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NONSEPARABLE WALSH TYPE FUNCTIONS ON R¢
M. NIELSEN

ABSTRACT. We introduce wavelet packets in the setting of a multiresolution analysis of L?(R?)
generated by an arbitrary dilation matrix A satisfying | det A| = 2, and note that all the analysis
and algorithms of wavelet packets in the standard one dimensional case can be generalized to
this multidimensional setting.

Then we consider the wavelet packets associated with a multiresolution analysis with scaling
function given by the characteristic function of some set (called a tile) in R?. We call such wavelet
packets generalized Walsh functions, and prove that the new functions share two major conver-
gence properties with the Walsh system defined on [0,1). The functions constitute a Schauder
basis for LP(R?), 1 < p < oo, and the expansion of LP-functions converge pointwise almost ev-
erywhere. We also introduce some compactly supported wavelet packets in R? of class C"(R?),
1 < r < o0, modeled after the generalized Walsh function and having the same convergence
properties.

INTRODUCTION

Wavelet analysis was originally introduced in order to improve seismic signal processing by
switching from short-time Fourier analysis to new algorithms better suited to detect and analyze
abrupt changes in signals. It corresponds to a decomposition of phase space in which the trade-
off between time and frequency localization has been chosen to provide better and better time
localization at high frequencies in return for poor frequency localization. This makes the analysis
well adapted to the study of transient phenomena and has proven a very successful approach to
many problems in signal processing, numerical analysis, and quantum mechanics. Nevertheless,
for stationary signals wavelet analysis is outperformed by short-time Fourier analysis. Wavelet
packets were introduced by R. Coifman, Y. Meyer, and M. V. Wickerhauser ([3]) to improve
the poor frequency localization of wavelet bases at high frequencies and thereby provide a more
efficient decomposition of signals containing both transient and stationary components.

So far most work on wavelet packets has been done in one dimension or using separable wavelet
packets in higher dimensions (i.e. tensor products of one dimensional wavelet packets). However,
separable wavelet and wavelet packet bases both have several drawbacks for the application to
fields like image analysis since they impose an unavoidable line structure on the plane. For
example, the zero set of a separable wavelet packet at high frequencies will contain a large
number (same order of magnitude as the frequency) of horizontal and vertical lines that may
create artifacts in the reconstructed image. Another potential problem is in the Fourier domain
where separable two-dimensional wavelet packets have four characteristic peaks making it hard
to selectively localize a unique frequency. R. Coifman and F. Meyer introduced the so-called
Brushlets in [8] to remove the “uncertainty” in frequency localization, however the Brushlets are
essentially Fourier transforms of smooth local trigonometric bases and are therefore no longer
functions associated with a multiresolution structure.

The aim of this paper is twofold. In Section 1 we introduce wavelet packets associated with
the class of multiresolution analyses of R? for which there are associated wavelet bases generated
by only one wavelet. Such functions provide the same large number of orthonormal bases as
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wavelet packets in one-dimension do and should provide a good platform for doing image analysis
using the well known “best basis” algorithm of Coifman and Wickerhauser. Moreover, since the
functions are nonseparable there is a possibility to design the wavelet packets in such a way
as to avoid some of the line artifact associated with product systems mentioned above. We
will investigate the usefulness of the nonseparable wavelet packets for the application to image
analysis in a forthcoming paper.

Then we consider one special case of the wavelet packet construction in detail. This special case
can be considered the multidimensional generalization of the Walsh system on [0,1). We prove
that this multidimensional generalization share the two most important convergence properties
of the classical Walsh system; the new system is a Schauder basis for LP(R?), 1 < p < oo, and
the expansion of every LP-function in the system converges pointwise a.e. This will be done in
Section 3. In section 2 we present some facts about generalized Haar multiresolution analyses
associated with a dilation matrix with determinant +2 that we need for section 3.

The generalized Walsh functions are not continuous and they are generally supported on
irregular fractal like sets, which may limits their usefulness for image analysis. We consider a
class of smoother wavelet packets with the same convergence properties as the generalized Walsh

Functions in Section 4. Similar types of functions in a one dimensional setting were considered
n [12].

1. NON-STATIONARY WAVELET PACKETS FOR A GENERAL DILATION MATRIX

We begin by recalling some facts about multiresolution analyses associated with a general
dilation matrix that we will use later in this section to define the wavelet packets we have in
mind. The reader can find a more extensive discussion of the topic in [19].

Let A be a (d x d)-matrix such that A : Z¢ — Z® If the eigenvalues of A all have absolute
value strictly greater than 1 then we call A a dilation matrix. We can define a multiresolution
analysis associated with such A:

Definition 1.1. A multiresolution associated with a dilation matrix A is a sequence of closed
subspaces (V});ez of L*(R?) satisfying
i) V; C VicVin, VjeL,
(ii) U]eZV L*(RY)  and ﬂjeZVj = {0},
(iii) f e V; & f(Ax) € Vi, Vj€eLZ,
(iv) there exists a function ¢ € Vj called a scaling function such that the system {¢(- — )}, cze
is an orthonormal basis for V.

The wavelet spaces W; associated with such a multiresolution analysis are given by W, =
Viyn NV;h, and one can easily check that f € W; & f(A) € Wiy and L*(RY) = @, W
A family of wavelets associated with the multiresolution analysis is a collection of s functions
{@"};— for which {¥"(- —)};_, ;. is an orthonormal basis for Wy. Suppose |det A| = ¢. It
turns out that the number s of wavelets needed to generate such a basis for W, is exactly ¢ — 1.
This makes the case |det A| = 2 especially interesting since the wavelet basis is generated by
only one function just as in the one-dimensional case. We will use the notation Py, and Py, to
denote the orthogonal projections onto the closed spaces V; and W, respectively. One can show
that Py, and Py, extend to bounded operators on LP(R%), 1 < p < oo, provided that the scaling

function has a minimum of decay at infinity, see eg. [19].

Let {V;},cz be a multiresolution analysis of L?*(R?) associated with a dilation matrix A sat-
isfying | det A| = 2. Suppose (@, V) is an associated scaling function/wavelet pair. Then there
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exist 27Z%periodic functions mg and m; such that

O(€) = mo(DE)D(DE)
U(€) = my (DE)D(DE),

with D = (A*)"!. Since |det A| = 2 we can find T' € Z% such that [' + Z?/A*Z¢ satisfies
2% = A*7Z4 U (T + A*Z%). Then it is easy to check that the matrix

[mo (&) mo(&+ 27TDF)]
mq(§) mq(€ + 2rDT)

is unitary for a.a. £ € R?. This observation leads to the following definition. We let A and I be
related as above.

Definition 1.2. Let my and m; be 27Z? periodic functions for which

{mo (&) mo(€+ 27TDF)]
my(§) mq(§ + 2nDT)

is unitary a.e. Then we call (mg,m;) a pair of orthogonal quadrature filters associated with
(A, T).

We can now define the natural generalization of wavelet packets to the setting of a multireso-
lution analysis associated with a dilation matrix A with |det A| = 2.

Definition 1.3. Let {(m{, mgp))};‘;l be a sequence of orthogonal quadrature filters associated
with (A,T'). We define the basic nonstationary wavelet packets {w,}2° , by wy = ®, w; = ¥, and

for 28 < n < 281 with binary expansion n = > %!

9j—1
i1 652777, we let

k+1

ial6) = [Hlmg';f”)wfg)] B(DH1g).

Let us state two most important facts about the wavelet packets from the above definition. The
two theorems below show how to extract orthonormal bases from the wavelet packet construction
above, and thus gives us some new (and hopefully useful) tools to signal and image processing.
We have included a sketch of the proofs for convenience. However, the reader should notice
that everything works exactly as in the one-dimensional case, only the multiresolution structure
matters.

Theorem 1.4. The basic wavelet packets
{w,(x — k)0 <n<2 keZ%
form a basis for V;. Furthermore,
{wp(z — k)|n € Ny, k € Z9}

form an orthonormal basis for L*(R?).



NONSEPARABLE WALSH TYPE FUNCTIONS ON R* 4

Proof. Let Q, = Span{w,(- — k)},cz4, and define 6f(z) = v/2f(Az). Using the QMF-
condition it is not hard to verify that 0€2, = Qa, & Qap41 (see eg. [19, p. 112]). Thus,

(SQO © QO = Ql
6290 @ 690 - 691 - QQ @ Qg
(5390 @ (5290 - 692 EB (593 - Q4 EB Q5 EB QG @ Q7

6 0 6F 1) = Qore1 O Qopm1 1 B -+ D Q.
By telescoping the above equalities we finally get the wanted result
KU =0 =Vei=Q @0 D P Qo4

and Uy>oVj, is dense in L?(R?) by the definition of a multiresolution analysis. [ |

The above theorem can be generalized considerably. The following construction gives us a
whole library of orthonormal bases each with different time-frequency properties.

Theorem 1.5. Let {w,} be a family of non-stationary wavelet packets associated with the dila-
tion matriz A. For every partition P of Ny into sets of the form I,,; = {n2?,... ,(n+1)2) — 1}
with n,j € Ny, the family

{Qj/an(Aj : _k)}kezd,lnjep
is an orthonormal basis for L*(RY).
Proof. An argument similar to the one in Theorem 1.4 shows that
5" = Qo ® Vo1 D -+ D ok (n41)-1-

Moreover, the functions {2//%w, (A7 - —¢)},cz4 span the space 67€2, and

> 59, =9, =L R,

I.;eP q>0

which proves the theorem. [ |

Our focus in the remainder of this paper will be on a special case of the above construction that
can be considered the natural generalization of the Walsh system on [0,1) and on an associated
class of smooth non-stationary wavelet packets. The Walsh function will be associated with
dilation matrices that admit a Haar type multiresolution analysis and thus a generalization of
the Haar wavelet. We derive some properties of generalized Haar wavelets in LP below.

2. GENERALIZED HAAR FUNCTIONS

Let A be a (d xd)-dilation matrix with | det A] = 2. We are interested in the case where there is
an associated multiresolution analysis generated by a scaling function given by the characteristic
function of a set @ C R?, called a tile. For general A and d > 3 there is no guarantee that such
a set () exists, see [7, 6], so we have to restrict our construction to dilation matrices A which
admit such a tile. The situation is better for 1 < d < 3 since it can be proved that a tile always
exists ([7, 6]). For the remainder of this paper we assume that our A is such that an associated
tile () exists.
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The set () has many nice properties under the action of A. One can in fact show that AQ = QU
(Q+Tg) for some I'g € Z% and we always have |Q] = 1, see [19]. Hence Q@ = A 'QUAH(Q+Tg)
and
(2.1) Xq (&) = mo(DE)Xq(DE),
where mg(§) = 1 + Le7Te4). Also, note that |[A~'Q| = 1, so A~ splits @ into two sub-tiles of
equal measure. We let

Dy={Q:Q=A479(Q+~),y€Z and Q C Q}

denote the collection of @-dyadic sets. Note that two Q-dyadic sets @1 and @ with |Q] < |Qs|
share the following important property of the dyadic sets on [0, 1), namely either Q1 N Qs = ()
or ()1 C Q2. We also need the unrestricted collection of ()-dyadic sets given by

D={Q:Q=A7(Q+7),y€Z%jcZ}.
With this setup we can define the natural generalization of the Haar function on [0, 1).

Definition 2.1. With () and I'g as above, we define the generalized Haar function by
H(z) = xa-10(%) — Xa-1(@1rg) (@)
The Haar system on () is given by
{xo} U{22H(ATz — k)|j > 0,k € Z%, and supp(H(A'z — k)) C Q}.

There is a unique way to index the Haar functions by Dy. For 2 € D, we simply let Hg denote
the generalized Haar function (normalized in L?(Q)) with support equal to Q.

One would suspect that the generalized Walsh functions form an unconditional basis for L?(Q),
1 < p < o0, and this is exactly the conclusion of the following Theorem. We give a proof based
on Burkholder’s LP-inequality for martingales just to stress the connection between generalized
Haar multiresolution analyses and probability theory.

Theorem 2.2. Let {Hq}oep, be the generalized Haar system associated with the tile (). Then
{Hq}aep, constitutes an unconditional basis for LP(Q), 1 < p < oo.

Proof: Let us first verify that the system is dense in LP(Q), 1 < p < oo. Let
Kn(z,y) = Z Ho(z)Ha(y)
[I|=2-n

be the kernel of the projection onto V;,. We have, for y € I, [I| =27",
[ el = o)l [ 2 xo(4%e) de = Ho)l22 " =1,
Q Q
and similarly, for x € I,
/ K, (2,y)| dy = |Ho(z)[2"/?27" = 1.
Q

Hence, by standard estimates, the projection onto V;, is bounded on LP(Q), 1 < p < co. Now,
each V,, is spanned by a finite number of Haar functions and x¢ so it suffices to show that
P,f — fin LP(Q)-norm as n — oo for every f € L*°(Q) since such functions are dense in L?(Q),
1 <p<oo. Let f € L®(Q), and suppose 2 < p < co. We have, for p~! = a/2+ (1 —a)/(p+1),
using the generalized Holder inequality,

1f = Pafllo < If = PuflSIf = PufIl,=5-

Hence, ||f — P, f|l, — 0 since 0 < a < 1 and ||f — P,f|[,+1 is bounded by a multiple of || f{[,+1.
The case 1 < p < 2 can be handled the same way. To prove that the system is unconditional, we
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build the following regular martingale on the probability space (Q, dx). Write Dy = {Qo, 4, ...}
in such a way that [Q,| > |Q,11], n > 0. Let By be the o-algebra generated by €y = @ and ().
Suppose B, has been defined, then we let B, ,; be the smallest o-algebra generated by B, and
Qni1. Let f € LP(Q). Tt is easy to check that the expectation EP f is given by the projection
onto span{xa,, Xa,s- - - » X, }» 50 fn = EBrf is indeed a regular martingale w.r.t. {B,}°°, and
it follows from Burkholder’s theorem that the martingale difference sequence {f,11 — fn}22,
converges unconditionally in LP(Q), 1 < p < oco. However, {fo, — fon_1} are just the partial
sums of the expansion of f in the generalized Haar wavelets and the result follows. [ |

3. GENERALIZED WALSH FUNCTIONS

The Walsh system on [0,1) is the system of basic wavelet packets associated with the Haar
multiresolution analysis, and using the setup introduced in the previous section we can use
the same scheme to obtain a natural generalization of the Walsh system to higher dimensional
domains.

Let mo(€) = 1 + L& “T2:9 be the low-pass for a generalized Haar wavelet as defined by (2.1).
We define the associated high-pass Haar filter by m; (&) = % — %e‘“FQ’f). We have the following
definition of the generalized Walsh functions.

Definition 3.1. The generalized Walsh function {W,}>2, are the basic wavelet packets gen-
erated by the Haar low-pass and high-pass filters starting from the Haar scaling function and
wavelet.

Remark 3.2. The generalized Walsh functions can also be defined recursively by letting Wy (x) =
Xo(7z) and then we define {W,}>°, recursively by

Wanse (@) = Wa(Az) + (1) Wy (Az —Tg),  e=0,1.

The third possible definition is to view the generalized Walsh system as the product system on
the probability space (@, dx) defined by the generalized Rademacher functions. The generalized
Rademacher functions are obtained by letting

ro(x) = Z H(z — k) € L™ (R?),

where H is the Haar function of Definition 2.1, and then we define r,,(z) = ro(A"z). Then for
n € Ny with binary expansion n =377 £;2’ we have

Wa(e) = xola) [[ @),

which can be proved easily by induction. Notice that an easy consequence of this definition is
that

(3'1) Wn(l')Wm(.’L‘) = Wn@m(x)a

where @ is the bitwise “exclusive or” operator.

Remark 3.3. From an abstract point of view there is no difference between the Walsh system
and the Generalized Walsh system, they are both realizations of the characters for the group 2V,
however the probability spaces in which the realizations live are very different which makes the
functions adapted to analysis of different types of objects.
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The first thing we want to check is that the generalized Walsh system constitutes a Schauder
basis for LP(Q), for 1 < p < co. This will be the content of Theorem 3.6. But first let us first
recall some important facts about the classical Walsh system on [0,1). The system is defined
recursively on [0, 1) by letting Wy = xo,1) and

Wonie(x) = Wy (22) + (=1)°W,, (22 — 1), e=0,1.

Clearly, this is a special case of our new construction with d = 1. One important fact we need is
that for 27 < n < 27*! we have
27 -1

Wa(z) = Y Wyas(s27 )W (272 — s)

The 27 x 27-matrix defined by (H,);; = 27/W;(j277) for 4,5 = 0,1,...,27 — 1, is called the
Hadamard matrix of order 27. The proof of this fact can be found in [13], and we will in fact
prove a more general statement in Section 4. The following lemma about the generalized Haar
functions is elementary and we leave the proof to the reader.

Lemma 3.4. Suppose ' C Dy is a finite subset for which f =3 o pcoHg € W;. Then

1/p
£l = 290/274P) < > |Cn|”) :

QeF

From this simple Lemma, and from the fact that the classical Walsh system is a Schauder
basic for LP[0,1), 1 < p < oo, we can deduce the following property of the Hadamard matrix

Lemma 3.5. Let H,, be the 2" x 2" Hadamard matriz, and let D}, be the 2™ x 2" diagonal matriz
with m 1's in the upper left corner and zeros everywhere else. Then there exits a constant C
independent of m and n such that

| Hn Doy Hi || ew—sor < C.

. n on+1 on
Proof. Given {¢;}7.; C Cwe form f =37 . ¢j 91 Wj and f,, = Zj:;n ¢j_on1W;, where

{W;}, the Walsh system on [0,1). We have, by the Schauder basis properties of the Walsh
system,

[ fnlly < ClIf Iy,

with C' independent of m and n. Recall that the Hadamard matrix #,, is the change of basis
matrix between the Walsh basis for 1W,, and the Haar basis for the same space. Hence, by Lemma
3.4

£l = 22PN [(c)ller and || finllp = 2722 H Dt H [ Ho ()] lev
and we conclude that
| Hn D H || p—ser < C.

[ |

We notice that for 27 < n < 2/*! the wavelet packet W, is given as a sum of exactly 27
wavelets in W; with the expansion coefficients given by the procedure outlined in Definition 1.3.
The coefficients of the generalized Haar low-pass and high-pass filters are the same as in the
one-dimensional case so we deduce that there is an ordering of the generalized Haar functions
{Ha}aep,,jo)=2-+ such that the wavelet packets {Wn}i‘:;fl is given by the Hadamard transform
of the Haar functions w.r.t. this ordering. We can now state and prove the following result.

Theorem 3.6. Let {W, }:°, be a generalized Walsh system. Then {W,}>, form a Schauder
basis for LP(Q), 1 < p < o0.
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Proof: The generalized Walsh system is dense in L?(()) since it is possible to write every Haar
wavelet H; as a finite linear combination of generalized Walsh functions, and the Haar system
is dense in LP(Q) by Theorem 2.2. So, given f, = Z;:& e, W; for some sequence {c;} C C, it
suffices to prove that there exists a constant C' such that || f,|l, < C| f.|l, whenever m < n.
Define s,k > 0 by m = 25 + k, k < 2°, and write f,, = fos + (fin — fos). Clearly, fos = Py, fn
so || fas|lp < C||fullp by Theorem 2.2. All that remains is to bound f,, — fos € W;. Let M, =
(W, HI>]?S:+215,H1€WS be the change of basis matrix from the generalized Walsh basis for W to
the Haar basis for W,. There exists a ordering of the Haar functions {Hg}m‘:ﬁ such that the
change of basis matrix is given by the Hadamard Transform, and the coefficients of f,,, — fos in
the Haar basis are thus given by,

M, D3, M [ M (¢;) 2571,
where D7 is the 2° x 2° diagonal matrix with m 1’s in the upper left corner and zeros everywhere

else. By Lemma 3.5, || M,D3 MM, (c;)25 7 [l < C||MyD3 M [M(c;) 25 ler with C a
constant independent of m and s. Hence, from Lemma 3.4 we deduce that

[fm = Fasllp < CllPw, fully < Cill fullp,

and we are done. [}

For technical reasons we will need the following special class of dilation matrices.

Definition 3.7. Let A be a (d x d)-dilation matrix with |det A| = 2. We say that A is almost
isotropic if there exist integers s,t such that A% = 2T, where I; is the (d x d) identity matrix.

Remark 3.8. One example of an almost isotropic dilation matrix is the quincunx dilation
1 -1
which satisfies A% = 161,. This example shows that the structure of the multiresolution analysis

associated with an almost isotropic dilation matrix can be significantly different from the pure
isotropic case.

Remark 3.9. Any 2 x 2 dilation matrix with determinant 42 is almost isotropic, which follows
from the characterization of such matrices given in [1].

Fix a Haar multiresolution analysis associated with a (dx d)-dilation matrix A with |det A| = 2.
Let @ be a tile associate with this matrix, and let {W,}, be the associated Walsh functions.
The following operator will be fundamental in our study of the metric properties of the Walsh
wavelet packet library.

Definition 3.10. The Carleson operator G for the wavelet packet system {wy}, is defined by

(Gf = Sup Z Z f7 wn k)>wn(aj - k) )

N201n=0 peza k<N
for f € LP(Q), 1 <p < .

The Carleson operator picks out the partial sum with the worst pointwise behavior at each
point z € (). It is clearly not a priori obvious that the operator for a given system is finite at
any point for general functions f, but the following will be proved in Appendix A. We remind
the reader that an operator 7" mapping LP(R?) into the set of measurable functions is of strong
type (p,p) if T is sub-linear and satisfies ||T'f||, < C,||f||, for some finite constant C,.
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Theorem 3.11. The Carleson operator associated with any generalized Walsh system generated
by an almost isotropic dilation matriz is of strong type (p,p), 1 < p < oc.

Remark 3.12. There are several proofs of this fact for the one dimensional Walsh system, see eg.
[2, 14]. The proof we outline in the appendix is based a technique introduced by C. Thiele in
[18].

The Corollary below follows by standard arguments from Theorem 3.11.

Corollary 3.13. The Walsh wavelet packet expansion of any f € LP(Q), 1 < p < 00, converges
a.e.

4. SMOOTH WALSH TYPE FUNCTIONS

The expansion of L” functions in the generalized Walsh functions works well as we have seen in
the previous section, however the basis functions are not continuous which can be a problem for
certain applications. The aim of this section is to introduce smooth analogues of the generalized
Walsh system with the same nice LP-properties. Let us define the class of functions we have in
mind.

Definition 4.1. Let {W{f}nzo,kez be a family of non-stationary wavelet packets constructed by
using a family {(m, mgp))};gl of finite filters in Definition 1. If there exists a constant J € N

such that (mgp ), m§” )) is the Haar low-pass and high-pass filter, respectively, for every p > J and
w; has compact support then we call {W;f}nzo a family of Walsh type wavelet packets.

We have to state and prove a few technical lemmas before we can attack the main result
stated in Theorem 4.10 below. The lemmas below are well known results in the one-dimensional
isotropic case, and we just have to tweak the proofs a little bit to make them work for almost
isotropic dilation in R?. The techniques used should be well know to the reader, so we will only
give the outlines of the proofs. Further details on the techniques can be found in [9, 10, 19].

Lemma 4.2. Let A be an almost isotropic (d x d)-dilation matriz, and let f* € C*(R?)NL?(RY),
1 =1,2, be two functions for which
@)L 10/0e:fi (@) < O+ o) 4, i=1,2,.. dj=12,
for some constant C. Suppose {f;, = 2012 f2(AT + —k)}jenpeza is an orthonormal system for
i=1,2, and let ¢ € (*°(Z x Z%) with ||g||g~ < 1. Then the operator T : L?(R4) — L*(R?) defined
by
Tg= Z einlg Fi Fine

JE€Z ke74
can be extended to a bounded operator on LP(RY), 1 < p < oo, with bound independent of .
Proof: Fix the nonnegative integers s,t such that A* = 2!1;, and take any finite sequence

e € Z x 2% with ||e]|g~ < 1. We can write any integer j as j = us+r with u € Z and 0 < r < s.
Hence

Tg= Z 5j,k<gafj1,k> j2,k

JEZ ke

s—1
— Z Z 5us+r,k<g; 2j/2f1(2tuAr . _k)>2j/2f2(2tuArx . k)

r=0 €7 kczd
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It follows that

s—1
||Tg||p S CZ Z 5us+r,k<97 2tdu/2f1(2tuAT‘ . _k)>2tdu/2f2(2tuArx - k) :
r=0 " ueZ, ke’ »

where we have used that j = tdu + r. Now, each term on the right can be shown to be asso-
ciated with a Calderén-Zygmund operator using a straightforward modification of well known
estimates, see eg. [19, 10], using the decay of f* and 9/0x; f7. [ |

The following Lemma generalizes Lemma 12 in [11].

Lemma 4.3. Let U be a wavelet associated with an almost isotropic (d x d)-dilation matriz A,
and let H be a generalized Haar wavelet for the same dilation. Suppose ¥ € C*(R?) satisfies

[W(2)], 0/0 U (x)| < C(1+ [2) 7, i=1,2,....d,

for some constant C. Then the wavelet systems generated by ¥ and H, respectively, are equivalent
unconditional bases for LP(R%), 1 < p < oo.

Proof. We can use the same technique as in proof presented on pages 166-167 of [10]. The
kernel for the operator P mapping one system onto the other is given by

K.(z,y) = Z eix2 H(Alx — k)U(Aly — k).
JEZ keZd

K.(x,y) is smooth in the y-variable and we can use the same argument as in Lemma 4.2 to show
that P is bounded on LP(R%), 1 < p < 2. All that remains is to prove that P* is bounded from
LY(R%) into L}, (R?). To do this, we take f € L'(R?) N L?(R?) and make a Calderon-Zygmund
decomposition of f at level a > 0 with the twist that the decomposition be based not on dyadic
d-cubes but on the )-dyadic sets in D. There is no problem making this type of decomposition
following the outline in e.g. [4, Chap. 9] since for a.a. x € R there is a sequence {Q;}32, C D
with |@;| = 277 for which the Lebesgue theorem of differentiation holds. This due to the fact
that A is almost isotropic (the eccentricity of the sets in D is uniformly bounded). With this
slightly modified Calderén-Zygmund decomposition in hand we can complete the proof of the

Lemma by following [10, p. 167]. |

We now use the Lemmas presented above to obtain the first interesting conclusion about the
Walsh type wavelet packets, the generalized Walsh type wavelet packets are equivalent to the
Walsh functions in LP(R¢), 1 < p < oo.

Lemma 4.4. Let {W,}>°, be a generalized Walsh systems and {W5}5°, a Walsh type system
associated with the same almost isotropic d x d-dilation matriz. Suppose W5 € C*(R?) and

W3 (@), 19/ W ()] < C(L+1al)™ ", i=1,2,....d,

for some constants C,c > 0. Then there exists an isomorphism P : LP(R?) — LP(RY), 1 < p <
0o, for which PW,(- — k) = W3 (- — k).

Proof. Let K be the scale from which only the Haar filters are used to generate the Walsh type
wavelet packets. Let {V;} be the Haar MRA associated with the generalized Walsh functions.
Since Py, is bounded on LP(R?) it suffices to prove that PPy, and P(1 — Py, ) are bounded.
One can easily check that PPy, is bounded by brute force estimates on the kernel using that
only 2% different functions (and their integer translates) are involved.

We turn to P(1 — Py,.). Let T : LP(RY) — LP(R?) be one of the isomorphism from Lemma
4.3 mapping the generalized Haar system onto some C!'(R?) wavelet system generated by the
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wavelet W. We use the map T' to define an intermediary system {W}(z — &)}, ., defined
by Wi(x — k) = TW,(z — k). The new system is clearly equivalent to the generalized Walsh

system. Let o7, = 20/2W$(A7 - —k) and g, = 2//*W!(A7- —Fk). Notice that
{g?,k}?"éndf(“,(j,k)erZd and {U;‘L,k}QKgnQKH,(j,k)erZd

are both orthonormal bases for L?(R?). It follows from lemma 4.2 that there is an isomorphism
U: LP(RY) — LP(R?) for which

Uiy = Viks 2K <n < 2K (5 k) € Z x Z°.
Let n > 2¥*1 We expand W3 (z — k) to get
(41) WS("E - k) = ch,svzys(flf — k),
sEF

with 28 <n < 251 and F C Z? a finite set (depending on n). The coefficients ¢, s depend only
on n and the Haar filter. Thus, W/ (z — k) has the same expansion:

(4.2) Wiz = k) = cnugic(x— k).
seF

We conclude that UW!(z — k) = W3 (z — k) for n > 25t and k € Z¢, i.e. the isomorphism
UT : *(RY) — LP(R?), 1 < p < oo, maps W, (z — k) onto W2 (z — k) for n > 2K+ This
completes the proof of the Lemma. [ |

Remark 4.5. The previous Lemma shows that the generalized Walsh type functions do form a
Schauder basis for LP(R?), 1 < p < co. However, the system is bound to fail as a basis for L' (R?)
since the functions are uniformly bounded.

Lemma 4.6. Let A be an almost isotropic (d x d)-dilation matriz associated with an MRA {V;}
with scaling function ® satisfying

[@(x)] < C(L+ =)™,
for some € > 0. Then the Carleson operator, f — sup; |Py. f(x)|, associated with the projections
J J

onto V; is of strong type (p,p), 1 < p < oo.

Proof. By assumption, A% = 2!, for some s,t € N, and for j € Z we write j = su + r with
0 <r < s. Then the kernel of the projection onto V; can be written as
Kj(z,y) = > Y0(Alz — k)D(Aly — k)
kezd
=27y 22 A — k) D2 ATy — k),

kezd

where we have used that s = ¢td. From this and standard estimates we deduce that
|K;(z,y)| < C2(1 42"z —y|) =",
with C' is a constant independent of j. But then it follows from [15, p. 62] that, for f € LP(R%),

P =| [ Kiteanswa < osio),

where M is the Hardy-Littlewood maximal operator. Hence, sup; |Py, f(x)| < CM f(z) and we
are done. u
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Remark 4.7. The idea of using the maximal function to bound the scaling space projections is
due to T. Tao [17].

Note that there is exactly 27 values of k € Z¢ for which the function xo(A’x — k) has support
contained in Q. Let F; C Z¢ denote the set of such k’s. We let Q7 = supp{xq(4/z—k)}, k € F;.

Lemma 4.8. Let f; € L*(R?), and define {f,,}n>2 recursively by
f2n+€(x) = fn(Ax) + (_1)Efn(143j - F)a €= 07 L.
Then forn, J €N, 27 <n < 27+ we have
R =Y (10007 [ W we)ao) e -,
kEF; Qi
Proof. Clearly, it suffices to prove that
Walz) = <|Qk| 1/ W o (w )dw)Wl(A z—k).
keFy

However, since 27 < n < 27+ it follows from (3.1) that W, (z) = W, _ss(x)Wys (z). Then the
result follows from the fact that each W,_ys (), 27 < n < 27F1 is constant on each set Q] and

supp{Wi (A”z — k)} = Q. .

Remark 4.9. We will use the notation f(Qj) to denote the average
Qil™ [ f(w)dw.
@

We can state the main result about generalized Walsh type wavelet packets.

Theorem 4.10. Let L be the Carleson operator for a basic Walsh type wavelet packet system
(W31, with Wy € CH(R?). Then L is of strong type (p,p), 1 < p < oo.

Proof. Let us begin by reducing the problem. Choose N € N such that supp(W?) C [N, N]¢
for n > 0. Fix p € (1, 00) and take any

fl@)y= Y capWs(z—k) € LP(RY).

n>0,keZd

T) = Z o3 (v — k), gr(z) = Z CoxWh(x — k).

n>0 n>0
We have || fi||, = ||gkllp, with bounds independent of k, by Lemma 4.4. Note that for ¢ € Z¢,

Define

freq+ 00" [Lf@)] > o} < /uvk VP d,

lk— q\< (N+1)d

so (using the Marcinkiewicz interpolation theorem) it suffices to prove that ||Lfx|l, < C|l fellp,
where C'is a constant independent of k, since

Yoo RS2 DY AL < C2UN )T Y lgelly < C2UN + 1)) £

q€Z4 |k—q|<(N+1)d kezd kezd
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We can, w.l.o.g., assume that £k = 0. Let K € N be the scale from which only the Haar filter is
used to generate the wavelet packets {W3},sox+1. Let m € N and suppose 27 < m < 27** for
some J > K + 1. Clearly, for each z € R?,

m 2K+l 27 -1 m
ch,ow;f(x) = Z CnoWS () + Z CnoW3 () + Z Cno WS (1),
n=0 n=0 n=2K+1 n=27
so we have
(4.3)
m m 2741
sup | Y e, oW (@) < sup | Y e oWi(@)| 4+ sup | oW (@) + sup (M, fo)(x),
mzl] "o I<m<K+L ] 2 J>E+1 n=2K+1 T>EH
where
m
(Myfo)(w) = sup | Y cagWi(2)].
2JSm<2J+1 —
We use brute force to estimated the first term of (4.3)
m 2K+
sup Y eaaWi@)| < D7 fenol IWE@)laex(vve (@)
0<m< 2K+ | 7, n—0
2K+
<[folls D IRl IS (@)oo X w272 (%)
n=0
The second term of (4.3) satisfies
2941
sup | D oWl (@) | < Cllfolly
I>K+1] »
by Lemma 4.6 since
27 +1
D" noWi (@) = Py fo(x) — Py, fo()
n=2K+1
SO
27 +1
sup cnoWs ()| < 2sup | Py, fo(z)).
I>E+1| S J
The challenge is to prove that the third term is of type (p,p). Note that
2K 1 ‘
(M fo)(w) < D (M fo) (),
=0
where
) m
(M7 fo)(z) = sup Y. i@,
27 4527 =K <m<2 +-(j+1)27 K n=27 ;27K

so it suffices to prove that

I sup (M7 fo)llp < Cllfolly
J>K+1
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for j=0,1,..28 ~1.Fix J > K+1,0<j <28 —1, and 27 + 27 K <m <27+ (j +1)2/ K.
We have, using Lemma 4.8,

m m
Yoo aaWi@)| =] Y. { > cn,ownZJjZJ_K(QSJK)}WgKH(AJK:c—s).
n=2J 4+j2J-K seEF;_k n=2J4j2/-K
Define
m
Fu)= Y cnoWnor_jor-x(t), and F(t)= sup |F (1))
n=27 4527 -K m<2J +(j+1)27 K

The following estimate follows easily

m

Y ai@)|< Y F@ WA e )
n=27 +j27~K s€F)_k
Then using the fact that supp(WfKH) C [~ N, N]? we obtain the following estimate
> aMi@)| < Wiyl > F@TY),
TL:Z‘I—I—]'Q‘I*K SEFJ_KQSJ_K(:L‘)

where S;_g(z) = A7 Kz +[-N —1,N + 1] C R?. Notice that S;_g(x) N F;_g contains at
most 2¢(N + 1)¢ points. We need an estimate of F' that does not depend on J. Note that for k,
0 <k <2/7K using (3.1),

W2J+j2J—K(u))Wk (u)) = W2J+j2J—K+k((U),
since the binary expansions of 27 4 27X and of k¥ have no 1’s in common. Hence,

m

Z CnoWh(w)

n=27 4j2J—K

so F(w) < 2(Ggp)(w), with G the Carleson operator for the generalized Walsh system. Thus,

AWl S QIR /Q | Ggolw) do.

SGFJ,KOSJ,K(.’L')

Y

| Fon ()] = [Warjor-x (W) Frn(w)] =

m

Z CnoWs (2)

n=27 4527~ K

We let Q% be the smallest dyadic d-cube centered at x containing Q7 %. Note that |Q¥] <
C24N +1)% Q7 X|. We have

S W@ AWl S QIR / (Ggo)(t) dt
TL:2J+j2‘]_K SGFJ,KOSJ,K(.’L') Q3

(4.4) < ClWgie il (N + 1)* (M Ggo) (2),

where M is the maximal operator of Hardy and Littlewood. The righthand side of (4.4) does
not depend on m nor J so we may conclude that

JSlfl(Iil(Mgfo)(x) < ClWyiyillo2* (N + 1)* (MGgo)(x),  ace.
>

and thus, since M and G are both of strong type (p,p) (see Theorem 3.11),

I sup (M7 fo)lly < Cllgolly < Cull follps 5 =0,1,...25 =1,
J>K+1
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and we are done. [ |

The pointwise convergence result now follows by a standard argument (see [5])

Corollary 4.11. The Walsh type wavelet packet expansion of any f € LP(RY), 1 < p < oo,
CONVErges a.e.

The basic Walsh type wavelet packets is only one out of an infinite number of the possible
Walsh type wavelet packet bases given by Theorem 1.5 and it is interesting to know if we have
the same convergence properties for other bases in the library. Fortunately, it turns out that
we can generalize the above Corollary to any basis in the library, and the key to this result is
the possibility of decomposing the partial sum operator for a given wavelet packet system in the
basic wavelet packets. In fact, the proof below shows that the basis wavelet packets always have
the worst metric properties of all the bases in the library.

Corollary 4.12. Let P = {I,;} be a partition of Ny as in Theorem 1.5. Let f € LP(R?),
1 < p < 00. Define the partial sum operator for the Walsh type wavelet packet system associated
with P by
Svf@)y= > (LYPWIA - —k)2PW (A — k).
I, ;€P:n-j<N,keZd
We have Sy f(z) — f in LP(R%)-norm and pointwise a.e.

Proof. Consider Sy f(z). By the proof of Theorem 1.5 there is an N < N such that

N
Swf@) = Y (FWI( = k)W (z — k).
n=0 kezd
From this we obtain the pointwise bound |Sy f(x)| < Lf(z), where L is the Carleson operator
for the Walsh type system. Thus, the Carleson operator for the wavelet packet system given by
P, supy [Sn(f)(x)], is bounded pointwise by Lf(x) and is thus of strong type (p,p), 1 < p < 0.
Both claims of the Corollary follow easily from this fact. [

Remark 4.13. In one dimension, the above Corollary generalizes the results obtained by the
author in [12].

5. PERIODIC WAVELET PACKETS

The process of 1-periodization works well for one-dimensional wavelet and wavelet packets due
to the fact that the one-dimensional multiresolution structure is based on integer shifts. The
same is true for the general multiresolution structure in Definition 1.1 so it should be no surprise
to the reader that we can periodize the nonseparable wavelet packets and obtain the same useful
results as in the one dimensional case. We will just state the results and leave the easy details
to the reader.

Let {W,}, be a wavelet packet system in R? for which each W, € L}(R?). For the wavelet
packet W, j x(z) = 27/2W, (A7 (x — k)) we can define the associated periodized wavelet packet by

Wiie(@) = xs(@)22 Y Wa(A (@ —7) = k),

yEZ

where ¥ is any tile of R? such as @Q itself or the fundamental domain [0,1)?. One can easily
verify that Theorem 1.5 is still true with the obvious modification that the space €2, be defined

as the closed span of {WP |k € Z}. Also, notice that the dimension of span{W}5 |k € Z7} is

exactly 2. For periodic Walsh type wavelet packets we obtain the periodic analog of Theorem
4.10.
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Corollary 5.1. Consider a system of periodic Walsh type wavelet packets {ngio}n for which
W, € CHR?). Let f € LP(X), 1 < p < oco. Then

N

D (F WS Wigo(@) — f, as N = oo,

n=0

in LP(X)-norm and pointwise a.e.

Remark 5.2. The result can be proved by using the compact support of the aperiodic Walsh type
wavelet packets to bound the Carleson operator for the periodic system by the Carleson operator
for the aperiodic system.

Remark 5.3. The periodic version of the one-dimensional Walsh system is the system itself, so
this case is not that interesting. However, for higher dimensional Walsh systems periodization has
the advantage that it can transform the fundamental domain from the potentially complicated
fractal tile Q to a less complicated fundamental domain such as [0, 1)

6. SOME ExAMPLES OF C*(R?) WALSH TYPE WAVELET PACKETS

We have all the machinery to obtain nice nonseparable C*(R?) wavelet packets with good LP
and pointwise properties provided that we can find appropriate low-pass filters yielding com-
pactly supported C*(R?), k > 1, scaling functions associated with the given dilation matrix A.
Unfortunately, such constructions are difficult in general mainly due to the fact that not every
nonnegative trigonometric polynomial of two variables admits a spectral factorization. We re-
mind the reader that it is still an open problem whether the quincunx dilation admits a C''(R?)
compactly supported scaling function. However, a construction of C*-wavelets, k > 1, is carried
out in [1] for the special case of a 2 x 2-dilation matrix A satisfying A? = 21, such as

(6.1) A= [(1) g].

We can obviously use these compactly supported scaling function/wavelet pairs and the associ-
ated filters in Definition 4.1 to construct examples of nonseparable Walsh type wavelet packets
of type C¥(R?), for k =1,2,....

APPENDIX A. A PROOF OF THEOREM 3.11

We give a proof of Theorem 3.11 based on an elegant technique introduced by C. Thiele in [18],
which he used to prove the same result for the one-dimensional Walsh system. We have made
some adjustments to adapted the proof to the present multidimensional setting, but a large part
of combinatorics involved in the proof of Theorem 3.11 is virtually identical to the combinatorics
presented in [18] so we will only state those results and refer the reader to [18] for the details.

First, some notation. Fix a generalized Walsh system {W,}, associated with the tile (). The
set F = @ x Ny is called the generalized Walsh phase plane. Let Q2 € D, (see page 2 for the
definition of Dy) and j,n > 0. Consider sets of the form

Qx {n2/,n27 +1,... ,n2"" — 1} € Q x N,.

We call such a set a tile if 2/|Q2] = 1 and a bitile if 2/|Q2| = 2. We let 7 and B denote the
collection of all tiles and bitiles, respectively. Let P be a tile or bitile. We use the notation
P = Qp X wp to separate the time and frequency sets of P. For E C F we define the following
projection operator

Mpf(@)= ) ([ Wa)Wala).

n:(z,n)eE
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The Carleson operator associated with the function b : @ — NN [0,2"] is defined by I, where
Ey={(z,n) C Q@ x Ny : n < b(x)}. It is clear that Theorem 3.11 will follow if we can prove that
I, is of strong type on LP(Q), 1 < p < oo, with bound independent of b and N (the bound will
depend on p).

We define a partial ordering on B by saying that P < P' if PN P’ # () and Qp C Qpr (or
equivalently wp C wp).

We fix f € LP(Q), 1 <p < oo. For each P € B we define the associated density

dp = | logy sup [|p:fllo |-
P<P!

Using the ordering of the bitiles we split B according to their density as follows

e T, ={PeB:dp=k}.

e 7. = {maximal bitiles in 7y w.r.t. the given partial ordering of B}.
e T, ={P€T:2"<|P €T :P <P} <2t}

o 7,5 = {maximal bitiles in T;; w.r.t. the given partial ordering of B}.

Each set 7y ; is called a forest, and for R € 7,7}** we define the tree Ty ; p = ={P € Ti;|P < R} and
call R the tree top. One can easﬂy check using the definition of the den51ty dthatif P\, P» € Tir
and P € Bis such that P, < P < P, then P € T;; . We call a set of bitiles with this property
convex.

Let P=Q X {n,...,n'— 1} be a bitile. We split P in to an lower tile [p = Q x {n,... ,(n+
n')/2 — 1} and an upper tile up = Q@ x {(n +n')/2,...,n'}, and let Ep be the set of all points
(x,n) contained in the lower tile of P, such that (x,b(z)) is contained in the upper tile of P.

Then we have the following combinatorial type lemma.

Lemma A.1 ([18]). 1. The union

U B

pPeB

s a partition of Ey.

2. Let E be a disjoint union of tiles, and let p be the collection of all tiles that are subsets of
E. Then E is the disjoint union of the minimal (mazximal) tiles in p.

3. The union of a finite convex collection of bitiles can be written as a disjoint union of tiles.

4. Let p be a tile and E a subset of the phase plane such that p C E. If E can be written as a
union of tiles, then E\p can be written as a union of tiles.

We let Tp = Ilg,, and from Lemma A.1.1 we obtain the finite decomposition Iy, = ZPEZ; Tp
(the sum is finite since b is bounded). For finite subsets = C B we use the notation 7z to denote
the operator ), Tp.

We note that any bitile in 7 is dominated by at least one maximal bitile or else we could
obtain an infinite sequence of associated time intervals {Qp, }3°, C @ with |Qp, | = 2% which is
impossible since |)] = 1. The same argument shows that each bitile in 7y ; is dominated by at
least one bitile in 7,7**. Thus, 7y is partitioned by the forests contained in it, and each forest is
the union of its trees. The trees actually form a partition of of the forest, which can be deduced
as follows. Suppose a bitile P € Ty ; is smaller than the two distinct tree tops R, and Ry. Then
Qp C Qr, NQg, # 0. Notice that by the definition of Ty ; there are less than 2! bitiles of 7,m2*
greater than P, but at least 2¢ of them greater than each of the tree tops, so that there must be
a bitile M greater than both tree tops, which means that wy C wg, Nwg, # 0 so R; and Ry are
comparable and thus equal since they are maximal. Hence the partition 7, = UReT,;j‘fXﬁ,i,R and
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we obtain the corresponding decomposition of the Carleson operator

HEb = Z TTk,i,R'

i>0,k€7, RETmax

The following two Lemmas will provide the estimates on “tree operators” we need to prove the
Theorem.

Lemma A.2. For q € (1,00) there is a constant C, such that for every tree Ty; r we have
||T77c,i,R||q < CQ‘

Proof. Define T; = {P € Ty r|lp Nlg = 0} and Ty = Ty g\ T;. Clearly, Ty, , , = Ty, + T,
and we will handle each of the terms separately.

First we consider Typ,. Take P, P’ € T, with P # P’. We claim that up N upr = (). The only
nontrivial case of the claim is when P and P’ are comparable, say P < P’ < R. But then P, P’,
and R have a common nonempty intersection necessarily contained in [p NIp: by the definition of
T,. It follows that wpr C wp and the inclusion is strict since P # P’. Thus wpr C w;, so up and
upr are disjoint as claimed. It follows that T f and T are supported on disjoint sets. Recall
that for any tile p there is exactly one generalized Walsh wavelet packet W, with time-frequency
support equal to p. Hence,

(A1) Mf(2) = xo, @) 3 (s Wasey) Wase, = (s Way ) Way oy
Q:|Q||wp|=1

from which we get

(A2)  |Tef(2)] < | f(2)] = |(f, W)W, (2)] < |Q—ll| 1)y < OMF@),

where we have used that A is almost isotropic which implies that the sets );, have bounded
eccentricity so there exists an d-ball B centered at x such that @Q;, C B and |Q,;,| > ¢|B| with
c independent of p. We conclude that ), p Tpf(z) can be bounded pointwise by a constant
times M f(x).

Next, we turn to Tr,. Pick a frequency N € lg, and let Ty = Il n)m<n}. Notice that
| Tn|l; < Cy by Lemma 3.6. Suppose we can find two tiles p and p' such that
(A.3) Tr, f(x) = (L,Ty f)(z) — (M Ty f) ().

Then using the same argument as above we can bound T, f(z) by 2CMTy f(x) which will prove
the Lemma.

Suppose T, f(z) # 0, and define E, = {n|(x,n) € P;}. We let P be a minimal bitile in P, such
that (z,b(z)) € up and let P’ be a maximal bitile with the same property, and define p = Q, xwp
where 2, is defined such that p is a tile and x € Q,, and we let p’ = up. The decomposition
(A.3) will follow at once if we can prove that E, = {n|n < N,n € w,, and n ¢ wy,} equals E,.
Given (xz,n) € Ey with U € P;. Then (z,b(z)) € uy and (z,n) € ly. Moreover, U < R so
wr C wy which implies that (z, N) € uy (note that (x, N) & Iy since U € P;). Hence n < N
and wy C wy since w, = Qp and P < U so n € w,. Also, (z,0(x)) € ug Nupr # 0 50 wy,, C wy,
since U < P'. But n € wy, so n € wy C w,,. Hence E, C E,. Conversely, given n € E,. Then
n < N and {(z,N), (z,b(x))} C up but (z,n) € up. Thus, n < b(x) and we can find a bitile
V such that (x,n) € Ey satisfying P <V < P'so V € Ty, r by convexity. It also follows that
V' € P, which implies E, C E, and we are done. |

Lemma A.3. For q € (1,00) there is a constant C, such that for every tree Ty ; r,
||T77c,i,Rf||q < 02k|QR|1/q7
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where C does not depend on the fized function f.

Proof. The area E of the tree 7;,; r is a convex union of bitiles so it follows from Lemma
A.1.3 that E can be written as a disjoint union of tiles. E\[p is also a disjoint union of tiles, so
using (A.1) we obtain that for P € 7Ty ; p the projections I\, and II;, are orthogonal. Hence,

I, 10g =10, (1L, + gy,) = 1,10, =11;,,

and we deduce that Tp f(z) = Tpllpf(x). Consequently 17, . . f = Ty, Jpf and || T, . fll, <
|77, . 2 llgllTIE f1lg- The support of Il f is contained in Q. Fix 2 € Qf and let P be the minimal
bitile in the tree containing x. Then wp is exactly the frequencies n such that (z,n) € E. To see
this we suppose (x,n) € E. Then there is a bitile P’ containing (z,n). Since P’ and P are smaller
than R, their frequency intervals both contain a point 7 € wg. Hence P and P’ are comparable
and P < P’ by the definition of P. Thus (z,n) € P. The opposite inclusion is trivial. Hence,
Mg f(z) = Upf(z) so from the densities of the bitiles in T,z we get ||lgf|lw < 281, Using
that the support of Il is contained in Qp we get the estimate ||ITxf||, < 28+1Qz|'/?. Combined
with the previous lemma this gives us | T7, , , fll, < C2¥|Qg|"1. |

Completion of the proof. The area of two distinct trees 7y ; g, and 7y, g, from the same
forest are clearly disjoint so we have, for ¢ > 0,

T f@)" =Y |Tr, . f(@),
RET

which combined with Lemma A.3 implies

1/q
(A.4) ||Tn,if||qsc2'“( 3 |QR|)

RET

For P € T, consider the bitiles R in 7;3* which are smaller than P. The time intervals of
these bitiles are contained in {2p and must be pairwise disjoint because otherwise the frequency
intervals of two such bitiles with nonempty intersection would both contain wp and thus make
two of the bitiles in 7,";** comparable, which is clearly not the case. This observation gives us

the following estimate
Z Qr| < [Qp].

ReT:R<P
We add this inequality up for all the bitiles P € T,™* using the fact that each R € T3*
dominates at least 2 bitiles from 7,™#* to obtain

(A.5) 23 k< Y (sl
RE",’kr?iax P€7’kmax

Next, we observe that any tile p we have the important property that ||[IL,f[|3 = [|IL, f||% |21,
which follows from (A.1) Thus for any bitile P,

2Tp fII; = 2(I Ty f1I2 + [T, £112)
= 2{Qp (M, f11% + 1T, £115)

> [|[Tp 12|20 |-
So from the fact that the time intervals of the bitile in 7,"%* are pairwise disjoint we have
1 1
(A.6) 1£15 > Z TR f15 > Z §||HPf||c2>o|QP| > 52% Z Qp],

PE']’kma.x PE']'krnax P€7’kmax
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where we used the definition of the density of the tiles in 7,**. We use (A.5) in (A.6) and
combine with (A.4) to conclude that

T, fllg < C2F|| f||3/ %2~ @404,
Fix K € Z, and let ¢ > 2. We add all bitiles with density less than or equal to K to get

ok(1-2/q) B
(A7) > Tef|| <CIFR" Y g < IR 280,
Piap<K q k<K,i>0
from which we obtain the following weak estimate
AN V] &
(A.8) {o:] Do Tef@)] > 2"} < Clfl =55 = O

P:ap<K

To get the general result we follow R. Hunt and verify that restricted type inequalities holds
for the Carleson operator, and then use interpolation of the restricted type inequalities (see e.g.
[16, Chap. V]) to get the full result. Let us suppose f = xq, @ C Q. Then ||f||5 = |||} for
1 < p < oo. Notice that no bitile can have density larger than 1 so taking taking K = 1 in (A.7)
immediately gives us the bound ||Tpf|, < C||f||,, which is the required restricted inequality.
For 1 <p<2weputr—p=p(r—s)in (A.8) to get

(o] 5 Tos)] > o) < ol _ o1
: P x)‘>2 }‘§C2PK_C2]JK'

P:ap<pK
Next, consider g = ZP:GPWK Tpf. If x is in the support of g then x is contained in the time
interval of some bitile with density larger than pK, and it follows from (A.2) that M f(z) > C2PK.

Hence p
{x:|g(x)| > 2PKY| < [{z: M f(z) > C2PF}| < C||f||1 _ 17115

2pK 2pK -
The strong estimate now follows by interpolation. [ |
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