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Inequalities of Duffin-Schaefter type*

Geno Nikolov

Abstract

We prove here that if an algebraic polynomial f of degree at most n has
smaller absolute values than 7, (the n-th Chebyshev polynomial of the first
kind) at arbitrary n + 1 points in [—1,1], which interlace with the zeros of
T}, then the uniform norm of f’ is smaller than n?. This is an extension of a
classical result obtained by Duffin and Schaeffer.

1 Introduction and statement of the result

Denote by m, the class of algebraic polynomials of degree at most n, and by || - || the
supremum norm in [—1,1]. The classical inequality of brothers Markov [5], [6] asserts
that among all f € 7, satisfying

Il <1 (1)
the Chebyshev polynomial of the first kind 7},(z) = cosnarccosz has the greatest
norm of its kth derivative (k = 1,...,n). A remarkable extension of this result was

found by Duffin and Schaeffer [3], who showed that this extremal property of T,
persists under a weaker assumption than (1). Namely, they showed that T, still has
the largest uniform norm of its k-th derivative in the wider class of polynomials from
T, satisfying

|f(cos(vm/n))| <1, v=0,...,n (2)

(actually, Duffin and Schaeffer proved a more general result, including an inequality
over a strip in the complex plane, but this does not fall in the frame of the present
paper). The points

n, :=cos(vm/n), v=0,...,n

are the local extremum points for 7, in [—1,1], and |T,(n,)| = 1. Thus, the result
of Duffin and Schaeffer may be viewed as a comparison type theorem: the inequality
|f| < |Tn| at the points of local extrema for T}, induces the inequalities || f®)|| < ||T.()||
for k =1,...,n. This suggests the following
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Definition. A polynomial @ € 7, and a mesh A = {¢,}7 o, (1 >t) >t > ... >
t, > —1) are said to admit Duffin and Schaeffer type inequality (DS-inequality), if for
every f € m, the assumption |f(¢,)| < |Q(t,)| for v = 0,...,n implies ||f'| < ||Q’|],
or, more generally, || f®[ < [|Q®| for k =1,... n.

Note that in our definition the comparison points {¢,}”_, are not necessarily
assumed to be extremum points for Q).

In 1992 A. Shadrin [13] proposed a simple proof of Markov inequality under the
assumptions (2). Based on a theorem of Shadrin, Bojanov and Nikolov [2] proved a
DS-inequality for Q@ = P the ultraspherical polynomials, when the mesh A consists
of the local extremum points of P,

Theorem A. Let Q := PW (A > —1/2) and {t,}"_, be the zeros of (1 — 22)Q'(z).
If f € m, satisfies
[f ()] <1Q()] forv =0,...,n,
then
179 < Q]
forallk € {1,....,n}, if A >0, and for k > 2, if A € (—1/2,0). Equality is possible
if and only if f = cQ with |c| = 1.

The special case A = 0 comes down to the classical inequality of Duffin and

Schaeffer.

For some other DS-inequalities, we refer the reader to [4], [7], [8], [9], [10], [11]. In
particular, the following result has been proved in [9]:

Theorem B. If f € w, satisfies |f(£1)| <1 and
|f(z)] < V1—2a? at the zeros of Ty, 1,
then
IFON<ITE| fork=1,...,n.
Moreover, equality is possible if and only f = T, with |c| = 1.

Theorems A and B show that for () = T,, DS-inequality holds at least for two
choices of “check points”, namely, for those formed by the zeros of (1 — z*)T”(z) and
by the zeros of (1 — z?)T,,_1(z). We naturally come to the question: What are the
meshes A admitting DS-inequality with Q = 7,,7 The aim of this paper is to show

that for £ = 1 each mesh A = {¢,}”_, whose points interlace with the zeros of T, is
admissible.

Theorem 1. Let {t,}!_, satisfy 1 >ty > & >ty > ... > &, > t, > —1, where
{&,}_, are the zeros of T, i.e., £, = cos((2v — )7 /(2n)). If f € 7, and

[f ()] < [Ta(t)| for v=0,...,n,

then
11l < n?. (3)
Moreover, equality in (3) is possible if and only if f = cT,, with |c| = 1.
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Note that the set of all admissible meshes A (i.e., such that DS-inequality holds
with @ = T,,) is not substantially larger than the one described in Theorem 1. In
fact, the points of any admissible mesh must separate the zeros of T,, (see Section 4).

The proof of Theorem 1 relies on a pointwise inequality given by the next theorem,
which was suggested to the author by A. Shadrin [15].

Theorem 2. Let () € w, have n distinct zeros {z,}_,, all located in (—1,1). Let
{ti}ig satisfy 1 > tg > o1 >t > ... > 2, >t, > 1. If f € m, and

|f(tj)| < |Q(tj)| fO’I“j = 07"'7”7
then for each k € {1,...,n} and for every x € [—1,1] there holds
|f® (@) < max{|Q®(2)], |QP ()], v =1,...,n},

where
11—z,

Qu(z) = Q(x)

r—x,

The paper is organized as follows. In Section 2, we summarize some results from
V. Markov’s paper and prove Theorem 2. The proof of Theorem 1 is given in Section 3.
Section 4 contains some concluding remarks and points out to a possible application
of Theorem 1 to the estimation of the round-off error in the Lagrange differentiation
formula.

2 Proof of Theorem 2

We start with an observation from the original work of V. Markov [6], concerning
polynomial interpolation and pointwise estimates for polynomial derivatives. We
formulate it in two lemmas.

Definition. Let p € m, or p € 7,41, ¢ € 7,, and p, ¢ have only real and simple

n(+1)
=1

zeros, say {t;}; and {7;}7_,. The zeros of p and q are said to interlace, if

<1 <ty <...<th 1 < Tp(< ).

If only strict inequalities appear above, then the zeros of p and ¢ are said to interlace
strictly.

The first Markov’s lemma reveals a simple (and, as a matter of fact, very useful)
property of the zeros of algebraic polynomials.

Lemma 1. Let p and q be algebraic polynomials (p # q), which have only real and
simple zeros. If the zeros of p and q interlace, then the zeros of p' and ¢’ interlace
strictly.



A proof of Lemma 1 can be found in [12, Lemma 2.7.1], or in [13]. Note that for
polynomials of the same degree the claim of Lemma 1 can be viewed as a monotone

dependence of the zeros of the derivative with respect the zeros of the polynomial (|1,
p. 39].

Given a mesh A = {t;}7_ (1 > to > t; > ... > t, > —1), and € := {¢}]_,
(¢, >0, j=0,...,n), we define the set of polynomials

Qo (Aye) ={fem: |ft)| <€, 7=0,...,n}.

Clearly, Q,(A, €) is a compact set.
Define real valued polynomials {P,}"_, = {P,(A, € )}, € Qu(A,€) by

|P,(t;)| =¢; for j,v=0,...,n,
PO(t]fl)PO(t]) < 0 for j = ]_, L, N,
and, foreachv=1,...,n,
Py(t,,_l)Py(ty) > 0, Py(tj_l)Py(tj) < 0 for ] §£ v.

Evidently, the above conditions determine {P,}?_, uniquely up to a multiplier -1.
Theorem 2 follows easily from the next lemma.

Lemma 2. For each x € [—1,1] and for every k € {1,...,n},
sup{|f® (z)| : f € Qu(A, €)} = max{|P®(z)|,v =0,...,n}.

Proof. Note first that the sup is attainable since €,(A,€) is a compact. Set
w(t) = (t—to)...(t—t,), w,(t) :=w(t)/(t—t,) (v=0,...,n), then for f € Q,(A¢)
and a fixed x € [—1, 1] the Lagrange interpolation formula yields

)
)

The upper bound is attained if |f(¢;)| =¢; for j =0,...,n and f has a suitable sign
pattern at the points {¢;}. Next, we show that the polynomials {P,}}_, provide a
complete set of appropriate sign patterns. For any pair of indices 4, j € {0,...,n}, i <
j the zeros of w; and w; interlace (though not strictly), therefore, in view of Lemma 1,

" w(-k)(x) " w(-k)(x
) =13 S ) < 39 (@)

the zeros {v;,}=} of w™ and the zeros {Viuti=h of wj(-k) interlace strictly. Further-
more, since the zeros of w; are less than or equal to the corresponding zeros of w;, we
have the following arrangement:

—-1< Yok < oo < VYnnk < Vonb-1<- - <Vnnbk-1<---<%1<...<Vn1< 1.



Since w;_1(t;_ 1)wj(t~) < 0 for j = 1,. n the above inequalities show that for

€ [=1, 1\ {1, }r=0i= _% the quantities {w ( ) /wj(t;)}j—o either change their signs
alternatlvely, if

LS Iolca ng Ir?,lc(A) = [ 1770n k) U] =n—k (7%]”7&] 1) (7%171]7

wyph () wib (@)
wy—1(ty-1) wy(ty)
v € {l,...,n}. The latter situation occurs when z € I, where
Irl:k = ka(A) = U?:{c(/yufl,jﬂ/u,j)-

Correspondingly, if z € I/, for some v € {0,...,n}, then (4) holds with equality sign
for f = P,. If x = ~,;, then w®*)(z) = 0, and equality in (4) holds for f = P, as well
as for any f € m, which coincides with P, at the points {¢; : j # v}.

Thus, in (4) equality holds for f = P,, if z € I/} (v = 0,...,n), and since
Uﬁzom = [—1, 1], the proof of Lemma 2 is completed. &

> ( for some

or change signs alternatively with only one exception

Remark 1. It follows from the proof of Lemma 2 that if for some f € Q,(A, €) we
have equality in (4) for some z € I/, (v € {0,...,n}), then necessarily f =cP,,
where c is a constant with [c| = 1. Thus, for z € [~1,1]\ {7, };—o)= _¥ any extremal
polynomial in Lemma 2 is of the form f = ¢P,, Where ve{0,...,n} and |c| = 1.

Proof of Theorem 2. Set €; := |Q(t;)], j = 0,...,n, and define polynomials
{P,}»_, as above. Based on the interlacing assumption, we conclude that Py = @ or

Py = —Q, while for v = 1,...,n the sign patterns of P, and @), coincide. Moreover,
we have
1 -z,
Q. (t)| = e]ﬁ >e¢jfor j=0,...,n and v=1,...,n.
In the proof of Lemma 2, we deduced that for any f € Q,(A,€)
[P (@) < |PP (@) ifw € IT,, v=0,....n. ()

For v = 0 (5) reads as |f®)(z)| < |Q®(z)|, while for = € I, (ved{l,...,n}) we
have
)

n

(k)
EPE) =3 | )

wJ(t ) Z:

(for the last equality we used that P, and @), have the same sign pattern). The claim
of Theorem 2 now follows from Lemma 2. n

()] = 10 (2)]

=0 J

As an immediate consequence of Theorem 2 we get
Corollary 1. If, in addition to the assumptions of Theorem 2, for an k € {1,...,n}

(k) (k)
max Q7] < @]

then
1@ < |Q™].



3 Proof of Theorem 1

The proof of Theorem 1 follows from Corollary 1, applied to @) = T}, and £ = 1. The
application of Corollary 1 is possible because of the following lemma:

Lemma 3. Let the polynomials {P,}"_, be defined by

1-¢&x
P, =1, .
(@) = Tole) =2
Then, forn > 2,
|P)| <n® (v=1,...,n). (6)

For n = 2,3 the validity of (6) is verified directly, therefore we assume in what
follows n > 4. The proof of Lemma 3 goes through a number of lemmas.

Lemma 4. For every z € [—1,1] and forv=1,...,n
|P,(z)] < Ry (x),

where
(1-€)2 n2(1-&a)? ]V
@—6)  (1—a?)(m—&)

Proof. The result is immediate from

r—& (z —&)%

the identity [T;,(z)]* + (1 — 2?)[T%,(z)]?/n* = 1, and Cauchy’s inequality. I

R,(z) =

P(z) = T, (x)

n

T,(z)

Lemma 5. R,(z) is a strictly convez function on each of the intervals (—1,€,) and

(&, 1)

Proof. We suppress the index v, writing

-y  w0-gp 17

x) = — (2 2())1/2
where e (1 éx)
gl('r) = ($—€)2’ 92(37) = (1—$2)1/2($—§)
Since

9195 — 9192)° + R*(g197 + 9295)
R3 ’

R”:(



the lemma will be proved if we show that g;(x)g](x) and g(z)g4y (z) are positive in
(—1,¢) and in (&, 1). This is easily seen for the first term, while for the second term
a short calculation yields

@O w)gho)

=21 -1 —2?)? —2z(z — (1 - ) (1 — 2*) + (1 — &z)(z — €)*(227 + 1).

The positivity of the right hand side is easily verified with the help of the inequality
2(1—€%)(1—2”)*+(1—€x) (x—€)* (207 +1) > 2(1—a?) o —E|[2(1—€%) (1—E€x) (227 +1)]V/%.
|

We now examine the polynomials { P,}”_,. Due to symmetry, we may (and shall)
consider only half of them, say, those with indices 1 < v < [(n 4 1)/2]. Recall that
the zeros of P, coincide with the zeros {§;}7_; of T, with the exception of £, which
is replaced by 1/&, (in the case n odd and v = (n + 1)/2, 1/, is interpreted as a
zero at co). With this last convention, we observe that for 1 < v < [(n + 1)/2] the
zeros of P, are located to the right with respect to the zeros {&;} of T},, and interlace
with them. In view of Lemma 1, the same relation holds between the zeros of the
derivatives of P, and T,,. We are interested in the behavior of P/(z), in particular,

its critical points. To this end, we shall exploit (7) and the explicit form of P,

1— gllx 1 1— 53 1— 63
e—e @G ey (e—&)

In the proof of the next lemmas we shall use the differential equation

Pl(z) =T, (z) + 2T () (8)
(1—2)T!(z) — 2T (x) + n*T,(z) = 0, (9)

as well as the following simple facts:

{nsin(ar/n)}:>*, S am, (10)
cota < é, (11)

where 0 < o < 7/2.

Lemma 6. The polynomials P, (v =1,...,[(n+ 1)/2]) satisfy the following:
1

() If2<v <t

(ii) P! has exactly one local extremum in (§,41,M,) ;

(iii) P, is strictly monotone in [n,,n, 1] ;

(iv) P! is strictly monotone in [—1,m, 1| and in [n, 1] .

, then P) has ezactly one local extremum to the right of 1;



Proof. The first claim in (iv) follows trivially, since, as was already mentioned,
the zeros of P, are located to the right with respect to {¢;}7_,. In view of Lemma 1,
the same is true for the zeros of P and 7. Since the leftmost zero of T is located
to the right of 7,_1, so is the smallest zero of P.

Substituting z = 1 in (8) we get

n?(n? — 1) (2v— ) cot? BT
P)(1) = ————= — 2n”cot’ n—.
V( ) 3 n-co 4n + Sin2 (2v—1)w

4n

With the help of (10) and (for v = 2) (11), it is easy to see that P/(1) > 0 for
2 < v <|[(n+1)/2]. Since P, has a negative leading coefficient and at most one
critical points to the right of = = 1, this proves part (i) of the lemma.

Now we find the sign of P at the points &,.1, 1,, and 7,_;. First, we shall show
that

sign {P(€,1)} = (~1)"*. (12)
Putting ¢ = &1 in (8) and using that T))(&41) = & Th(&s1)/(1 — &2,,) and
sign {7, (&+1)} = (—1)", we get
sign { P/ (§,11)} = (=1)""sign {2(1 = £)(1 = &41) +&r1(6 — &) (1 — EE641) )

Now (12) is obvious if &,,1; > 0. The only possibility where &,,; < 0 is ¥ = m and
n=2m or n =2m — 1. An easy calculation shows that for n > 4 (12) is true in this
case, too.
Next, we prove both (ii) and (iii) by showing that
sign{P)(n,)} = (-1)" for p=v,v —1, p#0. (13)
Using (8) and (9), we obtain

T ()
(& = 1u)*(1 = 73)
Since sign {T,,(n,)} = (—1)*, it suffices to prove that the term in the square brackets
is positive. Using the inequality (1 —&2)(1 —n;) < (1 — &,m,)* we obtain

n*(1 = En) (& —mu)” = 21 = )1 —mp) > (1= &n)[n* (& — ) = 2(1 = &)
After simple manipulations, using the trigonometric representation of &, and 7, we
find that the inequality n*(&, — n,)? — 2(1 — &m,) > 0 is equivalent to
1 1
n? sin? y * n? sin? 7(2”42&71)” =2

TAUNES (1= &mu)(& —nu)? =201 = &)1 =)l (14)

This last inequality will hold for all v € {1,...,[(n+1)/2]} and p = v,v —1,(u # 0),
if it is true for v = p =1, i.e., if
1 1

e <2
nsm4— n< sim
n

23r —
4n
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Since the left hand side is a decreasing function of n (see (10)), and for n = 3 it is
(sin™?(7/12) +2)/9 = (4v/3 +10)/9 < 2, (13) is proved. Now we conclude from (12)
and (13) (with g = v) that P’ has a zero in (§,,1,7,) forv =1,...,[(n+1)/2]. In
addition, (13) implies that this zero is unique, and no zeros of P exist in [1,, 7,-1]
(v > 2), otherwise there would be at least three zeros in (§,.1,&, 1), a contradiction.
For the same reason, P has a simple zero in (&;,7;), and no zeros of P/’ exist in
[, 1]. This is exactly the claim of (iii) for » = 1 and of the second part of (iv) for
v=1.
To prove the second part of (iv) for 2 < v < (n + 1)/2, we shall show that

Pj(m) > 0. (15)

Having established (15), the second part of (iv) will follow immediately. Indeed, we
found in the beginning of this proof that P/(1) > 0 for 2 < v < (n+ 1)/2, and if
P/ was not monotone in [1;, 1], then P! would have at least three zeros (two zeros, if
v = (n+1)/2) to the right of 7, which is impossible. The proof of (15) goes along
the lines of the proof of (13). Equation (14) with p = 1 shows that (15) follows if

n?(1—&m)(& —m)® —2(1 = &)1 —n7) >0,
or, in view of (1 —&2)(1 —n?) < (1 —&m)?, if
n*(& —m)® —2(1 = &m) > 0.

The latter inequality is equivalent to the inequality

1 1

+ <2
2 (21/4—723)77 ’I'L2 Sin2 (21/2—1)77 )

n? sin
whose validity is easily verified with the help of (10). Lemma 6 is proved. 1

Lemma 7. The following estimates for ||P.|| hold true:
(i)  Forv=1,2,

1PNl < max{| P (1), |P,(1)], Ry (1hn-1), R () };
(ii)  Forv=3,...,[(n+1)/2],
1PNl < max{|P)(=1)|, [P,(1)], Ry (1hn-1), Ro (), B (1h-1), Ro(m)}-

Proof. According to Lemma 6, P| is monotone in [—1,7,_1] and [n, 1], therefore
on these intervals

|Pi(z)] < max{[P{(=1)[, [P{ (1)1, [P (mo)], [Pr(1)[}



1(z) (Lemma 4), and

On the complementary interval [, 1,m:], we have |P{(z)| < R
z) < max{Ri(1n—1), Ri(m)}

since R; is convex there (Lemma 5), it follows that R(
for x € [nn—1,m]. This proves (i) for v = 1.

The proof of (i) for v = 2 relies on the observation that, by Lemma 6, Pj is mono-
tone in [—1,7, 1] and [n9, 1], while |Pj(z)| < max{Ry(n, 1), Ra(n2)} in [,_1,72], by
virtue of Lemmas 4 and 5.

Part (ii) can be proved in the same fashion, exploiting the monotonicity of P, on
the intervals [—1,7,_1], [1,, n,—1] and [n1, 1], and the convexity of R, on [n,_1,7,] and
[Mu—1,m]. We leave the details to the reader. &

Our last lemma estimates the quantities appearing in Lemma 7.

Lemma 8. The following inequalities hold true:
(i) |P.(£1)|<n? (v=1,...,[(n+1)/2]);
(1) R,(m) <n® (v=1,3,4,...,[(n+1)/2]);
(111) R,(n,) <n? (v=1,...,[(n+1)/2]);
(v) R,(n,—1) <n? (v=3,....[(n+1)/2]);
(v) Ry(p_1) <n?® (v=1,...,[(n+1)/2]).
Proof. Substituting x = £1 in (7) we get

2v— 1)
Pl 1 — 2 t2 (
(1) =n* —co —

Then (10) and 0 < (2v — 1)7/(2n) < m/4 show the validity of a slightly sharper
inequalities than (i), namely

(2v — 1)m

Pl 1| = 2—t 2
P (-1)| = n?

2 ' 2 m
—1<|P (-] <n*——

and
(1—16/7*)n* < P,(1) <n*—1.
Now, we prove (ii). A short calculation yields
-&r , w0-&n)? 1

_ v _. )12 L)]411/2
R = | 00— ey | = (AP B2 ()

where (20— 3) (2 + 1)
n m vV—9)m v+ 1)m
Alv) = |2 cot — MY TR epp T
(v) 2| cot - + cot ym cot P l,
1 (2v — 3)m (2v+ 1)m
B = —|cot ——— t—.
(v) 2| co in + co ym |

10



Assume first that 3 < v < [(n + 1)/2], then it is easy to see that A(v) < A(3) and
B(v) < B(3). We use (11) to obtain

1 3 T 20n
B(3) 2[(30}5@—}—00)6@] < E,
n 3T s T
A(3) = 5 —[cot wm 2 cot o cot R]
< 2[Cot ST + 2 cot E]
2 4n n
5n?
< g

Therefore, for 3 <v <[(n+1)/2],
1/2

502\ /20m\*
—— — < 0.54n% < n2.
( 37r> + (217r> ] " "

RV(nl) <

Similarly, for v = 1, we find

n s ™ 3T n 8n?
Al t— — 2cot — t — t— t—<—
(1) = 2[co in co n—irco 4n] 2[0 i + co ] 3
1 T 1 T 2n
B(1 t— — t— < =-cot— < —.
( ) 2[C0 4n €0 ] 2CO 4n T

Hence,

1/2
n2\ 2 2\ 4
Ri(m) < [(3%) + <7n> ] < 0.95n% < n®

Thus, (ii) is proved.
Next, we prove (iii). For 1 < v <[(n + 1)/2], we have

1 a- &)’ n’(1 —&my)? 12 . )2 J)]4L/2

Ryt = [ =80 U )T e+ Dy
e Cv) = 2[cot 4 cot @r=lm 2 cot V—ﬂ]
2 4n 4n n-’

1 v —1
D(v) := —~[cot T cot u]
2 4n dn

Unlike the situation with A(v) and B(v), we observe that C(v) and D(v) increase
with v, and for n > 3

D(v) < D((n+1)/2) =

11



n T T T
< = — — - _ -
Cv)<C((n+1)/2) 5 [cot i + 2tan 5 tan 4n]

n nft T ‘ 7r]
= nltan — — tan —
1 2n

sin 2L 4n
n
_ n? |
T 2 T
nsin o 4 cos o
1
S 5(27’12 + 7T).

With this (iii) is proved, since

Gras) +()
3 3n? 3

The same arguments as above lead to the proof of (iv): R,(n,1) = [(C(v))? +
(D(v))*]"/?, where

1/2

2 < 0.91n% < n2.

R,(n,) <n

~ -1 v — 3
C(v) = g[cot % + QCot(yn)Tr — cot (Z/4n)ﬂ],
- 1 v — 3
D(v) = §[cot % + cot %]

Observing that C(v) and D(v) decrease with v, for 3 < v < [(n 4+ 1)/2] we find the
estimates

D) < D(3) = 4 cot o cot i—Z] < 25—:
Clv)<C(3) = g[cot % + 2 cot 2% — cot Z—Z]
< Q[cot 4 cot 7_7r]
2 4n 4n
16n?
T’

and hence

< 0.89n?% < n?.

1/2
Ry (1) < L6n” 2+ <20n>4+ /
vl T 97
Finally, (v) can be proved in the same way as (i)—(iv). Alternatively, one can use the
inequality

1-&  1+8n
[§—=nl — &+
to compare pairwise A(v) and B(v) with the corresponding terms appearing in
R,(Mu_1) = R,(—n1). The result is R,(n,_1) < R,(m1) < n?. We omit the details. 1

(0<&n<, E#)

12



Proof of Lemma 3. The inequality follows from Lemmas 7 and 8. 1

Proof of Theorem 1. Inequality (3) follows immediately from Corollary 1 and
Lemma 3. It remains to clarify in which cases a equality is possible. Let A = {¢;}7_,
be a fixed mesh satisfying the assumptions of Theorem 1. Let ¢ = (eg,...,€,) =:
(|7 (to), - - -, |Tn(tn)|), and the polynomials Py =T,,, P, (v =1,...,n) be defined as
in Section 2. Suppose that f € Q(A,€) is an extremal polynomial, i.e., ||f'|| = n%
According to Remark 1 and Lemma 3, for z € U’,}:J,Vl,l there holds

I / 2
|[f'(2)] < max [|P,|| <n”,

therefore || f'|| is attained for € I? . However, when z € I)) | we have
|f'(@)] < |Py(2)] = |T;(2)] < T, (1) = n?,

and equality holds only for x = +1 and f = ¢T,, with |¢| = 1. Theorem 1 is proved.

4 Concluding remarks

1. The requirement in Theorem 1 that the points A = {t;}"_, interlace strictly with
the zeros of T, was only imposed in order to avoid unimportant complications in
the proof. Actually, Theorem 1 is valid under the weaker assumption that {¢;}7_,
interlace with {¢; 7_1. If a comparison point ¢; coincides with a zero of T, then
the polynomials from the corresponding class €2, (A, €) must vanish at that point. In
the case when all {£,}"_, belong to A Theorem 1 holds trivially, since in that case
Q,(Aye) ={cTn(z) : || < 1}.

2. So far, we cannot extend Theorem 1 to higher order derivatives, i.e., to prove
1@ < [|T®)|| for all & > 2. However, it should be pointed out that this inequality
holds true for £ = n—1 and for kK = n. This is easily seen from the proof of Lemma 2:
for any polynomial f € Q,,(A,€) and for k = n — 1,n we have || f®| = |f*)(=1)| or
If®| = |f®)(1)], and for x = £1 the extremal polynomials in Lemma 2 are of the
form cPy = =T, |c| = 1.

3. According to Lemma 2, a necessary condition for a mesh A = {t;}"_, to ad-
mit DS-inequality with an extremal polynomial ¢Q = T, is, the sign pattern of
(T (to), - -, Tn(t,)) to coincide (up to a factor -1) with the sign pattern of some
of the polynomials {P,}”_,. Theorem 1 asserts DS-inequality for all meshes A hav-
ing the sign structure of Fy. One may think that DS-inequality also holds for any
other mesh A = {t;}7_, for which the sign pattern of (7,,(to), ..., T, (tn)) coincides
with the sign pattern of some P,, v € {1,...,n}. However, the example below shows
that this is not true, in general.
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Let t; = njyq for j =0,1,...,n — 2, ¢, =1, and t,_; = ¢, where ( € (—1,&,).
Define polynomial

To(x) forz=t;, j=0,...,n—2n,

q(z) =
—T,.(x) forx=t, ;.

Clearly, ¢ has the same sign structure as P,_;, and |q(t;)| = |Tn(¢;)| ( =0,...,n).
The explicit form of q is

q(z) = To(z) + a(l + 2)T;(x), where a = —2T,,(¢)/((1 + ()T,(C)) > 0,
and for k =1,...,n we have
lg™)l > ¢® (1) > T (1) = [T

4. As was mentioned in [8, p. 174}, inequalities of DS-type may be viewed as exact
estimates for the roundoff error in Lagrange differentiation formulas. We describe
below briefly a possible application of the result of Theorem 1.

Let A = {t;}7_, be a mesh whose points interlace strictly with the zeros of T),.

Suppose that inaccurate data {f(tj) 7o for a function f € C™*1[—1,1] is given, where

f(t) = ft)| <6 (j=0,...,n).

If f/(z) ~ L. (f;z) is the Lagrange differentiation formula based on this information,
then for the error R(f;z) := f'(x) — L/ (f; ) there holds

R(f;z) = R f;z) + R™™(f;z)

with Rrownd(f:z) = L' ( f — f;x) being the error caused by inaccuracy of the data
and R™"¢(f;z) the error caused by the fact that f is not necessarily a polynomial
(truncation error). We have the estimate

IR(f5 )< IR (5 )N+ (RT3 )]l

The exact bound for the truncation error in the Lagrange differentiation formula
in the general case has been obtained by Shadrin [14] (in our case ||R"™"¢(f;-)|| <
| F™+V|||w’||/(n+41)!). For the roundoff error, Theorem 1 provides the following exact
upper bound:

5.
round( r. 2 = !
IR0 < Mn?, - where M= o <5

This upper bound is attained when §;/|T,(¢;)| = M for j =0,...,n.
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