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Remarks on Poincare and Van Vleck theorems

V.I. Buslaev

Abstract

The paper ! is dedicated to generalizations and applications of Poincare’s theorem on re-
currence equations with limit constant coefficients. In particular, applications in the theory of
continued fractions, mainly to problems related with Van Vleck’s theorem on regular C-fractions
with limit constant coefficients are considered. Special attention is tributed to extremal prop-
erties of the singular sets of regular C-fractions and T-fractions with limit periodic coefficients.

0.1 Introduction. Preliminary definitions

Poincare’s theorem on recurrence equations with limit constant coefficients is one of the most refined
results of the theory. Such equations have found applications in Number Theory, Analysis and other
fields of Mathematics. The well known Fibonacci numbers f_1 = fo =1, fi =2, fo =3, f3=05, fs =
8, ... examplify solutions of the recurrence equation f, = f, 1+ fn_2, n=1,2,..., with the initial
values f_; = fo = 1. It is also well known that a continued fraction

a

a2
bl + bo+...

(1)

can be considered as solution couple {4, }5 _;, {B,}>° _, of the recurrence equation
Wy = bpWp_1 + QGpw,_o, n=1,2,... (2)

with the initial values A_; = 1,4y = 0 and B_; = 0, By = 1. Other applications of recurrence
equations can be found in the theory of Pade approximations.

!This research was carried out with the support of the Russian Foundation for Fundamental Research (Grant no.
99-01-01149) and the Russian Program for the Support of Leading Scientific Schools (Grant no. 96-15-96185).

The paper was completed while the author’s visit to the University of South Carolina. This visit was supported by
the DoD/DEPSCoR Grant no. N00014-99-1-0547.



Let us first consider the recurrence equation with constant coefficients

Wy, = atrwy_y + .. FFw,y, n=1,2,... (3)
Here, the number £ is called the length of recurrence equation. Given k initial values w_ g1, ..., wo,
we can calculate all subsequent wy, wy, ... using (3) stepwise. The sequence {w,}>°, , obtained in

such a way is called the solution of the recurrence equation (3). The set of all solutions constitutes
a k-dimensional linear vector space. Let us find its k£ linearly independent solutions. The algebraic

polynomial \* — o!\¥=1 — . — o* is called characteristic polynomial of the recurrence equation
(3). Let us factor out this polynomial: \¥ — o' A\f=1 — .. —aF = IF_ (A = \). Tt is easy to verify
that for each i = 1,...,k, the sequence {w,}>*, . = {A}22, . is a solution of the recurrence

equation (3). If the roots of the characteristic polynomial are simple, these k solutions are linearly
independent. In the case of multiple roots, we must complement the above set by the solutions of
the form {n/A\2}>°, , 7 =0,...,r; — 1, where r; is the multiplicity of the root )\;. However, in the
sequel we will consider only the case of simple roots. Moreover, we assume that all these roots are
distinct in modulus:

A1) : | A< A <o < A |

(we will denote here and in the sequel by A( ) the corresponding assumption). Under assumption
A(1), the general solution of recurrence equation (3) has the following form

{wntoly = C{AN o2+ F Ol N ol &

and lim,, oo AT {/A? =0,4=2,...,k. Hence, the following statement holds true.

Statement. Consider the recurrence equation (3) and suppose that the assumption A(1) is fulfilled.
Then for each solution {w,}2,_, of the recurrence equation (3), the limit limy, o w41 /w, exists
and equals one of the roots of the characteristic polynomial.

Which one of the roots it is 7

We can not give an a priori answer. It may be the largest in modulus root A, if Cy # 0, it may
also be A\, _1, if Cp, =0 and C}_; # 0, etc.

The second natural question arises, whether A(1) is an essential assumption. The answer is
trivial: of course, it is, as illustrated by the following example.

Example. w, =w, 2, n=1,2,....

In this example w, = wy for even n and w, = w_; for odd n. Consequently, the limit
lim,, 0 Wy 41 /Wy, does not exist. The reason is that the characteristic polynomial A2—1= (A=1)(A+1)
has two roots equal in modulus.



0.2 Poincare’s theorem.

It turns out that the above statement is true in more general situations. Consider a recurrence
equation with variable coefficients

Wy = wy_1 + ...+ ofw,_y, n=1,2.., (4)
and suppose that these variable coefficients have limits

A(2) : nlgg)a; =a', 1=1,...,k.
As earlier, the polynomial \¥ —a!' =1 — . —aF = Hle()\ — ;) is called the characteristic polynomial
of the recurrence equation (4). We can not find the explicit formulae for the general solution of (4).
However, (and it is a remarkable fact) the statement still remains true.

Poincare’s theorem (cf. [1]). Consider the recurrence equation (4) and suppose that the assump-
tions A(2) and A(1) are fulfilled. Then for each solution {w,}°, , of (4), either w, = 0 for all
sufficiently large n > ng, or the limit lim, o wy1/w, exists and equals one of the roots of the
characteristic polynomaial.

Let us return to the question of necessity of the assumption A(1). As we saw, A(1) is an essential
assumption. But it turns out that it is possible to give such a generalization of Poincare’s theorem
that can be formulated omitting A(1); moreover, if A(1) is valid as an additional assumption, the
generalization will coincide with Poincare’s theorem.

Theorem 1 (cf. [14]). Suppose that for the recurrence equation (4) the assumption A(2) is fulfilled.

Then for each solution {w,}2,_, of (4) either w, =0 for all sufficiently large n > ngy, or

1° the upper limit lim sup,,_, |wn|1/” 15 equal to the modulus of one of the roots of the characteristic
polynomial;

2° it 1s possible to construct a recurrence equation

wn:ﬁiwn_1+...+ﬁﬁbwn_l, n=12,...,

where | is the number of the roots of the characteristic polynomial lying on the circumference
|A| = limsup,,_,., |wn|"/" (let us denote these roots by Ay, ..., Ny, ), such that

a) {w,}2,_, is its solution;

b) lim, ,oo 38 =03, i=1,...,1;

N - N =g ST (- )



It is easy to see that under additional assumption A(1) we always have [ = 1. Thus, the above
recurrence equation is of the form w, = Slw, ; and by b) lim, . w,/w, 1 = lim,_,,, 3; = ' and
by ¢) B! = A, where ) is the unique root of the characteristic polynomial lying on the circumference
|\ = limsup,,_, . |w,|"™.

0.3 Perron’s theorem.

Consider the recurrence equation (4) with assumptions A(2) and A(1), like in Poincare’s theorem.
The following natural question arises.

Question. Is it true that for each root A of the characteristic polynomial there exists a solution
{wp}22,_, of (4) such that lim, o wyi1/w, = A7

Without additional assumptions, the answer to this question is in the negative.
Example' Wy = Wy, Wy = Wp—1 + Wp—2, N = 27 37 s

Each solution {w, }5° _; of this recurrence equation is of the form w,, = wo f,—1, n=1,2,..., where
f-1, fo, f1, f2, ... denotes the Fibonacci’s sequence, see above. Hence the limit lim, . w1 /w, =
limy, o0 fu/fn1 = (1 ++/5)/2 is the same for all solutions.

The reason is simple. The solutions do not depend on the initial value w_; in this example,
because the coefficient af = 0.

The recurrence equation (4) is called non-degenerate if

ABB): ofF #£0, n=12,....

It means that we can solve (4) “backwards” for each n = 1,2,..., that is we can express w,_j in
terms of wy,_gi1, ..., Wy.

Perron’s theorem (cf. [2]). Consider the recurrence equation (4) and suppose that the assumptions
A(2), A(1) and A(3) are fulfilled. Then for each root \ of the characteristic polynomial there exists
a solution {w,}>°,_, of (4) such that im,_,o wyi1/w, = A.

Corollary. Consider the recurrence equation (4) and suppose that the assumptions A(2), A(1) and
A(3) are fulfilled. Then the general solution of (4) is of the form

{wadey o =Cr{widny o+ ...+ Cufwl}, 4,

where {w}}52, _, is a solution of (4) such that lim, . wh  Jwh =X, i=1,...,k.
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It is easy to see that the solution {w!}%°, , corresponding to the root \; with minimal modulus
is unique up to the constant multiplier. It is not easy to find the initial values corresponding to this
unique solution. The original proof of Perron’s theorem was very complicated. A much easier proof
was given by Evgrafov in 1953 (cf. [3]). Another proof of Perron’s theorem was given by Freiman in
1957 (cf. [4]). Freiman’s proof is applicable also to systems of recurrence equations.

0.4 Vector version of Poincare—Perron’s theorem.

Consider the system of recurrence equations

n n—1
........................ , n=12,. (5)
wy = optwg_y o,
) TR
or in vector form w, = V,w,_1, where w, := | : , U= ... ..
s Y
Wn—k+1
Denote ), := | : . Then (4) can be rewritten in the form (5) with
wn
0 1 0 0
0 0 1 0
v, = -
0 0 1
o a o,
The assumption A(2) can be rewritten in this case as
I . 3 _—
A2 : Jim ¥, = .
The assumption A(1) saves its form, but here \q,..., \; are the eigenvalues of the limit matrix V.

The assumption A(3) has the form

A3 det¥,#0, n=1,2,...



Consequently, the classical Poincare and Perron theorems are particular cases (when matrices ¥,
have special form, see above), of the following statement.

Poincare-Perron’s theorem (vector version). Consider the system of recurrence equations (5)

and suppose that the assumptions A(2"), A(1) are fulfilled. Then

1° for each solution {w,}°, of the system (5) either i, = 0 for all sufficiently large n > ng , or
for somem € {1,...,k} there exist limits lim,_,o w]  /wy’ = X, lim,_,o Wy, /w]" = €, where X is
some eigenvalue of ¥ and € is the corresponding eigenvector (€™ =1);

2° under the additional assumption A(3'), for each eigenvalue A and the corresponding eigenvector €
(€™ = 1) of the matriz VU there exists a solution {W,}5%, of (5) such that the limit equalities in
the previous assertion are valid with this A and €.

The proof of this theorem can be found in (cf. [4]) and in more general form in (cf. [15]).
Denote w,, = T, , where T is a matrix independent of n and transform ¥ to the diagonal form
(T~'WT = D). Then we can assert that the case when the limit matrix is diagonal is a general case
of this theorem. Furthermore, a part of nontrivial contents of the diagonal case of this theorem can
be obtained under assumptions that are weaker than A(2') and A(1). The corresponding result was
obtained in (cf. [15]). For simplicity, we formulate here this result only for £ = 2. It is easy to see
that in the diagonal case the assumptions A(2') and A(1) mean that lim,, o, a}? = lim, o, a®' =0
and [lim,,_,o ab!'| < |lim, . a>?| that are stronger than the assumption
A = o[+ 1oy < qllo?] = log]), n>no

with some ¢ < 1. A(4) does not require the existence of the limits. The following theorem is valid.

Theorem 2 (cf. [15]). Consider the system of recurrence equations (5) with k = 2 and suppose that

the assumptions A(3") and A(4) with ¢ < 1 are fulfilled. Then

1° there exists a unique (up to a constant multiplier) non-trivial solution {0,}5°, = {[v}, v2]}22, of
(5) such that |vl| > |v2] for alln = 0,1,... whereas for other solutions {u,}°°, = {[u},u2]}>,
of (5) |u}| < |u2| for all sufficiently large n > ny (ny depends on the solution {0, }5°,);

2° |upfui| < ¢" ™oy Jul |, where {0,}5%, {@,}22,, ni mentioned in the assertion 1° (it means
that the exceptional solution {T,}2°, has a minimal growth among all other solutions);

3° af limy, oo @b?/(Ja2?| — |a2t) =0, then lim, o ul /u2 =0 ;

4° 4f lim, o a®'/a2? =0, then lim, o, v2 /vl =0 .




0.5 Generalization of classical Poincare and Perron theorems for the
recurrence equation (2).

The following theorems suggest weakening of the assumptions A(2) and A(1) in classical Poincare
and Perron theorems in the case k = 2, i.e. for the equation (2). Consider the roots A and \? of
polynomials A\ — b,A —a,, n = 1,2,... . Note that the couple of assumptions A(2) and A(1) is
equivalent to the requirement

A(B): lim AL =)' dim A2 =02, A< [N

n— 00

Let us introduce the following assumptions, where each is weaker than A(5) (in a modified notation)

A(6):  Lim AL =X, limsupAZ <|)|,
n— 00

n—00
A7) lim AL =X, liminf A2 > |A[,
n—00 n—00
A8): limsup(|b, — Al + 07 1A — b\ — a,|) < [A] =0,
n—00
A(9): liminf([b, — Al = 07" = b A — au]) > A +6,

where A € C and 6 > 0 are some fixed numbers.

It is easy to see that A(5) = A(6) = A(8). Indeed, A(5) = A(6) is trivial (in modified
notation) and A(6) implies that lim,, o, [\>~b,A—a,| = 0 and lim sup,,_,., |b,—A| = limsup,,_,., [\L+
A2 — \| = limsup,,_, ., |A\2] < |A] and obviously we can substitute |A| in the end of this chain by [\| —6
for sufficiently small 8 > 0.

Analogously, A(5) = A(7) = A(9).

It turns out that we can save a part of nontrivial contents of the classical Poincare and Perron
theorems for the equation (2) substituting the assumption A(5) by one of the new assumptions
A(6) — A(9). More precisely, the following statements are true.

Theorem 3 (cf. [15]). Consider the recurrence equation (2) and suppose that A(3) and A(8) are

fulfilled. Then

1° there exists a unique (up to a constant multiplier) non-trivial solution {v,}>>_, of (2) of minimal
growth, that is for each other solution {u,}°> _, limy, 00 v /tp =0 ;

2° under assumption A(6) (that is stronger than A(8)) for each solution {u,}2 _,, except for the

indicated unique solution {v,}52 |, the limit equality holds limy, o Upi1/tn = A .



Theorem 4 (cf. [15]). Consider the recurrence equation (2) and suppose that A(3) and A(9) are

fulfilled. Then

1° there exists a unique (up to a constant multiplier) non-trivial solution {v,}2> | of (2) of minimal
growth, that is for each other solution {u,}o2 | limy, oo max{|v,|, |vn-1|}/(un — Aup—_1) =0 .

2° wunder assumption A(7) (that is stronger than A(9)) for the exceptional solution {v,}5°> _, the
limit equality holds limy, oo Vpi1/vn = A .

Let us remark that under assumption A(9) with # > |A| we can remove the term Au,_; from the
limit equality limy, o vn/(un — Au, 1) = 0 . Also, it is possible to construct an example showing
that the constant § > |A| in A(9) can not be substituted by any constant |A| — e with € > 0, in order
to remove this term Au,_i.

The last two theorems have applications in the theory of convergence of continued fractions.

0.6 Generalization of classical Poincare’s theorem for k = co.
Let us consider the recurrence equation

1
Wy, = 0Wp—1+ ... +ajwy, n=12 ...,

where w,, depends on all previous w,_1, ..., wy. Moreover we will deal with relations
o0 .
— 2 _
w, =Y dw,; , n=12..., (6)
li|=1
where w,, depends on all previous w,, 1, w, s, ... and all subsequent w, 1, w,,9,.... Such relations

appear for example in some converse problems of multipoint Pade approximations (cf. [14]). We need
assumptions that would guarantee us the convergence of infinite series participating in (6). These
series converge if we assume that
A(10) - limsup [w, | =1, limsup|w_,|Y" <1,
n—oo

n—00
A1) a,(\)=1=> alA "€ H(E;), n=12,...
li|=1
that is a,,(\) are holomorphic functions in the ring F5s = {1 —§ < |A\| < 1+ §}, where 6 > 0 does

not depend on n. Finally, instead of A(2),i = +1,+2,..., of Poincare’s theorem we need a stronger
assumption

Y

A12) 0 a,(N) S aN)=1=> oA\ | N€E;.

li|=1



The following theorem is true.

Theorem 5 (cf. [14]). Consider the relations (6) and suppose that A(10), A(11) and A(12) are
fulfilled. Then

1° a(\) has at least one root on the circumference |\| = 1;

2° it is possible to construct a recurrence equation

wn:ﬁ}bwn_1+...+ﬁﬁlwn_l, n=12,...,

where | is the number of the roots of the characteristic polynomial lying on the circumference
|A| = limsup,,_,., |wn|"" (let us denote these roots by Ay, - -, Ay, ), such that

a) {w,}°, , is its solution;

b) lim, ,oo 3 =3, i=1,...,1;

) A= BN — =B =TT (A=)

0.7 Preliminary definitions and theorems of the theory of continued
fractions.

Let us turn to the applications of the results related with Poincare’s theorem to the theory of
convergence of continued fractions. Consider a continued fraction (1). We will denote the continued
fraction (1) by K32, A finite truncation Ki', 3 = A,/B, is called n-th convergent of (1). The
continued fraction (1) converges, if the sequence A, /B,,n = 1,2,... has a limit. It is easy to
prove by induction that the sequences of nominators {4, }°° _; and denominators { B, }32 _; are both
solutions of the recurrence equation (2) with initial values A | =1, Ag=0and B_; =0, By = 1. Let
us introduce linear fractional transformations S, (W) = wigo, n=1,2,.... Using the recurrence
equation (2) and initial values A_y, Ay, B_1, By we have

An—IW + An . An—IW + bnAn—l + CLnfln—Z . AR*QWM + Anfl
Bn—IW + Bn B Bn—IW + ann—l + aan—Z B Bn—Zﬁ + Bn—l

A, 2S, (W) + A, A 1S10...05,(W)+ A

2+ Any  _AaSio0SWHA o g g (7)
B, 2S,(W)+ B,,_4 B 1S10...05,(W)+ By

In particular, for W = 0 we have A4, /B, = S;o...05,(0). It means that the convergence of (1)

is equivalent to that of compositions of the linear fractional transformations S, (W) = 72— at the

point W = 0. It is common to study the convergence of such compositions at other points W € C.




o0 an

Two continued fractions K and K, % are called equivalent, if there exists a sequence

ro = 1,71, 79, ... of complex numbers different from 0 and such that a =r,_1rn,a,, b, =7r,b,, n =
1,2,.... It is easy to see that {ry...r,A,}°°, and {ry...r,B,}22, are both solutions of the recur-

rence equation

w, =byw,_ +aw, o, n=12...
with the initial values A*; = 1, Aj = 0 and B*, = 0, B = 1. This means that {A}}>%, =
{ri...rp A} and {Bi}oe, = {r1...r, By} ,. Thus, AX/Bf = A, /B, , that is equivalent frac-
tions converge or diverge simultaniosly.

Historically, the oldest criterion of convergence of continued fraction (1) with complex variables
was given by Worpitsky.

Worpitsky’s criterion (cf. [5]). If |a,| < 1/4, n=1,2,..., then the continued fraction K, %

n=1 1
converges.

Worpitsky’s criterion remained obscure for a long time, untill it was rediscovered as a corollary
of a stronger Pringsheim’s criterion.

Pringsheim’s criterion (cf. [6]). If |a,| +1 < |b,|, n=1,2,..., then the continued fraction (1)
converges.

a*

It is easy to see that K2, % is equivalent to K272 with a] = 2ay, a;, = 4a,, n = 2,3,...,
by =2,n=1,2,.... It means that |a,| < 1/4, n=12,...=|a|+1<|b;], n=12,...and

Worpitsky’s criterion is indeed a corollary of Pringsheim’s.
The following statement consists of three different theorems that have the common assumption

A(5).

Theorem. Consider the continued fraction (1) and suppose that the assumption A(5) is fulfilled.
Then
1° (Van Vleck (cf. [7])) the continued fraction (1) converges;

2° (Perron (cf. [8])) limy, o0 limy 500 S 0+ .. 05,(0) = —A', where S, (W) = -

3° (Thron-Waadeland (cf. [9])) lim,, o, % =0, where S = lim, 5 S; 0...05,(0) .

Van Vleck’s theorem was generalized by Perron in the following way.

Perron’s theorem (cf. [8]). Suppose that the complex numbers a and b are such that the roots of
polynomial \> — b\ — a are distinct in modulus (that is, the assumption A(1) is fulfilled). Then there
exist sufficiently small positive numbers €; and €y (depending on a and b) such that every continued

10



fraction K32 3= with |a, —a| <€, |by —b| <€, n=1,2,... converges.

It is easy to see that the assumptions of the last Perron’s theorem are weaker than A(5) because
they don’t require the existence of limits lim,,_,, a, = a, lim,,_,, b, = b: only a sufficient closeness
of a,, and b, to a and b, respectively, is assumed.

0.8 Refinements of theorems on convergence of continued fraction (1).

It is easy to see that the last Perron’s theorem is a corollary of the following theorem.

Theorem 6 (cf. [15]). Consider the continued fraction (1) and suppose that A(8) is fulfilled. Then
the continued fraction (1) converges.

In addition to theorem 6, we can prove the following statements.

Theorem 7 (cf. [15]). Consider the continued fraction (1) and suppose that A(9) is fulfilled. Then
Spo...08,(=A) converges. If A(9) holds with @ > |\|, then Sy o...0S,(0) (that is, the continued

fraction (1) itself) converges, too.

Theorem 8 (cf. [15]). Consider the continued fraction (1) and suppose that A(7) is fulfilled. Then
1° limyy, oo limy, yo0 S0 ... 0 Sp(=A) = =X ;

81009 (ZA) =5 0, where S = lim,,_,o, Sy 0...0S,(=\) (the last limit exists by theorem

o 1
2% iy 00 75505 0)—5

7).

Theorems 6 and 7 generalize Van Vleck’s theorem and are corollaries of the assertions concerning
the existence of the exceptional solution of the recurrence equation (2) of minimal growth (see
assertions 1° of theorems 3 and 4). Theorem 8 generalize Perron and Thron-Waadeland theorems,
mentioned above in three author’s theorem. Let us derive for example theorem 7 from the assertion
1° of theorem 4 and derive theorem 8 from the assertion 2° of theorem 4. Denote {v,}32 _, the
exceptional solution of minimal growth of the recurrence equation (2). Let us represent {v,}2° ;| as
a linear combination of two linearly independent solutions {A4,}2° ; and {B,}° , of (2)

{Un}?),o:—l = CI{AW/}?LO:—I + CZ{BW/}?LO:—I'

Using the initial values A |, Ay, B_1, By we can find C; =v_; and Cy = vy. Then

B, —AB,_i v, v_1(Bn — ABp_1) " v (Ba—ABp_i)

An - )\An—l + Vo U—I(An - )\An—l) + UO(Bn - )‘Bn—l) o Up — )\Un—l

11



The righthand side of this equality tends to 0 by the assertion 1° of theorem 4. Hence, using (7)
for W = —X, we have lim,, ,,,S10...0S5,(=\) = —vy/v_; , that is we proved theorem 7. (Using
assertion 1° of theorem 3 we can prove theorem 6 in the same manner). Furthermore, analogously,
we have lim,,_,,, Spp0...05,(—A) = —vp_1/Vm—2 because {v, }5° _, is the unique solution of minimal
growth. Using the assertion 2° of theorem 4 we get the claim 1° of theorem 8. And finally

VU —AVUp
lim Slo...oSn(—)\)—S:m:vn—)\vn,l B,
n—oo Sj0...0 Sn(O) - S 1L1}1—an Up, B, — \B,_;

The first multiplier on the righthand side of this equality tends to 0, by the assertion 2° of theorem
4, while it is not hard to see that the second one is bounded. Hence we arrive at the claim 2° of
theorem 8. Thus, theorems 7 and 8 are a simple corollaries of theorem 4 (and theorem 6 is a simple
corollary of theorem 3).

Let us also remark the following statement. It generalizes Pringsheim’s criterion to the case of
arbitrary linear fractional transformations

a, W + 3,

Sn(W) = YW + 6,

n=12... (8)

and is a simple corollary of theorem 2.

Theorem 9 (c¢f. [15]). Consider a non-degenerate linear fractional transformations (8) and suppose
that the following assumption holds

o] + 7l < q(10n] = |Bal), n=1,2,...
with ¢ < 1. Then for each |w| < 1 there ezists a limit lim, o Sy 0...0S, (W) = S such that S is

independent of W, |S| <1 and |Sy0...08,(W)— S| < q”}f}m, n=12....

If a, =0, B, = an, v = 1, 0, = b, , then theorem 9 practically coincides with Pringsheim’s
criterion. Theorem 9 is useful, for example, in the study of continued fractions with limit periodic
coefficients (see theorems 10,11 and 14) and some other fractions.

0.9 Van Vleck’s theorem for regular C-fractions with limit constant co-
efficients.

In Section 7, we formulated Van Vleck’s theorem on convergence of the continued fraction (1) with
limit constant coefficients. More precisely, Van Vleck’s theorem is formulated as a statement on
regular C-fractions with limit constant coefficients.

12
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Van Vleck’s theorem (cf. [7]). Consider a regular C-fraction K2 %% and suppose that its coef-
ficients have limit lim, ,oan, = a # 0. Then K2, %% converges to a function f(z) in the domain
D=C\T, wherel' ={z€C: z=—t/(4a), t > 1}; f(z) is meromorphic (or identically equal
to 00) in D and the convergence is uniform on every compact K C D that does not contain poles of

f(z).

It is easy to see that the set I' in VanVleck’s theorem consists of all those z € C for which the
assumption A(1) for the roots of the polynomial A\* — X\ — az fails to hold. In other words, the set
" consists of all those z € C for which the fixed points of linear fractional (by W) transformation
S(W,z) = w7 are neutral. Let us remind that a fixed point p of a linear fractional transformation
S(W) is called an attractive, repulsive or neutral fixed point, if [S'(p)| is, repsectively, less than,
bigger than, or equal to 1. If one of the fixed points is attractive, then the other will be necessarily
repulsive, and vice versa.

Using theorem 9 we can generalize VanVleck’s theorem to the case of arbitrary limit periodic

linear fractional transformations.

Theorem 10 . Consider a natural number m € N, a domain Q of complez plane and linear frac-

tional (by W) transformations S, (W, z) = % , n=1,2, ... such that

a) an(2), Bn(2), v (2),0n(2) € H(2),n = 1,2,..., that is all coefficients of these linear fractional
transformations are holomorphic functions of z in the domain €2;

b) limy, 00 anm—l—l(z) = al(z): limy, 00 ﬁnm—l—l(z) = ﬁl(z): limy, 0 7nm+l(z) = le(Z); limy, 00 5nm+l(z) =
64(2), 1 =1,...,m and these limits are uniform on compacts subsets of 2.

Let us introduce the following notation:

()W + BY(z) o1

SWo2) = SO s o) :

ym,  S(W,z)=5"...05™(W,z) =

A(z) = a2)8(2) — B()v(z), I(z)=alz)+d8(z), T={2€Q:0<I(2)?A(z) ! <4},
o(z) = 0(2) — I(2)/1 — 4A(2)I(2) ?
27(z)

(here, for a mon-negative number t, we select that value of \/t for which the modulus of 1+ \/t is
greater; note that 1 — 4A(2)I1(2)~? is non-negative for all z € Q\T),

p(z) = ,p(z) = Slo...0S™(p (2),2),1=2,...,m, z€ Q\T

G={W,z)€C’: z€ Q\T, W #p'(2),....,W #p"(2)},

13



Suppose that A(z) #0, z € Q. Then the sequence of compositions Sy o . ..o S, (W, z) converges to a
function f(z) in C*-domain G; f(2) is independent of W and meromorphic in z, and the convergence
s uniform in the spheric metric on compact subsets of G.

An interesting question arises in connection with VanVleck’s theorem. Is the cut I' indeed the
set of singularities of the limit function f(z)? More precisely, is it true that f(z) can not be mero-
morphically continued to a domain C \ (I'\ {|z — 20| < €}), where zy € T, € is an arbitrary positive
number? Gonchar proved that it is indeed true.

Gonchar’s addition to VanVleck’s theorem. Under assumptions of VanVleck’s theorem, the
function f(z) can not be meromorphically continued to a domain C \ (I'\ {|z — 20| < €}), where
zoel', e>0.

The analogous question can be formulated concerning the set I' in theorem 10. We can answer
in the positive in the cases of C- and T-fractions with limit periodic coefficients. The proof is based
on an extremal property of the set I that can be formulated in terms of transfinite diameter in the
case of regular C-fractions and in terms of two-point version of transfinite diameter in the case of
T-fractions.

0.10 An extremal property of the set of singularities of a regular C-
fraction with limit periodic coefficients.

2
By definition, the transfinite diameter of a compact set F' C C2 is equal to lim,_,. V" ", where

Vi = maxg,, . .. er [li<j |2 — 2;|. 1t is easy to prove that V"™ is monotonically decreasing and

consequently the corresponding limit exists. It is well known that d(F') = 7(F) = C(F), where 7(F)
is Chebyshev’s constant and C(F) is the capacity of F' (the definitions of 7(F') and C'(F') and proofs
of these equalities can be found in [10]). As a simple corollary of the first of these equalities, we
have the equality d(F*) = d(F)Y*, where F* = {z € C : ¢(2) € F}, q(z) = z¥ + ... is an arbitrary
polynomial of degree k with leading coefficient 1 and the equality d(E) = [(F)/4, where E is an
arbitrary segment with the length [(E).

It is convenient to formulate the result for the fraction Kﬁ‘;l% (this fraction coincides, after
substitution z — 27!, with the regular C-fraction).

The following theorem holds.

an?

Theorem 11 . Suppose that the coefficients of a continued fraction Kg‘;lTl have periodic limits
lim,, oo Gnmps =a' #0, 1=1,...,m. Then

14



1° the fraction Kg‘;l%fl converges to a function f(z) in the domain D = C\ (I'UFE), where

U is defined like in theorem 10 (more precisely, T = T(a',...,a™) = {z € C : 2™I(2)? =

l,—1
4(=1)mat...a™t, 0 <t < 1}, I(z) = I(z;a",...,a™) = Trll*, [(1) clzz l) and E is a
finite subset of C (more precisely, in the notations of theorem 10 E = E(a',...,a™) is the set

{z€ C\T:0=p"(2),...,p™(2)}); f(2) is meromorphic in D and the convergence is uniform

on every compact subset K C D that does not contain poles of f(z). For m = 1, the finite set

E(a') is empty;

2° f(z) can be meromorphically continued in the domain C \ T';

3° f(2) can not be meromorphically continued to C \ (I'\ {|z — 20| < €}), where zyo € T and € > 0;

4° d(T) = |a'...a™|"'™ = minp d(F), where minimum is taken over all compact sets F such that
f(2) considered in a small neiborhood of the point z = 0o can be meromorphically continued — in

the domain C \ F;

5° d(T") = ming d(G), where minimum is taken over all compact subsets G such that the algebraic

func- tion g(z) = \/[(2)2 +4(=1)mtal ...amz=™ admits a selection of regular branch in the

domain  C\G.

For m = 1 the assertion 1° of this theorem coincides with the classical Van Vleck’s theorem
on convergence of regular C-fractions with limit constant coefficients. For arbitrary m € AN the
assertions 1° and 2° are corollaries of theorem 10. For m = 1 the assertion 3° coincides with
Gonchar’s addition to VanVleck’s theorem. For each m = 1,2,... the assertion 3° follows from
the assertion 4° because of the evident strict inequality d(I"\ {|z — 20| < €}) < d(T'"). The equality
d(T) = |a*...a™)|"/™ of 4° is a simple corollary of the definition of I' and the properties of transfinite
diameter mentioned above. The main contents of 4° is the inequality d(I") < d(F'). The assertion
5° can be obtained from this main inequality if we consider the purely periodic case a,,,+; = a',n =
1,2,...,0 =1,...,m and find the explicit value of the limit function f(z) (it is easy to see that
algebraic functions f(2) and g(z) have the same branch points).

The proof of the main inequality d(T') = |a'...a™)['/™ < d(F) is based on two well known
results. One provides the expression for the coefficient a,, of regular C-fraction in terms of Hankel’s
determinants of the limit function f(z) (cf. [11]), and as a consequence of this expression we have the

fl s fn
equality lim,,_, |Hn|1/”2 =la'...a™|"/™ where H, = | ... ... ... are Hankel’s determinants
fn s f2n—1
of the expansion Y 0%, f,z™" of the limit function f(2) in some neigborhood of the point z = oc.
The second result is the well known Polya’s theorem on estimating of the upper limit of Hankel’s
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determinants of holomorphic function in terms of the transfinite diameter of the set of singularities.

Polya’s theorem (cf. [12]). Let F be a compact set and let f(z) be a holomorphic function in the
component of C \ F, containing the point z = oo. If f(2) = Y02, foz " for sufficiently large z and

fi oo fa i
H,=|... ... ... , then limsup, . |H,|'/" < d(F).
o oo Jan
One can choose the parameters a', ..., a™ in such a way that the polynomial I(z) = I(z;a',...,a™)

of 27! and the number 4(—1)™"'a! ... a™ will be equal to any given polynomial of the form 1+a; 27"+
.+ a[m/g]z*[mﬂ] and for any given number ¢ we can reformulate the assertion 5° of theorem 11 in
the following way.

Corollary 1 . Consider an algebraic function g(z) = \/p(2)? + ¢ or g(z) = \/z(2p(2)? + ¢), where
p(z) = 2% + ... is an algebraic polynomial of degree k > 1, ¢ # 0. Then the transfinite diameter of
the set T ={z€C: p(2)>+ct=0, o<t<1}inthe first case and T = {z € C: 2p(2)* + ct =
0, o<t <1} in the second does not exceed the transfinite diameter of any compact set G such
that g(z) admits a selection of a regular branch in the domain C \ G. Additionally, the transfinite
diameter of the set T' equals |c|"/?* in the first case and |¢|"/**V in the second.

This corollary enables in some cases to find the explicit form of the cuts I' with minimal transfinite
diameter in well known Stahl’s theorem (cf. [13]) on convergence of Pade approximations of algebraic
functions. For example, in the case of four branch points lying on the vertices ((z+a)?+b)*+c = 0 of
an arbitrary parallelogramm we have ' = {z € C: ((z+a)?+b)*+ct =0, o<t <1}. Itiseasy to
see that I' consists of two pieces of a hyperbola. Each of these pieces connects two vertices with the
smaller mutual distance. In the case of a romboid, I' consists of its diagonals. Another interesting
example is constructed for branch points 0,2, 4. In thiscase T ={z€C: 2(z —1)>—-2t =0, o<
t < 1} consists of the segment [0, 2] and a curve passing through points £, 1/3.

0.11 A theorem on circle convergence of T-fractions.

A continued fraction K72, 94% is called T-fraction. It is well known that one can put in correspon-
dence with each T-fraction two formal power series f(z) = Y% fn2™ and ¢g(z) = 300 gnz~™ such
that at the point z =0 A, (2)/Bn(z) — f(z) = O(2"*!) and at the point z = co A, (z)/By(z) —
g(z) = O(z~(*Y). This means that the expansions of the n-th convergent A, (z)/B,(z) of T-fraction

have the same coefficients as f(z) for 1,z,...,2" and as g(z) for 1,27',..., 27", But the convergence

16



An(2)/Bn(2) — f(2), |2] < Ry and A,(z)/B.(2) — g(2), |z| > Ry requires a special proof.
This proof is simple, for example, in the case a, = —b,, n = 1,2,..., because in this case one can
easily find the explicit formulas for A, (z)/B,(z), using the recurrence equation (2).

In the general case we can prove, using theorems 6 and 7, the following statement.

Theorem 12 . Consider a T-fraction K2, 11%;- The following assertions hold true.

1° T-fraction K32, 1455 converges to a function f(z) in the circle [2| < Ry = (VB +H + VH)™2,
where B = lim sup,,_, ., |b,|, H = limsup,,_, |a, +0b,|; f(2) is meromorphic in |z| < Ry and the
convergence is uniform on every compact set K C {|z| < Ry} that does not contain poles of f(z);

2° the sequence of compositions Sy o ...0 S,(=1,2),n = 1,2,..., where S,(W,z) = T,

converges to a function g(z) in the set |z| > Ry = b(v/1+ h +Vh)?, where b = limsup,, . |b,"],
h = limsup,_,. |1 + an,/bnl; g(2) is meromorphic in |z| > Ry and the convergence is uniform
on every compact set K C {|z| > Ry} that does not contain poles of g(z);

3° T-fraction K32, 1155 converges to a function g(z) in the set [2| > R;, where Ry = Ry, if h > 1/3,
and Ry = 2b(1 — h)™" > Ry, if h < 1/3, and the convergence is uniform on every compact set

K C {|z] > R3} that does not contain poles of g(z).

The formulas for R; and Ry are sharp in the sense that we can construct examples of T-fractions
realizing values of R; and Rs. This will be shown in the next section.

0.12 An extremal property of the singularities set of T-fractions with
limit periodic coefficients.

Now we need to define the notion of two-point version of transfinite diameter of a compact sets not
containing the point z = 0.
Consider a compact set F' such that 0 ¢ F. The two-point version of transfinite diameter e(F) is
2

. n=Dn _ 11y
defined as lim,,_,o Vi , where Vi, = max(., . ..)er [Li<j |2i—2;|2 —2; | = max(,, .. ..)er [Li<j |7i—

2|2z " i

In analogy with the usual transfinite diameter, it is easy to prove that the sequence Vi7" is
monotonically decreasing and consequently the limit exists. It is evident that two-point version of
transfinite diameter is invariant under transformations z — az*!', a € C. It is possible to prove the
properties of two-point version of transfinite diameter analogous to the corresponding properties of
the usual transfinite diameter. In particular, e(F) = 7*(F) = C*(F'), where the two-point version

of Chebyshev’s constant is defined as 7*(F) = limy,_,oo(min,, (;)ep, () Max,cp Z%(j();ﬂ)l/", Pu(F)
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denotes the set of all polynomials 2" 4 ... of degree n with leading coefficient = 1 and whose
roots belong to F. Two-point version of capacity of F' is defined as C*(F) = e~(10+7=+9)/2 \where
Yo = lim,0(g0(2,0) + In2|), Yoo = lim, 00(goo(2,00) — In|z|), go(2,0) and g.o(z,00) are Green’s
functions of components of C \ F, containing the points z = 0 and z = oo, respectively, g = 0, if
these components are different and g = go(00,0) = g0 (0, 00), if these components coincide.

The following analog of Polya’s theorem can be also proved.

Theorem 13 . Let F' be a compact set, not containing the point z = 0, and let f(z) be a function
meromorphic in the components of C \ F that contains the points z = 0 and z = oco. If f(z) =

>, a,2" for sufficiently small 2|, f(2) = XL ___ bu2™ for sufficiently large |z|, fo = ap—b,, n =
fon oo Jo

0,%1,..., where a, = 0, if n < k, and b, = 0, if n > [, and H; = | ... ... ... |, then
fo o fa

lim sup,,_, o, [ Hyy 7™ < e(F).

Finally, let us formulate an analog of Van Vleck’s theorem for T'-fractions with limit periodic
coefficients.

Theorem 14 . Consider a T-fraction K2, li%iz and suppose that its coefficients have periodic lim-

its 1My, o0 Gumar = @' £ 0, limy, o0 bymyy =0 £ 0, 1 =1,...,m. Then

1° T-fraction K52, 1% converges to a function f(z) in D = C\(I'U E), where T is defined  like in

theorem 10 (more precisely, T =T(a',...,a™;b',....0™") ={z€C: I(2)*=  4(-1)mz"d'...a™,

0 az

1 1+0bz )

precisely, in notation of theorem 10 E = E(a',...,a™;b', ... b™) is the set {z € C\T : 0 =

p'(2),...,0™(2)}); f(2) is meromorphic in D and the convergence  is uniform on every compact

set K C D which does not contain poles of f(z); if m =1, then  E = E(a';b") is empty;

2° f(z) can be meromorphically continued in the domain C\ T ;

3° f(z) cannot be meromorphically continued to C\ (I'\ {|z — 20| < €}), where zp € T and € > 0;

4° e(l') = |‘;i§;ﬂ 1/m = ming e(F), where minimum is taken over all compact sets F such that
0 ¢ F and f(2) considered at some small neighborhoods of the points z = 0 and z = oo can be
meromorphically continued in the components of C\ F containing points z = 0 and z = oo (if

these components coincide then the meromorphic continuations of f(z) must be the same).

t <1}, I(z)=1I(z;a',...,a™0b" . .., 0™) =TrI", E is a finite set of C (more

The assertions 1° and 2° of this theorem are corollaries of theorem 10. The assertion 3° follows
from the assertion 4°, because of the evident strict inequality e(I"\ {|z — 20| < €}) < e(T"). The
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equality e(I') = |‘;i§;ﬂ 1/m g a simple corollary of the definition of I and the properties of two-point

version of transfinite diameter mentioned above.

The proof of the main inequality e(T') = |b1 w|l/m < e(F) is based on the analog Polya’s
theorem and the well known expressions for the coefficients a, and b, of T-fraction by means of
Hankel’s determinants of the expansions of the limit function at the points z = 0 and z = oo (cf.

[11]). As a consequence of these expressions we have the equality lim,_,. |[H*|?™" = |W|1/m
where the Hankel’s determinants H are the same as in the analog of Polya’s theorem.

Let us note that e(F) = e(F~'), where F~' = {z € C ! € F}, and consequently theorem 14
admits a symmetric formulation for fractions K 2, 1%;

Let us pinpoint for the case m = 1 the geometry of the set ' =T'(a;0) = {z ¢ C: (1 +
bz)? + 4atz = 0, 0 <t < 1}, for various values of k = a/b. For simplicity, we assume that b = 1.
Evidently, I" contains the point z = —1 and is invariant under transformation z — 2z~

If £ > 0, then T is the segment [—R, —1/R], where R = 142k +2Vk?>+ k > 1. If kK = 0, then
[ is the point z = —1. If =1 < k < 0, then I is the piece of the circle |z| = 1. If k = —1, then T’
is the circle |z| = 1. If k < —1, then I is the circle |z| = 1 united with the segment [1/R, R}, where

R =2|k| —1+2\/k?> —|k| > 1. If Imk # 0, then C\ T is connected. Thus, the domain C \ I" consists
of two components only in the case k < —1, in other cases C \ I is connected.

It is easy to see that in the case k < —1 the numbers R*! coincide with numbers R, 5 defined in
theorem 12. Consequently, the formulas for R, in theorem 12 are sharp.

Having in mind Stahl’s theorem, it is natural to formulate the following question.

Question. Let f(z) = X020, fuz™ and g(z) = X020y gnz™" be expansions of algebraic functions f(z)

and g(z) at the points z = 0 and z = oo, respectively, and let T' be a compact set such that

a)0¢ T,

b) f(z) and g(2) can be holomorphically continued to the components of C\ T that contain the points
2z =0 and z = 00, respectively, (if these components coincide the holomorphic continuations of

f(2) and g(z) must be the same),

¢) two-point version of transfinite diameter e(I') is minimal among all compact sets for which the
properties a) and b) are valid.

Is it true that two-point Pade approximations of these expansions converge in the components of
C\ T that contain the points z = 0 and z = 0o to the holomorphic continuations of f(z) and g(z),
respectively ?
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