA

(12.8) sup ||f — G (f, R2)ll2 < C(r)m™".
fEHS

Let us make some comments on (12.8). First of all this estimate shows that PGA
with regard to R is not saturated. Moreover, combining (12.8) with (12.7) we get
that for radial functions f such that

(12.9) Om(fiR)2 <C(r)m™"

we have

If = Gm(f, Ra)ll2 < C(rym ™.
This is a weaker analog of the r-greedy property for Ro.
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Open problems.

12.1. Find necessary and sufficient conditions on a weakness sequence 7 to
guaranty convergence of Weak Greedy Algorithm with regard to Rs for each f € Ls.

12.2. Does L,-Greedy Algorithm with regard to R, converge for each f € L,
1<p<oo?

12.3. Does Dual Greedy Algorithm with regard to R, converge for each f € L,
1<p<oo?

12.4. If the answer to Problem 12.3 is “yes” then find necessary and sufficient
conditions on a weakness sequence 7 to guaranty convergence of Weak Dual Greedy
Algorithm with regard to R, for each f € L.

12.5. Find necessary and sufficient conditions on a weakness sequence 7 to
guaranty convergence of Weak Chebyshev Greedy Algorithm with regard to R, for
each f € L.

12.6. Find the order of the quantity

sup ||f_Gm(f7R2)||L2(D)
fEAL(R2)

12.7. Could the estimate (12.5) for 1 < p < oo be realized by WCGA with
r={t,0<t<1?
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