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Gridge approximation and Radon compass

V.E. Maiorov, K.I. Oskolkov and V.N. Temlyakov

Abstract

Gridge approzimation compiles greedy algorithms and ridge
approzimation. It is a class of algorithmic constructions of ridge func-
tions — finite linear combinations of planar waves. The goal is to
approximate a given target which is a multivariate function. On each
step, a new planar wave is added to the preceeding linear combination.
This wave is selected greedily, i. e. optimally with regard to both the
direction of propagation and the profile. In Mathematical Statistics,
gridge approximation is known as projection pursuit regression. We
consider gridge approximation in weighted Hilbert functional spaces
on d-dimensional Euclidean space.

The notion of Radon compass is introduced, which is a tool of
search of the optimal direction of propagation on each step of the
algorithm.

The main quantitative result concerns error estimates for gridge
processes in the norm of Hilbert space of functions supported on the
unit ball, with regard to Lebesgue measure. Fourier analysis of Radon
transformation, in terms of Chebyshev — Gegenbauer polynomials,
provides the crucial tool in such case.

For a rather wide class of target functions whose polynomial ap-
proximations do not decrease “too rapidly”, gridge approximation is
equally efficient as classical algebraic polynomial. In particular, gridge
approximation is not order-saturated.
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0.1 Ridge and polynomial approximation. Greedy al-
gorithm

Let R¢, d =1, 2,... denote the real d-dimensional Euclidean space of vectors
X = (T1,T2,...,2q),X Y i= T1y1 + - + Tqyq, |X| := /X x; further, B¢ :=
{x: |x| <1} and 8! := {x: |x| = 1} — the unit ball and the unit
sphere in R%; |B?, |S%!| - the volume of B? and the surface area of

Sl p(dx) = % ,u(dO) = % — normalized Lebesgue measures on B¢

and S, respectively. Let us fix d, for breviety denote B := B¢, S := S¢ !
and in the usual fashion introduce the Hilbert space £?(B) of functions f(x)
supported in B:

L2(B) = {f(x>: Il = £2B)| = ¢ [ 176 uldx) < oo}.
For M > 0, a natural N and f(x) € £2(B) let

Eu[f]:= min |f = Pl;

k
PEM .= Span {x’flxlgz - xdd} :
kitko+-+ka<M pepdM

RN = {S(X) > Wj(x-Oj)} ,onlf, R] = on[f] = Sieng lf— S|

J=1

P4M s the subspace of algebraic polynomials of degree < M, in d variables.
The quantity Ey;[f] is the classical best M-th degree polynomial approxima-
tion of f.

In the definition of the set RY, W;(z) are arbitrary single-variate func-
tions, and @, — arbitrary (unit) vectors. This set consists of all N-term linear
combinations S(x) of functions of the type planar wave. In the sequel, we
call S(x) € RY ridge functions of N-th order; the quantity ox[f] is known
as best free ridge approzimation of f in L*(B).

In the modern terminology, the set of all planar waves constitutes the
dictionary R. The quantity oyx[f, R| characterizes the best non-linear N-
term approximation with regard to R, see [1]. Here, wave profiles W,(z) and
91-J-1076, ONR/ARO DEPSCoR Grant DAAG55-98-1-0002;
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wave vectors (directions of propagation) 8, € S, are subjects of optimization.
This problem is indeed rather non-linear with respect to optimization of wave
vectors.

Let us note that the existence of the best N-term linear combination of
planar waves for N > 2 is non-trivial, due to the possible collapse effect of
wave vectors. For more details, see [8]— [10].

The gridge approzimation process also generates ridge functions

S() GNf7 Z

but now they are constructed step-wise, algorithmically.
By definition, the non-constrained version of such process (without re-
strictions on the wave profiles W (z)), is described by the following iterations:

Golf,x] =0, [fn(x):= f(x) - Gn[f,x];

(O, Wy(@)) i=arg min _min |f() = W(x- 0)].

GNJrl[f,X] = GN[f, ]+WN (X'ON), N = 0,1,... (1)

This algorithm (projection pursuit) was proposed in [4].

Clearly, gridge approximation may be a branching process, due to non-
uniqueness of argmin in @ on a certain step. In this case, we do not make
any preferences among optimal wave vectors. We fix a branch of the gridge
process and measure its effectiveness by R%[f] := || fn |-

Our primary goal is the following statement.

Theorem 1 Assume that the sequence of best polynomial approximations of
a function f(x) satisfies the estimate Ey[f] = O (Eay[f]), M — oo. Then

d—1

RE1 =0 (By s lf), N oo ©)
for any branch of the gridge approximation process.

Before turning to the proof, let us recall some related facts from the
theory of greedy algorithms.

The problem of gridge approximation is a particular case of a general
setting, see [2] and [1] where an arbitrary (normalized) dictionary D was
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considered, and efficiency of pure greedy algorithm with regard to D studied.
A set D of elements from a Hilbert space H is called a dictionary if each
g € D has norm one (||g|| = 1), and SpanD = H. For f € H, we denote
g(f) := argmaxyep |(f - g)| one of the elements from D which maximizes the
absolute value of the inner product (we make an additional assumption that
such maximizer exists). Let

Glf] = GIf; Dl == (f-9(fNg(f);  Rlf] = R[f;D]:= f — Gf].

Then the pure greedy algorithm (PGA) with regard to the dictionary D is
inductively defined by the relations: Ry[f] := f, Golf] := 0 and for m > 1

Gmlf] = Gnalfl + GBmalfl];  Bmlf] = f = Gulf] = R[Rmalf]].

There are some general results on efficiency of PGA in the case of a re-
dundant dictionary, see [2]. Redundancy means that D is not a minimal
system. The set R of all (normalized in £%(B)) ridge functions constitutes
such a redundant dictionary. Another classical example of redundant dic-
tionary for Hilbert space £2 ([0, 1]?) is the set II := £2([0,1]) x £%([0,1]),
with normalization in £2 ([0, 1]?). In the latter case, an m-term approximant
looks as follows:

i ¢y (1) (2).

A pioneering work in this direction was done by E. Schmidt [12]. It was
understood later that in the case of the dictionary II, the pure greedy algo-
rithm always, i. e. for each function f € £2 ([0, 1]?), realizes the best m-term
approximation with regard to II. This is a strong argument in favor of PGA
in nonlinear m-term approximation. However, [2] contains an example of a
redundant dictionary D that is an orthonormal basis {h;}32, with one extra
element added. For this dictionary and f = h; + hy one has

If = Gulf,D]|| > cm /2

where ¢ is a positive constant. This means that in general, PGA has a
saturation property. On the contrary, theorem 1 above shows that in the
case of the dictionary D, the PGA is not saturated.

Before turning to the proof, let us also comment on relations between

Enlfl, onlf] and RE[f]-



First of all, obviously on[f] < R%[f]-

Second, there are no a priori restrictions on the profiles of the waves in the
setting of ridge approximation problem. Thus, one has to be sure that the
terms of best polynomial approximations Ey,[f] are natural in the estimates
of efficiency of ridge approximations.

To justify this, one needs to exhibit sufficiently wide classes of functions
f(x) where the corresponding lower estimates are typical. Here, partial an-
swers were obtained in [8], [9] and [6], [13]. For d = 2 and for each radial
function, i. e. f(x) = f(|x|) the following estimates hold true, cf. [§]

onlf] > %EgN[f], N=12. ...

In [6], [13] Nikol’skii — Sobolev type spaces H" = H"(L*(B)) were considered.
For a fixed r > 0, let us define H" as the collection of all functions f(x) whose
polynomial approximations satisfy the estimate Ey[f] = O(M "), M — oo.
Then (cf. [6]) there exists a function f(x) € H" such that

on[f] > N"=1, N=1,2,...
Third, the upper estimates
O-N[f]SEN*I[f]’dZQ; O'N[f]SEcNﬁ[f],d23,020d>0, (3)

for free ridge approximations are true, without any restrictions concerning
the order of decay of the sequence {Ey/[f]}.

Indeed, let RN NPYM denote the subset of RY consisting of linear com-
binations of planar wave polynomials of degree < M:

RNPIM = {P(X) = Z pi(x-8;), pj(z) € Pl’M} :

Obviously, RN NPH™ c P4M_ On the other hand, it is also known, see e.
g. [11], that

pM = RN (Y PLM | where Ny = O (M'Fl) , M — o0,

that is, every polynomial P(x) € P4M can be represented as a ridge poly-
nomial of order N, and degree M, and the number N,; of planar wave
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polynomials required for the representation satisfies the indicated estimate 2
from above. In the particular case of d = 2, see e.g. [5], Nyy < M +1. These
purely algebraic facts imply estimates (3).

We will also prove an analogue of Theorem 1 concerning rates of gridge
polynomial approximation. The corresponding algorithm is defined by the
relations:

Gyl(x) :==0; Ry(x):= f(x)— G‘”l[f x],

(0w, pn(z)) = arg ESH;IEI;DI N H( — G )) —p(x-0)|;
GRL1(x) := G¥(x) +pn(x-0x), N=0,1,.... (4)

Such algorithm is, in general, also branching, because of non-uniqueness of
the minimizer in the wave vector 6. If we follow any of such branches, after
N > 1 steps the resulting approximant G&(x) of f(x) will be a sum of
planar wave polynomials,

N—
GR(x z_: p;(z) € P,

so that G&'(x) € RN O PLN-1,
Since the profiles of the waves are single-variate algebraic polynomials,

this algorithm may represent a bigger interest in applications.
For a fixed branch, let R [f] := ||Rn||-

Theorem 2 Assume that the sequence of best polynomial approximations of
a function f(x) satisfies the estimate En[f] = O (Ean[f]), M — oo. Then

R =0 (B 1), N oo 6

for any branch of the gridge polynomial approzimation process.

Let us outline the subsequent contents of the paper.

In the next section, Radon compass C[f,0], @ € S, is introduced. For
f € L%B), C[f,0] is a non-negative continuous function on the sphere S,
and the maximizer(s)

0N = arg%l?;( C[fN’e]a fN = f_GN[f]a (6)

2The exact values of the numbers v(M,d) := min {N : P4M = RN\ PLM} seem to
be unknown.




indicates the optimal wave vector on the N-th step of the gridge approxima-
tion. The definition of Radon compass is rather geometrical. It is applicable
to a wider class of gridge approximation processes in Hilbert spaces than
just £L2(B). However, in the case of £?(B) the sequence {C[fn,0]}x_, is
uniformly continuous on S (cf. lemma 3 below). The latter property seems
important in applications.

After it we address to Fourier — Chebyshev analysis in £2(B) which is
crucial in the error estimates. Basing on the corresponding Parceval identi-
ties, we derive the important property of polynomial shrinkage. The essence
is that optimization in profiles “ improves £?(B)-smoothness” along the se-
quences fy, Ry. This property is expressed by monotony relations of the
type En [fni1] < Enm[fn], N =0,1,.... In fact, using shrinkage on each
step, we substitute exact maximization of Radon compass by averaging over
the sphere: maxg_s C[fn,0] — [s C[fn,0] u(dB). In the other words,
the strict optimization of the couple (8, W (x)) is replaced by a “partially
stochastic”, as follows:

1 1 W(x-0)||? — 1 W(x-0)|?
min min If = W(x-0) s (in |f = W(x-0)[]" u(db).

In the end we reduce the estimation problem to that of convergence rates
of the sequence of truncated itegrals, of the type

1
QN1 §/ min(ay,e(£))d¢, N=0,1,...,
0

where £(€) is a positive integrable function.

0.2 Optimization of profiles. Radon compass

Let w(x), x € IR? be an integrable and, for simplicity sake, radial weight
function i. e. w(x) = w(|x|) > 0, [gre w(|x])dx = |8 [5° 2% w(z)dz <
co. Denote L2 <1Rd> the Hilbert space of functions f(x) square-integrable
with regard to w:

2 (1) = {100 [, ot ax |

722 (1) < o}



For a fixed wave vector @ and a function f € L2 (IRd>, let us consider
the problem of best approximation of f by planar waves propagating in the
direction of 6:

Hf —W(x-0),L2 (IRd> H — min in profiles W (zx). (7)

It is not hard to solve this problem using the direct Radon transforma-
tion. Namely, for a function g(x) € L£! (IRd> and @ € S* !, z € R, let
Rad[g; 6, z] := [_g_, 9(x)dx’ where the integration is taken with respect to
(d — 1)-dimensional Lebesgue measure on the hyperplane x - 8 = z.

Note that the Radon transform Rad[w; 8, x| of the weight does not depend
on 6 because w(x) = w(|x|), and in fact

Rad|w; 0, x| = /IRd_l w <\/x2 +axd 4+ m§_1> dzy---drg_q

= st [ (Vo) de
= DB 1™ ()6 — )5 de = wiata).

The weight w(x) = @, x € B% w(x) =0, |x| > 1 (normalized characteristic
function of B%), corresponds to the space £2(B). For this particular weight,

we have
B, s

wg(z) = B (1—2%),, z,:=max(z,0). (8)

Lemma 1 The optimal profile W(0,z) := arg mingy () in the problem (7)
is defined for x € B, := suppw,.q4 by

— B _ _ Rad[fw;0,2] Rad[fw;0,z]
WOD =L = Ra0a] — w0 O

and
Juin 7= wGe-0),23 (R = .22 (R - c.l7,0),

C.[f.0) := [W(8,x-6), 22 (RY)[ = /B £, 2] wya(x) da(10)




Indeed, if U(x) is a single-variate function such that the corresponding planar
wave U(x - @) belongs to L2 (IRd>, we have

/le (f(x)_W(o,x 8)) U(x - ) w(x)dx

/ </x O—x w(e, x)) U(»’C)W(X)dX’> dzx

=/Bw (Rad[fw; 0, 2] — Rad[w; 8, z]€,[f;8,2]) U(z) dz = 0

which means that the difference f(x) — W (@,x-0) is orthogonal in £2, (IRd>
to the subspace of all planar waves propagating in the direction 6. This
proves the extremal property of the profile function (9) in the problem (7),
and (10) also easily follows.

We call the function C,[f,0], @ € S* !, Radon compass. It is non-
negative, and as it is not hard to see, continuous on S%!.

The special role of Radon compass is seen from (10):

goomin = w0, 22 (R[] = .22 ()| — gax .17, 01
(11)

The maximizer 8 := arg maxg,ga-1 Cu [f, 0] indicates the optimal direction
on a typical step of the algorithm (1). In loose words, Radon compass serves
as a navigational tool in gridge approximation process:

Golf,x] =0; fv=f—Gn[f]
On = arg max Clfn; 0], Wn(z)=E[fn;0n, 2],
GN_H[f,X]:GN[f,X]—l-WN(X-ON), N=01,.... (12)

Appropriate versions of Radon compass can be also constructed for gridge
processes with constrained profiles. In the special case of polynomial gridge
approximation (4), this construction is based on best algebraic approximation

of £[f; 0, z], cf. (4), (8), (9):
Qxlf:0,0] =arg min [ |E1550,4] — pla) * wale)do,

p(z)ePL.N
1
enif:0):= [ 1Qn(f:0,a]" walx) da,
Oy = arg Omsax Cn[RnN; 0], pn(z) =Qn[RN;ON, 7] . (13)
c d—1



0.3 Fourier — Chebyshev analysis. Shrinkage

The quantitative results of this paper concern only approximation in the
metric of the Hilbert space £2(B). It should be noted that proper analogs for
approximation in metrics different from £?(B) are not known. Such analogs
represent an interesting circle of open problems, even for weighted Hilbert
spaces L2 (IRd); a particular example is £2 (IRd) with the Gauss’ weight

w(x) = e 7,

From now on, for the sake of breviety, we will apply the notations

B=8 17l = I£LE), §=5 lals = [ a(@) uao).

= wy(x 1B —x2% = ' z)|2 w(z)dx
w(e) = w S0 -2 E W= [ VR e

{uld(z)}5° = {un(7)} — the system of Chebyshev — Gegenbauer polynomials
orthonormal on (—1,1) with the weight w(z), see (8).

Let us temporarily put on hold the optimization of wave vectors in the
definitions of algorithms (1) and (4). Instead, let us fix an arbitrary sequence
© = {6y}, C S and consider the profile-greedy process, in which only
profiles of the waves are optimized on each step. Such a process consists in
the iterations: f© = RO .= f

Wi (z) := argminy || fx — W(x- 0y)||;
pn(z) = argminyepiy [[Ry — p(x - On)|;
Iy = fv — Wn(x:0x), Byy1:= Ry —pn(x- 0y). (14)
Theorem 3 For every sequence of wave vectors ©, the profile-greedy pro-

cesses (14) are polynomial shrinkages: the matrices of best approzimations
are double-monotone 3

En [fN—i—l] S En [fN] ) En [RN] S En [RN] . (15)

This statement is a part of the proof of Theorems 1 and 2. We prove it
here, using Chebyshev — Fourier expansion 4 and the corresponding Parceval

3The inequalities E, 1 [fn] < En[fn]s Ent1[Bn] < E, [Ry] are trivial.

4In fact, this expansion represents the operator of inverse Radon transformation
R~ ![w-] restricted on the functions supported in B. Polynomials u, () are eigen-functions
of this operator, and ), — the multiples of the eigen-values: |BY|R™wu,](z) = A\yun(z).
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identity, cf. e.g. [11]

n+d—1
n )

allan[fII5 (16)

0,[£.0] = | J0o)u(x-0) ()

A
£2(B) >
F(x) FL /S(nz:% Anin] f, Ol (x - 0)
191 = 32w [ lanlf, 011 1(d0) = 3= 2

The operator of orthogonal projection Py[f,x] in £2(B) onto the sub-
space of algebraic polynomials P and the values Ey[f] of best polynomial
approximation are given by

Pulf.x = | (f Al f. o]un<x-e>> u(do),

n=M-+1

Eulf] = IIf = Pulf]l —J Z Anllan SIS - (17)

The coefficient a,[f, 0] in the expansion (16) is called n-th Chebyshev
momentum of f.

For profile-greedy processes (14), all Chebyshev momenta are shrinking
in £2(S), which can be seen from the following statement.

Lemma 2 Forn, N =0,1,...

lan [Frallls < llan [fn]lls < llan [f]lls
lan [BN]lls < llan [BN]lls < llan [f]]]s - (18)

Indeed, as a function of @ € S%1, a,[f,0] is a spherical polynomial of
degree n, satisfying a,[f, —0] = (—1)"a,[f,0]. Let us denote T,* = ’Efd
the subspace of all spherical polynomials with this property, and denote
K,(z) = K,4(z) the Dirichlet kernel for 7,=. This kernel is the unique
algebraic polynomial of degree n that satisfies K, (—z) = (—1)"K,(z) and
represents the identity operator on 7,% by convolution on the sphere S:

a(@) = [ a(O)Kn(0- @) udd), VaeTr peS (19)

11



(see [11]). Tt follows from the definition that for each fixed ¢ € S

LUM0WVWW=K()dMﬁr«WM_v=M-(w

n

Further, let V(z) be a single variate function, V' € L£2(B'), with the
single-variate Chebyshev — Fourier representation

e

V(z) wgl)zvnunl‘, V, = / Yw(z)dz, n=0,1,...,

and let ¢ € S. For each fixed x, u,(x-0) as a function of @ € S is a spherical
polynomial of the class 7,F, and it follows from (19) that

L2(B) o &
Vix-¢) " S Vo (x - / <Z A ©)tn(x - 0)> 1(d6) .
n=0
(21)
Comparing (21) and (16), we see that Chebyshev momenta of a planar wave
function V(x - ¢o) are multiples of shifted Dirichlet kernels:

A

oV (x-9),6] = " Ko(0- ). (22)

Now fix a wave vector ¢ € S and consider the Chebyshev — Fourier
expansion of the optimal profile W (z) = £[f; ¢, z] in the direction ¢, cf.
(9). We have

elfsos) VS Eolflunl),
&l = [ Elfio tlueu(e)de = [ RIS @ lun(e) de

_/ X)tn (% - @) u(dx) = anlfy 0], n=0,1,..., (23)

and it follows from (22) that the momenta of the corresponding planar wave
E[f; o, x - o] and the difference f(V)(x) = f(x) — £[f; ,x - | are given by

onlélfi 0 )0 = " Pk (0 ),

anlf,0 = anlf,01 - "L 0. ) (24)

12



Thus, applying (19), (20) and (24) we see that

|an[f7 Q0]|2

lan[FOIIIE = llanlAIls = =

(25)
Analogously, a typical step of the polynomial profile-greedy process (14) con-
sists in the best polynomial approximation min,epna ||E[f; @] — pllw. The
partial sum Qn[f;p, 7] = SN, anf, p]un(z) of the expansion of £[f; ¢, z]
provides the minimizing polynomial in the latter problem.

Let Ry(x) := f(x) — Qn[f;p,x - ¢]. Then the relations (24), (25) are
modified as follows:

onl R 0] = aal 6] ~ xx(m) L2 K, 0 )

Jonl R = lan 112 — o) 222

where xy(n) =1 for n < N and xn(n) = 0 for n > N. Relations (25) and
(26) complete the proof of the lemma, and theorem 3 also follows in view of
(17).

The Radon compass (10), (13) can be rewritten in terms of the Chebyshev
momenta, cf. (23):

(26)

C[fNae] = ||g[ fN>0]||w Z |an fN7 )

Cn [Ry, 0] = Z jan [Ry, 0] (27)

n=0

A useful property in applications is the uniform continuity of the se-
quences {C[fn]}, {Cn[RN]} for f € L£?(B). This property is a corollary of
the shrinkage, cf. lemma 2. For a function B(@) continuous on the sphere
S, and M >0, let Ey [C, L>(S)] denote the value of best approximation of
B by spherical polynomials of degree < M in the uniform metric on S:

v [B,L°(S)] := min max|B(0) —T(0)|.

degT<M @cs

Lemma 3 The following inequalities are true

max (Bayy [Clfn), £2(S)] , Eane [Cx (RN, L2(S))) < (Entlf. £3(B)])” .

13



Indeed, let (cf. (27))

M min(M,N)
T (0) =Y lanlfn, 017, Tun(0):= > |ax[Ry, 6],
n=0 n=0

Since a,[f] € T,%, we have Ty n, Tun € Ton. Further, |la, £2°(S)|? <
Anlla, £2(S)||? for each polynomial a(@) € 7., cf. (25). Consequently, ac-
cording to (17)

max (|[an [fv], L2(S)I | llan [Ba], £2(S)IP) < Anllanlf]I15,

Cli] - Tar, £ < Y Allanl 3 = (Eulf.L2B)])’

n=M+1

and exactly by the same reason

ICn[RN] — o, £2(S)II < (Eulf, £2(B)]) .

This completes the proof of the lemma.
Now we turn to estmates of errors in gridge processes(1), (4). The maxima
of C can be obviously estimated from below by the averages over S:

waxC17,0) > [ C15.0] o) = i lan AN

N
max CV[f,0] 2 3 flan [Ra]lls (28)

n=0

Thus, by (11), (13) and Parceval’s identity (16), we obtain the following
recursive estimates of errors in (1), (4) via Chebyshev momenta (note that
)\0 = 1)

el < 37 (A = 1) llaw [fa]l5
n=1

IRNIE < Y O = Dllan [BAIIG+ 3 A llan [RaJIE . (29)

n=1 n=N-+1

Further, by (17) we have
A llanlf1lls = (Baalf1)* = (Bulf])?,

14



so that applying Abel’s transformation we can rewrite the estimates (29) in
terms of best polynomial approximations:

vl <0 A& (Ba [fn])?
n=0

IRyI? < Y A, (B, [Ra))? + Ex (Ex [Ry))’ (30)

n=0

where &, = 1/\,, A, = &, — &1 Now we make use of the polynomial
shrinkage. According to Theorem 3, we can estimate the best polynomial
approximations in (30) as follows:

E, [fn] S min (||fnll, Eulf]), En[Ry] < min([|By|l, En[f]) -

Consequently, the following iterative estimates are true
(RE17)° < Y A& min (RELF), E2[/])
n=0
N-1
(R%1/1)" < Y A& min (REI?, E2LA) + Ex (Bnlf)?. (31)
n=0

0.4 Recursive truncations and difference equations

Let (&) = e, := (En[f])Z, € € (&uv1,&n], n = 0,1,..., where as above,
&, = 1/A,. Obviously, €(€) is a non-decreasing step function on (0, 1], (&) —
0,&—0.

Consider the sequences {an}, {bn} defined by the integrals of successively
truncated e:

1
ap = by :=¢ep; ans1 :/0 min (¢(§), an) d€,
bces = Eneln) + [ min (=(6),by) . (32)
It follows from (31) that

R}g\;[f]g\/a’_N’ R}g\lf)[f]g bn, N=0,1,..., (33)

15



so that to finish the proofs of Theorems 1 and 2, it suffices to establish the
appropriate upper estimates of the numbers ay, by, defined by the recursive
truncations (32).

An estimate sufficient for this purpose is provided by the next statement.

Lemma 4 Let

2su n€(277) ;
H(©) = gl "N €€ 0.1)
§(z) :==inf{€ € (0,1): H(&) <z}, z> 0.

Then the following estimates hold for ay, by defined by (32)

aN§26(5<g>>; bN§2<612v+5(< ). N=01... (9

Indeed, denote m(y) := meas{¢ € [0,1) : (&) < y}, y € [0,&0), the
distribution function for £(§). Then m(y) = &v1, Y € [Ent1,6n), N =
0,1,... and

+/ min ( dn—a—/ y)dy, (&) <a,

which easily follows by consideration of the corresponding areas.

Let M(y) := [¥ m(z)dz. If we take £ = 0, a = ay, or, respectively,
€ =¢&,, a=>by we see that {ay}, {bn} in (32) coincide with the solutions of
the non-linear difference equations

OJN—G,N+1:M((IN), bN—bN+1:M(bN)—M(€N), NZO,l, (35)

Since M (y) is an increasing function, we have M (y) < M(ag), y € (ags1,ax)-
Thus,

a d N-1 .4 N— _
0 vy k Z ak ak+1 — N (36)
av M(y) k=0 Y ak+1 M(y k=0 )
We have M (y) > fy dz > 4im (g), because m(y) is also an increas-

ing function. Consequently, 1t follows from (36) that

T ody 1w dy 1 feo dy _ N
[ > >

> = >
v ym(y) 2 Jay

m(2) = 2o M) (37)

N
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Further, let
e = [ A e U g

The function h(§) is decreasing, piece-wise constant, and h(§) — oo, £ — 07.
Moreover,

[ W
MO = [ty MO < HE). (39)

Indeed, for §,11 < &€ < &, we have

o d nf & d "Zl U d(In<(y))
€ 5J+1

() ym(y) j=0 Yeit1 ym(y) —o Ej+1

and the inequality h(§) < H(&) easily follows by subdivision of the domain
n > € into intervals [£2%,£2¢+1), & =0,1,. ..
(37) and (38) imply:

1 (5))= 3 = (%)
() <o) masn((})

This completes the proof of the estimate (34) for ay.
To estimate {by}, we need to somewhat modify the above arguments.
Let

ANZ:{k30§k<N,bk§2€k}, BNi:{k30§k<N,bk>2€k},

and let v be an integer, 0 < v < N. Then either a) cardBy > v, or
b) cardAy > N — v. In the latter case, by < 2eyn_,, simply in view of
monotonicity of the sequences {b;}, {ex}.

In the case a) for k € By

by by, ]_ by, M b
b = [ my)dy > [ mi)dy > L[ miyay = T
€k D)

v

N
2

so that the estimates (37), (39) are modified as follows:
oo dy / Z b, — b1
b M(y) bt ) M(b)

£ en(s(2)).

S card By K, ( (
- 2 2

v



Summarizing, we see that

wsn g, o1 (9). ova(es v (6(2).

and the estimates (34) for by follow.
Now recall the definition of the function £(£) and that

¢ 1 (d—1)! (d—1)!
"N (nE+1)--(nd+d-1) nd-1 ’
It is easy to see that the condition E,[f] = O (Es,[f]) implies that £(2¢) =
O(e(§)), and further, H(&) = O(1/§), € — 0; d(v) = O(1/v), v — oo.
The latter estimate, (33) and (34) complete the proofs of theorems 1 and 2,
because £(O(1/N)) = O((1/N)) = O <E2 1 ) N = .
N

d—1
Remark 1. Obviously, we can reformulate theorems in terms of majorizing
sequences, instead of exact values of best approximations.
If a sequence of of positive numbers {e, }5° monotonically tends to 0 for
n — oo and satisfies the condition £, = O(e2,), n — oo and if the esti-
mate E,[f] = O(en), n — oo holds for best polynomial approzimations of a
function f € L*(B), then the errors of gridge processes (1), (4) satisfy the

estimates
RS =0 (s ) REUI =0 (50 ), Noox

Remark 2. Let us consider briefly also some classes of functions with
very fast decreasing polynomial approximations, say, satisfying the E,[f] =
0 (e‘"a), where « is a positive number. In such case we have £(§) ~

n — 0Q.

exp (—c£_5> , B = 3%, £ — 0 and consequently

H(ﬁ):0<§51+1> , E—=0; 6(v) :O(U_ﬁ), v — 0.

Therefore, by (33) and (34)
Eu[f]=0 (™) = REA+REf] =0 (e N), v =

!
a+d-—1
where ¢, ¢, are positive constants depending only on «;, d.

In particular, for functions of two variables in the disc B2

E,[f]=0(e") = R[]+ RRf =0 (=) .
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