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1. INTRODUCTION

This paper completes the investigation of necessary and sufficient conditions on
the ”weakness” sequence 7 := {t;}72, for convergence of Weak Greedy Algorithm
for all dictionaries D and each function (vector) f in Hilbert space H. This paper
is a follow up to the papers [T] and [LT]|. The Weak Greedy Algorithms (WGA)
were introduced in [T]. The paper [T]| contains also historical remarks and some
motivation of studying greedy and weak greedy algorithms. We will not repeat
historical remarks from [T] here and refer the reader to [T] for prehistory of WGA.
We discuss here results on WGA in detail.

We remind first some notations and definitions from the theory of greedy algo-
rithms. Let H be a real Hilbert space with an inner product (-,-) and the norm
||| := (x,z)'/2. We say a set D of functions (elements) from H is a dictionary if
each g € D has norm one (||g]| = 1) and spanD = H. We give now the definition of
WGA (see [T]). Let a weakness sequence 7 = {t;}72,, 0 <t <1, be given.

Weak Greedy Algorithm. We define f] := f. Then for each m > 1, we induc-
tively define:
1). @I, € D is any satisfying

[{Fr—1s i) | 2 tm sup [(f—1, 9);

geD
2).
fo = Foe1 = (et 000) P
3).
GT f7 Z j— 1790‘7
7j=1

In the case t, = 1, k = 1,2,..., we call WGA by Pure Greedy Algorithm
(PGA). The convergence of PGA and WGA with ¢, = ¢, 0 <t < 1, was established
in [J] and [RW]. The first sufficient condition on 7 which includes sequences with
limg_, oo t, = 0 was obtained in [T].

Theorem A. Assume

(1.1) > Ek =

k=1

S
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Then for any dictionary D and any f € H we have

In [T] we reduced the proof of convergence of WGA with weakness sequence 7
to some properties of l3-sequences with regard to 7. Theorem A was derived from
the following two statements proved in [T].

Proposition 1.1. Let 7 be such that for any {a;}52, € la, a; >0, j =1,2,... we
have .
linrr_1>i£f an Z a;/t, = 0.

j=1
Then for any H, D, and f € H we have

lim |7, = 0.
mMm—r 00

Proposition 1.2 (Lemma 2.3,[T]). If 7 satisfies the condition (1.1) then T sat-
1sfies the assumption of Proposition 1.1.

The following simple necessary condition

was mentioned in [T]. The first nontrivial necessary conditions were obtained in
[LT]. We proved in [LT] the following theorem.

Theorem B. In the class of monotone sequences T = {ty}32,, 1 >t1 >tg > --- >
0, the condition (1.1) is necessary and sufficient for convergence of Weak Greedy
Algorithm for each f and all Hilbert spaces H and dictionaries D.

The proof of this theorem is based on a special procedure which we called Equal-
izer. The generalization of that procedure plays an important role in this paper
also (see S.3). In [LT] we gave an example of a class of sequences 7 for which the
condition (1.1) is not a necessary condition for convergence. We also proved in [LT]
a theorem which covers Theorem A.

Theorem C. Assume
S 28+l _1

e > )V =co.

s=0 k=2s

Then for any dictionary D and any f € H we have
Jim_[If ~ GL(£.D)] = 0.

We prove in this paper a criterion on 7 for convergence of WGA. Let us introduce
some notation.

We define by V the class of sequences z = {xx}72,, x > 0, k = 1,2,..., with
the following property: there exists a sequence 0 = gy < g1 < ... such that

S

1.2 < 00;
(1.2) ;Aqs




and

00 g
(1.3) 22_32:3% < 00,
k=1

s=1

where Ags :=qs — qs_1.

Remark 1.1. It is clear from this definition that if z € V and for some N and c
we have 0 < yx < cxg, kK > N, then y € V.

Theorem 1.1. The condition 7 ¢V is necessary and sufficient for convergence of
Weak Greedy Algorithm with weakness sequence T for each f and all Hilbert spaces
H and dictionaries D.

Sufficient part is proved in Section 2 and necessary part is proved in Section 3.

2. PROOF OF CONVERGENCE
We begin this section with the following lemma.
Lemma 2.1. Let {a;}32, €1z, a; >0, j=1,2,.... Then {an ) ;_; a;}p2; € V.

Proof. Assume {a;}32, contains infinitely many nonzero terms (if not the statement
is trivial). Denote y,, := a, Y.;_, a; and define g, := ¢;(y) inductively: go := 0 and
for qg,...,qs_1 defined we choose ¢, as the smallest ¢ such that

q

(2.1) (G—gs1) >, wn>2%
nzgs—1+1

Denote Qs := (¢s—1,qs|- Then (2.1) implies

9s 3 B qs
Eoy gy
s neEQR s n=1

Thus it is sufficient to check only (1.3)

as
Z 27° Z y2 < oo.
s n=1

From the definition of ¢, we have

QS_l qs—l
(2.2) Yo < (Bg -1V Y )<
n=qs_1+1 n=qs—1+1

Next for any N < M we have

M
Z anZaj > Z nQj =

n=N  j=1 N<j<n<M
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(23 =1/2) @+ (2 @) 2 (Y )2

Combining (2.2) and (2.3) we get

qs_l
Doaj= Y ajtag <24 .
JEQs J=qs—1+1

This implies

ds

(2.4) > a; < C(a)2°.
j=1
We have now

ds s
EEDITEDIERD B DITEL) D TR
s n=1 s

v=1neq, s neQs

222_3(2%)2 Z a2 < C(a)Zai < 00.

neQs

Lemma 2.1 is proved now.

Theorem 2.1. The following two conditions are equivalent

(C.1) TEV,

(C.2) V{a;}52, €2, a; >0, l%zrri)i()réf Qp Zaj/tn =0.
j=1

Proof. We prove first that (C.1) = (C.2). Assume (C.2) is not satisfied: 3{a;}32, €
la, a; > 0, such that

(2.5) lim inf a, > aj/tn > 0.
j=1

Relation (2.5) implies that for some N and ¢ > 0 we have for n > N that

n
an Zaj/tn >c
i=1

or

n
t, < Cay, Z aj.
i=1



This inequality, Lemma 2.1, and Remark 1.1 imply that 7 € V. The first implication
is proved now.

We proceed to the second implication (C.2) = (C.1). Let 7 € V. We construct
a sequence {a;}52; € l» such that for all n

n
t, < Can, Z a;
i=1

with some C. This will imply that (C.2) is not satisfied. Let {gs} := {gs(7)} be
a sequence from the definition of V. We define a sequence {a;}52, as follows. For

n € Qs we set
Q1= t,27%% + 25/2/Aq5.

Then
a2 < 2(t227° 4 25(Agqs)7?)
and 0
2 —s 2
Zan§2z2 Ztn+2ZAq < o0.
n s neQR; s s
Next,

D an =292

neQs

Thus for n € Q5 we have

n

anZaj > an Z a; Ztn2*1/2

Jj=1 JEQs—1

and

n
tn S \/Ean Zaj
7=1

for all n.
Theorem 2.1 is proved now.

The sufficient part of Theorem 1.1 follows from Theorem 2.1 and Proposition
1.1.
3. CONSTRUCTION OF A COUNTEREXAMPLE

The following procedure which is the generalization of Equalizer from [LT] plays
an important role in the construction. Let H be a Hilbert space with an orthonor-
mal basis {e;}32,. We take two elements e;, e;, i # j, and define the following
procedure.

Equalizer with schedule v := {v;}. Let v, < 1/5, fo := e;. Define:

(3.1) g1 i=are; — (1—a)Y%e; ar =715 (fo,qn) = m;

(3.2) fri=fno1 = (Fae1,9n)gn;  gn = ane; — (1 —al)'?e;;
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(fr>Gn+1) = Ynt1;  fn = ane; + bpe;.
We check
an—1 = bp—1 > 3v27,
to continue. If
an-1—bn_1 < 3V2v,
then we take g,, := 271/2(e; — e;) and
fr = fam1 = (fn=1,9n) 9n;

and stop after this step. We call this step ”"the final step” and all other steps
"regular steps”. At each regular step | we have

a—b=ai_1 — b1 — (e + (L= af)?) > ai_g — by — 2%y, > 0.
After the final step we have
a, = by,.
At each regular step we have by definition that
(ficr,91) = m
At the final step we have
<fnflagn> - 271/2(an71 - bnfl) > 271/2(an72 —bp_2 — 21/2’)%71) >
2712(2v27, 1) = 291
Thus, if 2, 1 > 7, then the above described Equalizer is a WGA with weakness
sequence i, ..., Yn-
At regular step [ we reduce the || - ||* by 77. At the final step we reduce the || - ||?
by
1
E(an_l —by_1)? < 992
We also have
an—-1 — bn—l < 3\/5771

and

n—1
n-1 = boo121-V2) ;.
j=1
Thus,
n—1
V2 i +3V2y, > L.

7j=1
On the other hand
ap—b <a;1—b_1—.

Therefore,
n—1

Ogan—l _bn—l < 1_2’)7
=1
and

(3.3) Y u<t

In order to apply the above Equalizer we need to have the inequality 2+, 1 > v
satisfied. Let us use the following regularization procedure.



7

Regularization. For a given 7 = {t;}32,, T € lo, we define 78 := {tF}2° | with

o0
th .= Z 2 ™t .-
m=0

Lemma 3.1. If T € VNly then T € VNl

Proof. Assumption 7 € V implies

qs
(3.4 2032 < oo
s k=1

We will prove that
(3.5) 22 s Z < 0
k=1

with the same ¢, = ¢,(7) as above. Thus (3.5) will imply 7% € V. Let us prove
(3.5). We have for any N

N N 00 N oo o0
(th)Z = Z(Z 2_mtn+m)2 = Z Z Z 27" M e mthgn =
k=1 k=1 m=0 k=1 m=0n=0
22 m— nztk—i—mtk—i—n < Z 22 m— n Ztk—}—m 1/2 Z i )1/2 _
m=0 n=0 m=0 n=0 k=1

0o N o) o) N
Q27O ) <D 27™(0 2™ tikm)-
m=0 k=1 m=0 m=0 k=1
Next,
N N
D tem <t A mllTll
k=1 k=1

and

2

00 N
Y2t +mlrli) <2 85+ C(r)
m=0 j=1
Therefore we got
N N
P <2) 2+o(r
j=1 j=1

and

gds

22 ) ()’ §2Z2s§:ti+0(’r) < 00
s k=1

k=1

It is easy to see that |[|7%|cc < 2[|7]|co-
Lemma 3.1 is proved now.
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Thus for any 7 € VN ly we have 78 € V, ||77||c0 < 2||7]/00, and
ot >tR n=23,....

Clearly, we also have for all n
tn <R

One more restriction in the Equalizer is 7, < 1/5. Define a new sequence 7" by
t! := min{t¥ 1/5}.
It is clear that 7/ € V and also satisfies
2t >t

Let {qs} := {qs(7")} be the sequence for 7’ from the definition of V:

s s

—s 1\2
Z Aq, < 00, 22 Z(tn) < 00.
s s n=1
Let € be a small number which we will specify later and sg be such that
S s
< €, 27° t)? <e.
PIETRAID VP
=80 §~280 n=

Consider the function
st = 2_80/2(61 + -+ 6250).

We have || fs,|| = 1. Define
ty := max{t}, 2% (Aqs,) "}

We apply a mixture of Equalizer with schedule {t}/} to vectors e;, i < 2%, and
the PGA to the corresponding residual of fs,. We do this in the following way. If
t! > 1/5 we use PGA and throw away, say, 2750/2eys,. If t/ < 1/5 we start using the
Equalizer with schedule {#} } to vectors e; and egsoy1. If at some step tj] > 1/5 then
we use PGA what means throwing away one term of the form 2_30/2ej, j € [1,2%].
Applying the Equalizer to the very last term of the form 27%0/2¢,, we may incounter
with ¢ > 1/5. In such a case we apply PGA and stop. As a result we get

o § ' so+1
f50+1 = Cko €L.

k€Fsy+1
It is clear that for all k € F, ;1 we have
(CZO+1)2 S 273071

and also
|F80+1| < 2SO+1'
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Assume that € < 1/20. Then 2%°0%2(Agq,, )" < 1/5 and t} > 1/5 is equivalent to
v=1t,=1/5. If t{ <1/5 then t; < 1/5 and t; < t;. Therefore, at all Equalizer
steps we have a WGA with weakness parameters {t}. If ¢} = 1/5 we apply
PGA what is a WGA with any ¢; at this step. During this procedure which we call
”working on sg-level” we perform M steps of Equalizer and M, SC(’: steps of PGA. Let
us estimate M’ and M Scé . It is clear that M scg < 2%, We have applied the Equalizer

to terms of the form 2%/ %e; at most 2°° times. For each Equalizer application we
have ) 7; < 2 (see (3.3)). Thus denoting E(so) :={k : 1t} <1/5} we get

ot < 2%t

kEE(So)
On the other hand we have

S s Mg (ag,)
kEE(So)

and
Mg < Ags, /2.

Therefore,
Ngo = MY + ME < Agsy/2+ 2% < Ags,.

At each Equalizer step we reduced the || - [|2 by at most 9(¢/)?27% and at each
PGA by at most 25(¢},)227*°. Thus the total reduction ds, for the so-level does not

exceed
s

25(27) ) (1,)° +9(2° ) (Agy,)
k=1

We are on the (sg + 1)-level now and perform the similar procedure. We describe it
for the general case of an s-level. Assume we have after N;_; < gs_1 steps of our
WGA the function

fs = Z Czek

keF,
with
(c5)? <275, |F,| < 2%

Define now

ty = max{ty,2°"*(Aq) "'}, k> N, ;.
We pick cfer with the biggest cj out of {cf,k € F,} and throw it away if t}, ;=
1/5 (we remind that assumption € < 1/20 implies 2°72(Aq,)~! < 1/5) and apply

the Equalizer with schedule {¢} otherwise. We continue to perform the above
described procedure (the mixture of Equalizer and PGA steps) untill we get

1
far= > e

keFs 4,

with
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It is clear that then |F,yq| < 25F!. Similarly to the above estimates of MY and
M SGO we get

ME < 2°
and
MP2 T (Ag) ™ < Y <2t
keE((s)

Thus

MY + ME < Aq,/2+2° < Ag,
and

Ny := N, 1+ MY+ M < g,.
The total reduction & of the || - [|? from working on the s-level does not exceed

ds

25(27%) Y (1) +9(2°F4) (Ag,) .
k=1
k

We continue this process and get that the || - ||* will be reduced by at most

) ) qs oo
D 6 <25() 270 (3)%) +144 ) 2°(Agy) T < 169e.
EEEH) EEEN) k=1 EEEH)

Choosing € small enough, say, ¢ = 0.005 we get divergent WGA with the weakness
sequence 7. This completes the construction of the counterexample.
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