

Industrial Mathematics Institute

2000:21

A criterion for convergence of weak greedy algorithms

V.N. Temlyakov

Department of Mathematics University of South Carolina

V.N.Temlyakov

University of South Carolina, Columbia, SC, USA

1. Introduction

This paper completes the investigation of necessary and sufficient conditions on the "weakness" sequence $\tau := \{t_k\}_{k=1}^{\infty}$ for convergence of Weak Greedy Algorithm for all dictionaries \mathcal{D} and each function (vector) f in Hilbert space H. This paper is a follow up to the papers [T] and [LT]. The Weak Greedy Algorithms (WGA) were introduced in [T]. The paper [T] contains also historical remarks and some motivation of studying greedy and weak greedy algorithms. We will not repeat historical remarks from [T] here and refer the reader to [T] for prehistory of WGA. We discuss here results on WGA in detail.

We remind first some notations and definitions from the theory of greedy algorithms. Let H be a real Hilbert space with an inner product $\langle \cdot, \cdot \rangle$ and the norm $||x|| := \langle x, x \rangle^{1/2}$. We say a set \mathcal{D} of functions (elements) from H is a dictionary if each $g \in \mathcal{D}$ has norm one (||g|| = 1) and $\overline{\text{span}}\mathcal{D} = H$. We give now the definition of WGA (see [T]). Let a weakness sequence $\tau = \{t_k\}_{k=1}^{\infty}, 0 \le t_k \le 1$, be given.

Weak Greedy Algorithm. We define $f_0^{\tau} := f$. Then for each $m \geq 1$, we inductively define:

1). $\varphi_m^{\tau} \in \mathcal{D}$ is any satisfying

$$|\langle f_{m-1}^{\tau}, \varphi_m^{\tau} \rangle| \geq t_m \sup_{g \in \mathcal{D}} |\langle f_{m-1}^{\tau}, g \rangle|;$$

2).
$$f_m^{\tau} := f_{m-1}^{\tau} - \langle f_{m-1}^{\tau}, \varphi_m^{\tau} \rangle \varphi_m^{\tau};$$

3).
$$G_m^\tau(f,\mathcal{D}):=\sum_{j=1}^m\langle f_{j-1}^\tau,\varphi_j^\tau\rangle\varphi_j^\tau.$$

In the case $t_k = 1, \ k = 1, 2, \ldots$, we call WGA by Pure Greedy Algorithm (PGA). The convergence of PGA and WGA with $t_k = t, 0 < t < 1$, was established in [J] and [RW]. The first sufficient condition on τ which includes sequences with $\lim_{k\to\infty} t_k = 0$ was obtained in [T].

Theorem A. Assume

$$(1.1) \sum_{k=1}^{\infty} \frac{t_k}{k} = \infty.$$

 $^{^1}$ This research was supported by the National Science Foundation Grant DMS 9970326 and by ONR Grant N00014-91-J1343

Then for any dictionary \mathcal{D} and any $f \in H$ we have

$$\lim_{m \to \infty} \|f - G_m^{\tau}(f, \mathcal{D})\| = 0.$$

In [T] we reduced the proof of convergence of WGA with weakness sequence τ to some properties of l_2 -sequences with regard to τ . Theorem A was derived from the following two statements proved in [T].

Proposition 1.1. Let τ be such that for any $\{a_j\}_{j=1}^{\infty} \in l_2$, $a_j \geq 0$, $j = 1, 2, \ldots$ we have

$$\liminf_{n \to \infty} a_n \sum_{j=1}^n a_j / t_n = 0.$$

Then for any H, \mathcal{D} , and $f \in H$ we have

$$\lim_{m\to\infty} \|f_m^{\tau}\| = 0.$$

Proposition 1.2 (Lemma 2.3,[T]). If τ satisfies the condition (1.1) then τ satisfies the assumption of Proposition 1.1.

The following simple necessary condition

$$\sum_{k=1}^{\infty} t_k^2 = \infty$$

was mentioned in [T]. The first nontrivial necessary conditions were obtained in [LT]. We proved in [LT] the following theorem.

Theorem B. In the class of monotone sequences $\tau = \{t_k\}_{k=1}^{\infty}$, $1 \ge t_1 \ge t_2 \ge \cdots \ge 0$, the condition (1.1) is necessary and sufficient for convergence of Weak Greedy Algorithm for each f and all Hilbert spaces H and dictionaries \mathcal{D} .

The proof of this theorem is based on a special procedure which we called Equalizer. The generalization of that procedure plays an important role in this paper also (see S.3). In [LT] we gave an example of a class of sequences τ for which the condition (1.1) is not a necessary condition for convergence. We also proved in [LT] a theorem which covers Theorem A.

Theorem C. Assume

$$\sum_{s=0}^{\infty} \left(2^{-s} \sum_{k=2^s}^{2^{s+1}-1} t_k^2\right)^{1/2} = \infty.$$

Then for any dictionary \mathcal{D} and any $f \in H$ we have

$$\lim_{m \to \infty} \|f - G_m^{\tau}(f, \mathcal{D})\| = 0.$$

We prove in this paper a criterion on τ for convergence of WGA. Let us introduce some notation.

We define by \mathcal{V} the class of sequences $x = \{x_k\}_{k=1}^{\infty}, x_k \geq 0, k = 1, 2, \ldots$, with the following property: there exists a sequence $0 = q_0 < q_1 < \ldots$ such that

$$(1.2) \sum_{s=1}^{\infty} \frac{2^s}{\Delta q_s} < \infty;$$

and

(1.3)
$$\sum_{s=1}^{\infty} 2^{-s} \sum_{k=1}^{q_s} x_k^2 < \infty,$$

where $\Delta q_s := q_s - q_{s-1}$.

Remark 1.1. It is clear from this definition that if $x \in \mathcal{V}$ and for some N and c we have $0 \le y_k \le cx_k$, $k \ge N$, then $y \in \mathcal{V}$.

Theorem 1.1. The condition $\tau \notin \mathcal{V}$ is necessary and sufficient for convergence of Weak Greedy Algorithm with weakness sequence τ for each f and all Hilbert spaces H and dictionaries \mathcal{D} .

Sufficient part is proved in Section 2 and necessary part is proved in Section 3.

2. Proof of convergence

We begin this section with the following lemma.

Lemma 2.1. Let
$$\{a_j\}_{j=1}^{\infty} \in l_2, \ a_j \geq 0, \ j=1,2,\ldots$$
 Then $\{a_n \sum_{j=1}^n a_j\}_{n=1}^{\infty} \in \mathcal{V}$.

Proof. Assume $\{a_j\}_{j=1}^{\infty}$ contains infinitely many nonzero terms (if not the statement is trivial). Denote $y_n := a_n \sum_{j=1}^n a_j$ and define $q_s := q_s(y)$ inductively: $q_0 := 0$ and for q_0, \ldots, q_{s-1} defined we choose q_s as the smallest q such that

(2.1)
$$(q - q_{s-1}) \sum_{n=q_{s-1}+1}^{q} y_n^2 \ge 2^{2s}.$$

Denote $Q_s := (q_{s-1}, q_s]$. Then (2.1) implies

$$\frac{2^s}{\Delta q_s} \le 2^{-s} \sum_{n \in Q_s} y_n^2 \le 2^{-s} \sum_{n=1}^{q_s} y_n^2.$$

Thus it is sufficient to check only (1.3)

$$\sum_{s} 2^{-s} \sum_{n=1}^{q_s} y_n^2 < \infty.$$

From the definition of q_s we have

(2.2)
$$\sum_{n=q_{s-1}+1}^{q_s-1} y_n \le (\Delta q_s - 1)^{1/2} \left(\sum_{n=q_{s-1}+1}^{q_s-1} y_n^2\right)^{1/2} < 2^s.$$

Next for any $N \leq M$ we have

$$\sum_{n=N}^{M} a_n \sum_{j=1}^{n} a_j \ge \sum_{N < j < n < M} a_n a_j =$$

(2.3)
$$= 1/2(\sum_{j=N}^{M} a_j^2 + (\sum_{j=N}^{M} a_j)^2) \ge (\sum_{j=N}^{M} a_j)^2/2.$$

Combining (2.2) and (2.3) we get

$$\sum_{j \in Q_s} a_j = \sum_{j=q_{s-1}+1}^{q_s-1} a_j + a_{q_s} \le 2^{(s+1)/2} + ||a||_{\infty}.$$

This implies

(2.4)
$$\sum_{j=1}^{q_s} a_j \le C(a) 2^{s/2}.$$

We have now

$$\sum_{s} 2^{-s} \sum_{n=1}^{q_s} y_n^2 = \sum_{s} 2^{-s} \sum_{v=1}^{s} \sum_{n \in Q_v} y_n^2 \le 2 \sum_{s} 2^{-s} \sum_{n \in Q_s} y_n^2 \le 2 \sum_{$$

$$2\sum_{s} 2^{-s} (\sum_{j=1}^{q_s} a_j)^2 \sum_{n \in Q_s} a_n^2 \le C(a) \sum_{n} a_n^2 < \infty.$$

Lemma 2.1 is proved now.

Theorem 2.1. The following two conditions are equivalent

(C.1)
$$\tau \notin \mathcal{V}$$
,

(C.2)
$$\forall \{a_j\}_{j=1}^{\infty} \in l_2, \quad a_j \ge 0, \quad \liminf_{n \to \infty} a_n \sum_{j=1}^{n} a_j / t_n = 0.$$

Proof. We prove first that $(C.1) \Rightarrow (C.2)$. Assume (C.2) is not satisfied: $\exists \{a_j\}_{j=1}^{\infty} \in l_2, a_j \geq 0$, such that

(2.5)
$$\liminf_{n \to \infty} a_n \sum_{j=1}^n a_j / t_n > 0.$$

Relation (2.5) implies that for some N and c > 0 we have for $n \geq N$ that

$$a_n \sum_{j=1}^n a_j / t_n \ge c$$

or

$$t_n \le C a_n \sum_{j=1}^n a_j.$$

This inequality, Lemma 2.1, and Remark 1.1 imply that $\tau \in \mathcal{V}$. The first implication is proved now.

We proceed to the second implication (C.2) \Rightarrow (C.1). Let $\tau \in \mathcal{V}$. We construct a sequence $\{a_j\}_{j=1}^{\infty} \in l_2$ such that for all n

$$t_n \le C a_n \sum_{j=1}^n a_j$$

with some C. This will imply that (C.2) is not satisfied. Let $\{q_s\} := \{q_s(\tau)\}$ be a sequence from the definition of \mathcal{V} . We define a sequence $\{a_j\}_{j=1}^{\infty}$ as follows. For $n \in Q_s$ we set

$$a_n := t_n 2^{-s/2} + 2^{s/2} / \Delta q_s$$
.

Then

$$a_n^2 \le 2(t_n^2 2^{-s} + 2^s (\Delta q_s)^{-2})$$

and

$$\sum_{n} a_n^2 \le 2 \sum_{s} 2^{-s} \sum_{n \in Q_s} t_n^2 + 2 \sum_{s} \frac{2^s}{\Delta q_s} < \infty.$$

Next,

$$\sum_{n \in Q_s} a_n \ge 2^{s/2}.$$

Thus for $n \in Q_s$ we have

$$a_n \sum_{j=1}^n a_j \ge a_n \sum_{j \in Q_{n-1}} a_j \ge t_n 2^{-1/2}$$

and

$$t_n \le \sqrt{2}a_n \sum_{j=1}^n a_j$$

for all n.

Theorem 2.1 is proved now.

The sufficient part of Theorem 1.1 follows from Theorem 2.1 and Proposition 1.1.

3. Construction of a counterexample

The following procedure which is the generalization of Equalizer from [LT] plays an important role in the construction. Let H be a Hilbert space with an orthonormal basis $\{e_j\}_{j=1}^{\infty}$. We take two elements e_i , e_j , $i \neq j$, and define the following procedure.

Equalizer with schedule $\gamma := \{\gamma_k\}$. Let $\gamma_k \leq 1/5$, $f_0 := e_i$. Define:

(3.1)
$$g_1 := \alpha_1 e_i - (1 - \alpha_1^2)^{1/2} e_j; \quad \alpha_1 = \gamma_1; \quad \langle f_0, g_1 \rangle = \gamma_1;$$

(3.2)
$$f_n := f_{n-1} - \langle f_{n-1}, g_n \rangle g_n; \quad g_n := \alpha_n e_i - (1 - \alpha_n^2)^{1/2} e_j;$$

$$\langle f_n, g_{n+1} \rangle = \gamma_{n+1}; \quad f_n = a_n e_i + b_n e_j.$$

We check

$$a_{n-1} - b_{n-1} \ge 3\sqrt{2}\gamma_n$$

to continue. If

$$a_{n-1} - b_{n-1} < 3\sqrt{2}\gamma_n$$

then we take $g_n := 2^{-1/2}(e_i - e_j)$ and

$$f_n := f_{n-1} - \langle f_{n-1}, g_n \rangle g_n,$$

and stop after this step. We call this step "the final step" and all other steps "regular steps". At each regular step l we have

$$a_l - b_l = a_{l-1} - b_{l-1} - \gamma_l (\alpha_l + (1 - \alpha_l^2)^{1/2}) \ge a_{l-1} - b_{l-1} - 2^{1/2} \gamma_l > 0.$$

After the final step we have

$$a_n = b_n$$
.

At each regular step we have by definition that

$$\langle f_{l-1}, g_l \rangle = \gamma_l.$$

At the final step we have

$$\langle f_{n-1}, g_n \rangle = 2^{-1/2} (a_{n-1} - b_{n-1}) \ge 2^{-1/2} (a_{n-2} - b_{n-2} - 2^{1/2} \gamma_{n-1}) \ge 2^{-1/2} (2\sqrt{2}\gamma_{n-1}) = 2\gamma_{n-1}.$$

Thus, if $2\gamma_{n-1} \geq \gamma_n$ then the above described Equalizer is a WGA with weakness sequence $\gamma_1, \ldots, \gamma_n$.

At regular step l we reduce the $\|\cdot\|^2$ by γ_l^2 . At the final step we reduce the $\|\cdot\|^2$ by

$$\frac{1}{2}(a_{n-1}-b_{n-1})^2 < 9\gamma_n^2.$$

We also have

$$a_{n-1} - b_{n-1} < 3\sqrt{2}\gamma_n$$

and

$$a_{n-1} - b_{n-1} \ge 1 - \sqrt{2} \sum_{j=1}^{n-1} \gamma_j.$$

Thus,

$$\sqrt{2} \sum_{j=1}^{n-1} \gamma_j + 3\sqrt{2}\gamma_n > 1.$$

On the other hand

$$a_l - b_l \le a_{l-1} - b_{l-1} - \gamma_l.$$

Therefore,

$$0 \le a_{n-1} - b_{n-1} \le 1 - \sum_{l=1}^{n-1} \gamma_l$$

and

(3.3)
$$\sum_{l=1}^{n-1} \gamma_l \le 1.$$

In order to apply the above Equalizer we need to have the inequality $2\gamma_{n-1} \geq \gamma_n$ satisfied. Let us use the following regularization procedure.

Regularization. For a given $\tau = \{t_k\}_{k=1}^{\infty}, \ \tau \in l_{\infty}$, we define $\tau^R := \{t_k^R\}_{k=1}^{\infty}$ with

$$t_k^R := \sum_{m=0}^{\infty} 2^{-m} t_{n+m}.$$

Lemma 3.1. If $\tau \in \mathcal{V} \cap l_{\infty}$ then $\tau^R \in \mathcal{V} \cap l_{\infty}$.

Proof. Assumption $\tau \in \mathcal{V}$ implies

(3.4)
$$\sum_{s} 2^{-s} \sum_{k=1}^{q_s} t_k^2 < \infty.$$

We will prove that

(3.5)
$$\sum_{s} 2^{-s} \sum_{k=1}^{q_s} (t_k^R)^2 < \infty$$

with the same $q_s = q_s(\tau)$ as above. Thus (3.5) will imply $\tau^R \in \mathcal{V}$. Let us prove (3.5). We have for any N

$$\sum_{k=1}^{N} (t_k^R)^2 = \sum_{k=1}^{N} (\sum_{m=0}^{\infty} 2^{-m} t_{n+m})^2 = \sum_{k=1}^{N} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} 2^{-m-n} t_{k+m} t_{k+n} = \sum_{k=1}^{N} \sum_{m=0}^{\infty} 2^{-m-n} t_{k+m} t_{k+n} = \sum_{m=0}^{N} 2^{-m-n} t_{k+m} t_{k+m} = \sum_{m=0}^{N} 2^{-m-n} t_{m+m} t_{m+m} = \sum_{m=0}^{N} 2^{-m-n} t_{m+m} t_{m+m}$$

$$\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}2^{-m-n}\sum_{k=1}^{N}t_{k+m}t_{k+n}\leq\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}2^{-m-n}(\sum_{k=1}^{N}t_{k+m}^{2})^{1/2}(\sum_{k=1}^{N}t_{k+n}^{2})^{1/2}=$$

$$\left(\sum_{m=0}^{\infty} 2^{-m} \left(\sum_{k=1}^{N} t_{k+m}^{2}\right)^{1/2}\right)^{2} \le \left(\sum_{m=0}^{\infty} 2^{-m}\right) \left(\sum_{m=0}^{\infty} 2^{-m} \sum_{k=1}^{N} t_{k+m}^{2}\right).$$

Next,

$$\sum_{k=1}^{N} t_{k+m}^2 \le \sum_{k=1}^{N} t_k^2 + m \|\tau\|_{\infty}^2$$

and

$$\sum_{m=0}^{\infty} 2^{-m} \left(\sum_{j=1}^{N} t_j^2 + m \|\tau\|_{\infty}^2 \right) \le 2 \sum_{j=1}^{N} t_j^2 + C(\tau).$$

Therefore we got

$$\sum_{j=1}^{N} (t_j^R)^2 \le 2\sum_{j=1}^{N} t_j^2 + C(\tau)$$

and

$$\sum_{s} 2^{-s} \sum_{k=1}^{q_s} (t_k^R)^2 \le 2 \sum_{s} 2^{-s} \sum_{k=1}^{q_s} t_k^2 + C(\tau) < \infty.$$

It is easy to see that $\|\tau^R\|_{\infty} \leq 2\|\tau\|_{\infty}$.

Lemma 3.1 is proved now.

Thus for any $\tau \in \mathcal{V} \cap l_{\infty}$ we have $\tau^R \in \mathcal{V}$, $\|\tau^R\|_{\infty} \leq 2\|\tau\|_{\infty}$, and

$$2t_{n-1}^R \ge t_n^R, \quad n = 2, 3, \dots$$

Clearly, we also have for all n

$$t_n \leq t_n^R$$
.

One more restriction in the Equalizer is $\gamma_n \leq 1/5$. Define a new sequence τ' by

$$t'_n := \min\{t_n^R, 1/5\}.$$

It is clear that $\tau' \in \mathcal{V}$ and also satisfies

$$2t'_{n-1} \ge t'_n.$$

Let $\{q_s\} := \{q_s(\tau')\}$ be the sequence for τ' from the definition of \mathcal{V} :

$$\sum_{s} \frac{2^s}{\Delta q_s} < \infty, \quad \sum_{s} 2^{-s} \sum_{n=1}^{q_s} (t'_n)^2 < \infty.$$

Let ϵ be a small number which we will specify later and s_0 be such that

$$\sum_{s>s_0} \frac{2^s}{\Delta q_s} < \epsilon, \quad \sum_{s>s_0} 2^{-s} \sum_{n=1}^{q_s} (t'_n)^2 < \epsilon.$$

Consider the function

$$f_{s_0} := 2^{-s_0/2} (e_1 + \dots + e_{2^{s_0}}).$$

We have $||f_{s_0}|| = 1$. Define

$$t_k'' := \max\{t_k', 2^{s_0+2}(\Delta q_{s_0})^{-1}\}.$$

We apply a mixture of Equalizer with schedule $\{t_k''\}$ to vectors e_i , $i \leq 2^{s_0}$, and the PGA to the corresponding residual of f_{s_0} . We do this in the following way. If $t_1'' \geq 1/5$ we use PGA and throw away, say, $2^{-s_0/2}e_{2^{s_0}}$. If $t_1'' < 1/5$ we start using the Equalizer with schedule $\{t_k''\}$ to vectors e_1 and $e_{2^{s_0}+1}$. If at some step $t_k'' \geq 1/5$ then we use PGA what means throwing away one term of the form $2^{-s_0/2}e_j$, $j \in [1, 2^{s_0}]$. Applying the Equalizer to the very last term of the form $2^{-s_0/2}e_m$ we may incounter with $t_k'' \geq 1/5$. In such a case we apply PGA and stop. As a result we get

$$f_{s_0+1} := \sum_{k \in F_{s_0+1}} c_k^{s_0+1} e_k.$$

It is clear that for all $k \in F_{s_0+1}$ we have

$$(c_k^{s_0+1})^2 \le 2^{-s_0-1}$$

and also

$$|F_{s_0+1}| \le 2^{s_0+1}.$$

Assume that $\epsilon < 1/20$. Then $2^{s_0+2}(\Delta q_{s_0})^{-1} < 1/5$ and $t_k'' \ge 1/5$ is equivalent to $t_k'' = t_k' = 1/5$. If $t_k'' < 1/5$ then $t_k' < 1/5$ and $t_k \le t_k'$. Therefore, at all Equalizer steps we have a WGA with weakness parameters $\{t_k\}$. If $t_k'' = 1/5$ we apply PGA what is a WGA with any t_k at this step. During this procedure which we call "working on s_0 -level" we perform $M_{s_0}^w$ steps of Equalizer and $M_{s_0}^G$ steps of PGA. Let us estimate $M_{s_0}^w$ and $M_{s_0}^G$. It is clear that $M_{s_0}^G \le 2^{s_0}$. We have applied the Equalizer to terms of the form $2^{-s_0/2}e_j$ at most 2^{s_0} times. For each Equalizer application we have $\sum \gamma_j \le 2$ (see (3.3)). Thus denoting $E(s_0) := \{k : t_k'' < 1/5\}$ we get

$$\sum_{k \in E(s_0)} t_k'' \le 2^{s_0 + 1}.$$

On the other hand we have

$$\sum_{k \in E(s_0)} t_k'' \ge M_{s_0}^w 2^{s_0 + 2} (\Delta q_{s_0})^{-1}$$

and

$$M_{s_0}^w \leq \Delta q_{s_0}/2.$$

Therefore,

$$N_{s_0} := M_{s_0}^w + M_{s_0}^G \le \Delta q_{s_0} / 2 + 2^{s_0} \le \Delta q_{s_0}.$$

At each Equalizer step we reduced the $\|\cdot\|^2$ by at most $9(t_k'')^2 2^{-s_0}$ and at each PGA by at most $25(t_k')^2 2^{-s_0}$. Thus the total reduction δ_{s_0} for the s_0 -level does not exceed

$$25(2^{-s_0})\sum_{k=1}^{q_{s_0}} (t'_k)^2 + 9(2^{s_0+4})(\Delta q_{s_0})^{-1}.$$

We are on the $(s_0 + 1)$ -level now and perform the similar procedure. We describe it for the general case of an s-level. Assume we have after $N_{s-1} \leq q_{s-1}$ steps of our WGA the function

$$f_s = \sum_{k \in F_s} c_k^s e_k$$

with

$$(c_k^s)^2 \le 2^{-s}, \quad |F_s| \le 2^s.$$

Define now

$$t_k'' := \max\{t_k', 2^{s+2}(\Delta q_s)^{-1}\}, \quad k > N_{s-1}.$$

We pick $c_k^s e_k$ with the biggest c_k^s out of $\{c_k^s, k \in F_s\}$ and throw it away if $t_{N_{s-1}+1}'' = 1/5$ (we remind that assumption $\epsilon < 1/20$ implies $2^{s+2}(\Delta q_s)^{-1} < 1/5$) and apply the Equalizer with schedule $\{t_n''\}$ otherwise. We continue to perform the above described procedure (the mixture of Equalizer and PGA steps) untill we get

$$f_{s+1} = \sum_{k \in F_{s+1}} c_k^{s+1} e_k$$

with

$$(c_k^{s+1})^2 \le 2^{-s-1}.$$

It is clear that then $|F_{s+1}| \leq 2^{s+1}$. Similarly to the above estimates of $M_{s_0}^w$ and $M_{s_0}^G$ we get

$$M_s^G \leq 2^s$$

and

$$M_s^w 2^{s+2} (\Delta q_s)^{-1} \le \sum_{k \in E(s)} t_k'' \le 2^{s+1}.$$

Thus

$$M_s^w + M_s^G \le \Delta q_s / 2 + 2^s \le \Delta q_s$$

and

$$N_s := N_{s-1} + M_s^w + M_s^G \le q_s.$$

The total reduction δ_s of the $\|\cdot\|^2$ from working on the s-level does not exceed

$$25(2^{-s})\sum_{k=1}^{q_s} (t'_k)^2 + 9(2^{s+4})(\Delta q_s)^{-1}.$$

We continue this process and get that the $\|\cdot\|^2$ will be reduced by at most

$$\sum_{s=s_0}^{\infty} \delta_s \le 25 \left(\sum_{s=s_0}^{\infty} 2^{-s} \sum_{k=1}^{q_s} (t_k')^2\right) + 144 \sum_{s=s_0}^{\infty} 2^s (\Delta q_s)^{-1} \le 169\epsilon.$$

Choosing ϵ small enough, say, $\epsilon = 0.005$ we get divergent WGA with the weakness sequence τ . This completes the construction of the counterexample.

References

- [J] L. Jones, On a conjecture of Huber concerning the convergence of projection pursuit regression, The Annals of Statistics 15 (1987), 880–882.
- [LT] E.D. Livshitz and V.N. Temlyakov, On convergence of Weak Greedy Algorithms,, IMI-Preprint (2000), no. 13, 1–9.
- [RW] L. Rejtö and G.G. Walter, Remarks on projection pursuit regression and density estimation, Stochastic Analysis and Application 10 (1992), 213–222.
- [T] V.N. Temlyakov, Weak Greedy Algorithms, Advances in Computational Mathematics 12 (2000), 213–227.