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We study the approximation classes A,s associated with nonlinear m-term
approximation by elements from a quasi-normed Schauder basis in a separable
Banach space. We show that there always is a two-sided embedding

Krs = Aa,s = Kry sy

where ICr s denotes the associated smoothness space. We provide estimates
of 77 and 7, in terms of quantitative properties of the Schauder basis. The
estimates are sharp for so-called quasi-greedy bases. The two-sided embedding
can be considered a generalization of the characterization of the approximation
class associated with an orthonormal basis B for a Hilbert space A where it is
well known that

Aa,s (B) = ’CT,S(B)7

with a = % — 5 and s € (0, 00].
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1. INTRODUCTION

Let X be a separable Banach space, and let S = {gr}ren be a quasi-
normed Schauder basis of X, i.e. a basis that satisfies infy ||gr||x > 0 and
supy, ||gk|lx < oo. For any given f € X, the error associated to the best
m-term approximation to f from § is given by

om (f,8) = ACN:‘Alz’finr}ECk}kEACC ”f B ,%Ckgk ||X )

We are interested in the characterization of approzimation classes:

Aa,s (S) == {f € X7 ||{Um(f7 8)}m21||l1/a,s(N) < OO} (2)
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2 R. GRIBONVAL AND M. NIELSEN

which are defined using the Lorentz (quasi-)norm; for 0 < 7 < oo and
0<s <o

1/s
> 1[ml/Ta;‘n]Sl/m> , 0<s<oo

ll(@m)m=1 ||e,,3(N) = (Zm

(3)
SUpP, eN nl/Ta;‘“ 5§ = 00,
where {a} }+ denotes the decreasing rearrangement of {ay}s.
Remark 1. 1.
1. Notice that || - |le, . = || - [le, -
2. Throughout this paper we will use the notation V' — W, where V
and W are (quasi-)normed spaces, whenever V.C W and || - |lw < C|| - ||v

for some C' < oo. It can be verified [DL93] that the Lorentz spaces ¢, s(N),
defined by

Lrs(N) = {{ew} = [Hew e, < oo},

satisfy the continuous embedding ¢, s, (N) < £., 5, (N) provided that m; <
To O T = T with S1 S S2.

Aq s (S) is thus basically the set of functions f that can be approximated
at a given rate O(m~ %) (0 < a < 00) by m-elements from the Schauder
basis. The parameter 0 < s < oo is auxiliary and gives a finer classification
of the approximation rate.

We also define

1l sy = WA+ Hom (£ Vil ) (4)

Approximation classes are often related to smoothness classes. For 7 €
(0,00) and s € (0, 00], we let K; 5(S, M) denote the set

closx{f €EX|FACN A <00, f= chgk, I{erHle v < M}
keA
Then we define
K+,s(S) == Un>0K7 (S, M), (5)
with
I fllk, sy =inf{M : f € K (S, M)}.

Remark 1. 2. In a Hilbert space #, consider K, 4(S) with 7 € (0,2) and
suppose that the Schauder basis S is hilbertian, i.e. for every {5 sequence
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of scalars {cy}, the sum ), crgx is convergent in H. As £, 4(N) — l5(N)
one can check that

K = {1 X7 = Togl@l o <f @
k

where Fatou’s Lemma can be used to obtain the C inclusion in (6).

The following characterization was proved by Stechkin [Ste55] for the
case 7 = 1 and for general 7 by DeVore and Temlyakov [DT96] when the
Schauder basis S is an orthonormal basis for a Hilbert space .

THEOREM 1.1 ([Ste55, DT96]). If B = {hi}ren is an orthonormal ba-
sis of H, then

Aa,s (B) = Kz.s (B) (7)
with o = % — % Moreover, the norm is given by

1. .o = IHCE ) beendle, oo = 1 lLas o - ®)

The fundamental tools to prove these results are Hardy’s inequalities.
Less is known when S is not an orthonormal basis and the purpose of this
note is to generalize Theorem 1.1 to general Schauder bases for a Banach
space. This will be done in Section 2. In Section 3 we will show that for
so-called quasi-greedy bases the results of Section 2 are the best possible.
We consider some specific examples of the main result for Banach spaces
which are uniformly smooth and uniformly convex in Section 4.

2. MAIN RESULTS

Let us consider a quasi-normed Schauder basis S = {gi }ren for a Banach
space X . Since the basis is quasi-normed it is known, see [You80], that there
exist constants 0 < A < B < oo such that for every f =3, cx(f)gr € X
we have

Al{ex(NHlew < M1flx < Blli{er(f)}Hle-

For any pair 1 < p < ¢ < oo we can thus ask whether there are constants
0 <Ay <A, < oo for which the estimate

Agl{er(HHe, < M1fllx < Bpll{er(f)} e, (9)

holds for every f € X. For Schauder bases we have the following result,
generalizing Theorem 1.1:



4 R. GRIBONVAL AND M. NIELSEN

THEOREM 2.1. Let S be a quasi-normed Schauder basis for a Banach
space X. For every pair (p,q), 1 < p < q < 0o such that (9) is satisfied,
we have for s € (0, 00],

Kr,5(S) = Au s(S) = K4, 5(S), (10)
with
1
—=—-—+a and i:—+a
T p Tu q
Remark 2. 1.

“

1. For a general Schauder basis we get a “weaker” result than for an
orthonormal basis in the sense that the approximation class is not entirely
characterized as a smoothness space by Theorem 2.1. Indeed, the only
case where the Theorem gives an exact characterization is when p = ¢ can
be realized in (9), that is when X is isometric to £,. The Theorem then
reduces to a variant of Hardy’s inequality. But it is only natural that we
have to pay a price to use a less structured basis.

2. That we need some structure (and not just a set with dense span) to
get a result like Theorem 2.1 will be demonstrated at the end of Section 4
with an explicit example.

We now give the proof of Theorem 2.1. We will use some basic proper-
ties of the real interpolation method of Lyons and Peetre. The reader can
find more information on this topic and the notation used below in [DL93,
Chap. 6].

Proof of Theorem 2.1. Let 1 < p < ¢ < oo be such that (9) is satisfied.
Given a € (0,00), we take 7 with 7 < p such that « < 77! — p~!, this
choice will be justified later. We put Y = K -(S). The proof has two steps;
First, we will prove a two-sided embedding of the approximation class in
interpolation spaces of the type (X,Y)ss. Then we will find two-sided
embeddings of the interpolation spaces (X,Y)g s into spaces that can be
identified with sequence spaces.
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For S = Y"}_, ckgn,, using Holder’s inequality and then (9),

n 1/7
ity < (3 feul”)
k=1
n 1/q
< n1/r—1/q<z |ck|q>

k=1

1
<

< TS x.

Hence, we have the Bernstein inequality with exponent r; := % — % > 0.
(

Notice that 0 < a < 771 — p= < r;. It follows that for s € (0, 0], see
[DL93, Chap. 7],

Aa,s(s) - (X7 Y)oz/rl,s- (11)

To get a Jackson type inequality we will use the following notation; for a
given sequence ¢ = {c;} we let ¢?/2 denote the sequence {|c|P/?}ren and
we let ©,,(c) be the thresholding operator that keeps only the m largest
elements of c. For f =3, crgr € Y we let

Fo = Y 10wkt

keN

We first notice that by (9), we have

IFllx < Bller? /8-

Moreover,

om(f) S If = fmllx
< Blle = Om(€)|le, v

= Bl — O (@) IF/f)
= Blow (c?/?)]?/7. (12)

We can use Theorem 1.1 to estimate o,,(c?/?) since ¢?/? € (*7/P(N) —

. 2
Cor/poo(N), with [[7/2]lg, oy = [le]?? ). We let v := £ — § and
from Theorem 1.1 we have

om(?) < Oy, oy = O el ) < C 22 -
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Taking into account the exponent 2/p in (12), we introduce the constant

r2 defined by r» := 2y = % — 7, and obtain the Jackson inequality
om(f) < Cm™"[flly- (13)

The choice of 7 is such that 0 < a < r3, and for s € (0, 00] we have [DL93,
Chap. 7],

(X,Y)a/ra,s = Aa,s(S). (14)

Now, we will look closer at the spaces (X,Y )y ; for 6 € (0,1). Define the
operator 1" by

T<§g> ~ (e

Notice that T is continuous as a mapping on the following spaces

T:X —4,,N),

T.Y = 6,.(N).
Hence, by interpolation, for 8 € (0,1) and s € (0, o],
T:(X,Y)p,s = (Lg,q(N), €r,r (N))g,s

)

is continuous. Conversely, we define (formally)

U({cx}p21) = ) crgr,
k=1

and we see that U is continuous as a mapping on:

U:t,,(N) = X,
U:t;:(N) - Y.

Thus, for 6 € (0,1) and s € (0, 0],
U:(lpp(N), Lrr(N)g,s = (X,Y)g,s

is continuous. Combining this with (11), (14), and using the characteriza-
tion of the interpolation classes between ¢, spaces, see [DeV98, p. 39], we
finally obtain

ICTZ,S(S) = UKT[,S(N) = U(KP,P(N)’KT,T (N))oz/rz,s — (Xa Y)oz/r27s — Ams(s):
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and

TAa,S(S) — T(X: Y)DC/T173 — (gq,q(N),ng (N))a/m,s = KTWS(N),

(15)
with
1 1 1 1 1 1
1 (1_£>_+2_ and L= (1_£>_+£_,
Tl r2/p T2T Tu rh,/,q m™T
which can be reduced to
1 1 1 1
—=—-—+4+a and —=-+a
Ti p Tu q
Notice that since S is a Schauder basis, (15) implies that
Aa,s(8) = K-, 5(S),
which completes the proof. O

3. SHARPNESS RESULTS

We now consider the sharpness of Theorem 2.1. First we have to specify
what we mean by a sharp result of this type. Given a Schauder basis S for
a Banach space X it makes sense to define the following quantities:

A(S) := inf{q : lower bound of (9) holds for some A4, > 0} (16)
w(S) = sup{p : upper bound of (9) holds for some B, < oo}, (17)

and we clearly always have 1 < u(S) < A(S) < oo. For uniformly smooth
and uniformly convex Banach spaces we have better estimates on A(S) and
1(S), this will be discussed in Section 4.

Theorem 2.1 says that for any p < u(S) and ¢ > A\(S) for which (9) holds
we have the embedding lines given by 1/7 = 1/p+a and 1/7, = 1/q + a.
The sharpness of these embedding lines are in the following sense. Suppose
that we have the embedding line 1/7; = 1/p+«, then Proposition 3.1 below
will show that p < p(S). If we in addition assume that the basis has the
so-called quasi-greedy property and we are given the upper embedding line
1/7y = 1/G + «, then we show in Proposition 3.2 that ¢ > A(S).

First we consider the lower embedding.

PROPOSITION 3.1. Let S be a Schauder basis for X and suppose that
P > 1is such that K; s(S) <= Aq s(S) for everya > 0 and 7 := (a+1/p)~".
Then p < u(S), where u(S) is defined in (17).
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Proof. We notice that Aq s(S) — X for all @ > 0. Let 1 < 7 < p. By
taking a = 1/7 — 1/p, we deduce from the embedding

Krr(S) = Aq7(S) = X

that K; -(S) — X, that is to say || fllx < Br|[{ck(f)}|e.. As this is true
for any 1 < 7 < p, u(S) > p. O

Next we consider the upper embedding in Theorem 2.1, but first we need
a definition and a technical Lemma. Sharpness in the upper embedding for
quasi-greedy bases will be proved in Proposition 3.2.

DEeFINITION 3.1.  Let & = {gi}ren be a quasi-normed Schauder basis
for the Banach space X. We call § a quasi-greedy basis if for each f =
Yorckgr € X, and {cy()} the decreasing rearrangement of {c;}, we have

” chvd Co(k) 9o (k) — f||X —+0as N = oo.

Remark 3. 1. 1t is clear that every quasi-normed unconditional basis
for X will also be quasi-greedy but it is known that the converse result
is false [Woj00], so being quasi-greedy is a weaker condition than being
unconditional.

The following Lemma was proved in the special case p = 2 in [Woj00],
and the authors would like to thank Denka Kutzarova-Ford and Stephen Dil-
worth for pointing out to us that the technique used in [Woj00] also works
in the more general setting presented below.

LEMMA 3.1. Let S = {gr} be a quasi-greedy basis for X and suppose
that there is a constant ¢ such that for any finite subset A C N,

PE7

k€A

> c|A|e.

X
Then, for each f =), ncrgr € X,

I{exHley o0y < Cllflx-

Proof. Let f = >, .ncrgr € X, and let {cyk)} be a decreasing rear-
rangement of {c}, i.e. a rearrangement for which |cy)| > [cg2)| > -+
Since S is quasi-greedy there is a constant C' depending only on & [Woj00,
Theorem 1] such that supy || chvzl Co(k)9o(iyllx < C|lfllx. Using the Abel
transform we get for any increasing sequence {ay, } of positive numbers that



A NOTE ON NONLINEAR APPROXIMATION WITH SCHAUDER BASES 9

supy || Zszl akc¢(k)g¢(k)||x < C(supg ap)||fllx. Thus, for every N > 1
for which cy(ny # 0 and ag = |cg(nyllcory) ! k=1,2,... , N, we have

N

_ Cok) o) -
|C¢(N)|N1/q <c 1 Z MQQ}(I{:)H <ec ICHfHX
= lcow x
It follows at once that [|[{cx}Hle, v < ¢ 'Ol fllx. a

We now turn to the sharpness result for the upper embedding for quasi-
greedy bases.

PROPOSITION 3.2. Let S = {gi}ren be a quasi-greedy basis for X and
suppose 1 < § < oo is such that for every a > 0, we have Ay 5(S) —
Krs(S) for 1/t =a+1/G. Then X(S) < G, where A(S) is defined by (16).

Proof. Let a > 0, and let A C N with |4] = n. Take ¢ € {-1,1}",
and put 1 = >, 4 exgk- Then [[¢|c. . =n'/7, and by using Aq,s(S) <
K+ s(S) together with [DL93, Chap. 7; Theorem 9.3] we obtain

" = gl .5 < Clella.,.is) < Crolllx.

From this we deduce that for A C N, |A| =n,

PE

k€A

> O tnl/d,
X

Hence, from Lemma 3.1 we conclude that ||[{ck(f)}le.. .. vy < Ol f]|x which
clearly implies that A(S) < q. O

4. EXAMPLES

We will now present some examples of the use of Theorem 2.1 for some
specific Schauder bases and for general Schauder bases in Banach spaces
with additional structure. First we state an easy corollary of Theorem 2.1
that generalizes Theorem 1.1 to Riesz bases:

COROLLARY 4.1. Suppose S is a Riesz basis for a Hilbert space H, i.e.
that (9) holds with p = q = 2, then for 0 < 7 <2 and s € (0, 0],

Aa,s (S) = ’Cr,s(s)a

witha =+ — 1.
T 2
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Next we consider Schauder bases in uniformly convex and uniformly
smooth Banach spaces. The following fundamental result is known about
Schauder bases in such Banach spaces:

THEOREM 4.1 ([GGT71]). Let S be a quasi-normed Schauder basis for
a Banach space X which is both uniformly smooth and uniformly convex.
Then 1 < p(S) < A(S) < 0.

This Theorem shows that whenever the Banach space X is uniformly
convex and uniformly smooth we are guaranteed to get better embedding
lines from Theorem 2.1 than the ones for the “worst case” scenario where
1(S) = 1 and A(S) = co. How much improvement we get in uniformly
smooth and uniformly convex Banach spaces clearly depends on the specific
structure of the Basis S. In fact, any pair of p and ¢ with 1 < p < 2 <
q < oo is realized by some Schauder basis in some Banach space, as the
following Theorem shows.

THEOREM 4.2 ([GGT1]). Let H be an infinite dimensional separable
Hilbert space. Given a pair of numbers p and q satisfying 1 < p<2<g¢g<
00, there exists a Schauder basis S for H with the property that u(S) = p
and \(S) = q.

Remark 4. 1. Tt depends on the properties of the basis S whether A(S)
and p(S) are actually attained or not. For the canonical basis C in £,
1< 7 <00, AMC) =7 =u(C) and (9) obviously holds for p = ¢ = 7 (in
fact, it is clear that X is isometric to £, in all cases where p = ¢ = 7 is
realized).

For the Lorentz space £, s we also have A(C) = 7 = p(C). But for s < 7,
the upper bound in (9) fails for p = 7, and the lower bound in (9) fails for
g =T when s > T.

We conclude this paper by considering collections of normalized vectors
that do not form Schauder bases. So far we have only considered the rela-
tionship between the approximation and smoothness spaces associated with
Schauder bases. We can define the approximation classes and smoothness
spaces by the analogs of (2) and (5), respectively, for any set U of unit
vectors with dense span in X. One can then pose the question whether it
possible to get results like Theorem 2.1 for more general sets with dense
span. This is not the case, in general, and we conclude this paper by giving
an example of a spanning non-redundant set ¢/ in a Hilbert space H, which
fails to be a Schauder basis for H and for which the upper embedding of
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Theorem 2.1 fails to be true no matter which combination of parameters «
and 7' one chooses.

PROPOSITION 4.1. Let H = ®j>0 V; be an orthogonal decomposition of
M into two-dimensional subspaces. Let {esj,e2j11} be a normalized basis of
Vj such that <€2j,€2j+1> = COS ¢j, ¢j > 0, and ¢j — 0. LetU = {ek}kZO-
Then

Aa,s (U) ‘74 ICT’,S’ (Z’{)

for any combination of parameters 0 < a, 7" < 00, and 0 < s,s" < o0,

Proof: We define a sequence {f;} for which

Ifill e =0 and  |Ifillc. ey > 1,

which will prevent any type of continuous embedding of the approximation
class into the smoothness space. More precisely, we let

fj = COS ¢j€2j — €2j+1

and check that ||f;|| = |sin ¢;] = 0. Hence it is clear that

I fill Au oy <3N —0
while

Wil @y 2 - scosdjy 1, Hlew, 2 1.
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