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Bases consisting of rational functions of
uniformly bounded degrees or more
general functions *

Pencho Petrushev

Abstract

We prove in this paper the existence of a Schauder basis for C[0, 1] consist-
ing of rational functions of uniformly bounded degrees. This solves an open
question of some years concerning the possible existence of such bases. This
result follows from a more general construction of bases on IR and [0,1]. We
prove that the new bases are unconditional bases for L,, 1 < p < oo, and Besov
spaces. On [0, 1], they are Schauder bases for C[0, 1] as well. The new bases
are utilized to nonlinear approximation.

1 Introduction

One of our main goals in this paper is to solve the problem for existence of a Schauder
basis for C'0, 1] consisting of rational functions of uniformly bounded degrees. This
problem was posed in [S] and [DS]. Shekhtman [S] proved that there exists a Schauder
basis {r,}>2, for C[0,1] so that r, is a rational function with degr, = O(In”n). We
shall prove that there exists a rational Schauder basis {r,}22, for C0,1] such that
degr, < K < oo. There is a striking difference between rational and polynomial bases
for C[0,1]. If {p,}:°, is a polynomial Schauder basis for C'[0, 1] and deg p,, < deg py+1,
n =0,1,..., then degp, =~ n is the best possible, see [Prl], [Pr2]. For orthogonal
polynomial bases see [LS], [WW].

The techniques we develop in this paper can actually be applied in a quite
general setting and to a variety of function spaces. Our technique will give a new
method for constructing bases that are unconditional for L, (1 < p < 00), Besov, and
other spaces, and Schauder bases for C[0, 1].

Our idea for constructing bases stems from the well known idea of a small per-
turbation argument: Given a basis {¢;}32, for some Banach space X, if the functions

*This research was supported by ARO/ONR Research Contract DAAG55-98-1-0002 and ONR
Contract N00014-91-J-1076.



0; approximate t; well enough, then {6;}22, will also be a basis for X. The key
question is: In what sense should v; be approximated by ;7 If one elects to make
|15 — 0;]|x small enough, then {6;}5°, is automatically a basis for X (see, e.g. [LT]).
However, there is not much room for maneuvering when selecting ¢;. Our approach is
different. We start (on IR) from an excellent orthonormal wavelet basis {1 (2%t — j)}
with compactly supported ¢ with enough smoothness and vanishing moments.Then
we select f smooth with enough vanishing moments so that

WD) — D) <e(L+ )™ for teR, j=0,1,....k

where £ > 0 is small enough (fixed) and M > 0 and k£ > 0 are big enough. We prove
that {0(2¢ — j)} is an unconditional basis for L, (1 < p < 00) and other spaces. Our
construction of bases on [0, 1] is similar. In this case, however, the basis functions are
not dyadic shifts and dilates of a single function. We prove that our bases on [0, 1] are
Schauder bases for C[0, 1] as well. The trade off is that we give up the orthogonality
and multiresolution analysis but preserve all other good properties of the wavelets
and gain much more flexibility in selecting the basis functions.

Our main application of this new small perturbation technique is to the con-
struction of bases consisting of functions that are linear combinations of a fixed
(small) number of shifts and dilates of a single function ®. This function ought
to be smooth enough and with sufficiently rapid decay. For instance, the rational
function ®(t) = (1 +¢?)~™ with m big enough generates the desirable rational bases.
Another interesting example is the Gaussian ®(t) = e~*".

Another important motivation for our work in constructing bases is nonlinear
approximation. It has been well understood in approximation theory that uncon-
ditional bases for L, (1 < p < 00), Besov, and other spaces provide a simple and
powerful tool for nonlinear approximation. Namely, suppose that {wj};’il is such a
basis. Then each function f € L, can be represented by f = 3 ¢;1;. It is natural to
consider approximation of f by linear combinations of n basis functions ; (n-term
approximation). The strategy for achieving best or near best n-term approximation
to f is simply to retain the n terms from the expansion of f with the biggest ||c;1;||z, -
It turns out that (under mild conditions on {¢;}) the n-term approximation can be
characterized by Besov and other spaces. The above leads us to the following idea
for nonlinear approximation: Suppose that we want to approximate by linear com-
binations of functions from some approximating family D. Then we can proceed as
follows. First, we construct a good basis which elements are linear combinations of a
fixed number of functions from D and, secondly, we run the best n-term approxima-
tion algorithm described above. We refer the reader to [De] as a general reference for
nonlinear n-term approximation.

We decided not to consider bases for other spaces besides C[0, 1], and the uni-
variate L, (1 < p < co) and Besov spaces in this paper. We shall report our results
about H? and other spaces, and in the multivariate case elsewhere.

The outline of the paper is the following. In §2, we give the construction of the



new bases (systems). In §3, we give the basic properties of the new systems. In §4,
we prove one of the main result of the paper. Namely, the new system for [0, 1] is a
Schauder basis for C[0,1]. In §5, we prove that the new systems are unconditional
bases for L,, 1 < p < oo, and Besov spaces. In §6, we prove the needed approximation
result for the construction of bases consisting of linear combinations of shifts and
dilates of a single function. In §7, we give examples of new bases and, in particular,
rational bases. We utilize them to nonlinear n-term approximation. §8 is an appendix,
where we give the proofs of some technical statements from §3 - §5.

Throughout the paper, the constants are denoted by C,C},... and they may
vary at every occurrence. The constants usually depend on some parameters that
will be sometimes indicated explicitly.

2 Construction of new systems (bases)

We shall construct our bases (the new systems) by using as a backbone excellent
wavelet bases (the old bases). We shall use as old bases smooth compactly supported
orthogonal wavelet bases with enough vanishing moments (Daubechies wavelets) al-
though other wavelet bases can be used as well. We shall have two variants of our
construction, namely, on IR and on the compact interval [0, 1].

We first introduce some notation. Let Q = IR or Q = [0,1]. Let D := D(Q)
denote the collection of all dyadic subintervals of 2 and let

Dy :=Dp(Q):={I€D:|I|=2""},
where |I| denotes the length of I. Thus

D(R)= |J D and D([0,1)) = |J Dy

meZ m>0

For each I € D, we let t; denote the left end of the interval I.

e An old basis on 2 = IR. Let N and k be positive integers so that N > k+1
and let A > 1. Let A := A(IR) be an orthonormal wavelet basis consisting of com-
pactly supported smooth wavelets and constructed from a multiresolution analysis
generated by a compactly supported scaling function ¢ (Daubechies compactly sup-
ported wavelets). More precisely, we assume that there exists a ladder of closed
subspaces of Ly(IR)

...Cvilc%c‘/lc...

with

U Vie=Lo(R) and () V,, = {0}
meZ mEZ
so that
(a) f eV, < f(2™x) € V; and
(b) {¢(t — v)},ez is an orthonormal basis for Vj.
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Let ¢ be the mother wavelet. That is {1)(t — v)},cz is an orthonormal basis
for Wy .=V, 6 V.
We denote, for each I € D,

N -1/ t—1p L -1/ t—1t;
or(0) = 11726 (L) and w0 = 17 ().

Then A = {¢r};ep and A is an orthonormal basis for Ly(IR), {#;}1ep,, is an or-
thonormal basis for V,,,, and {41 }rep,, is an orthonormal basis for W, :== V,,,11 ©V},..
In addition to this, let ¢ and 1 satisfy the following properties with €2 = IR:

¢, € CN(Q), (2.1)
/Qt”w(t)dt:(), =01, k-1, (2.2)

and
Supp ¢, Supp ¢ C [—A, Al. (2.3)

Simple change of variables shows that (2.1) - (2.3) yield that ¢; and 1); satisfy the
following properties: For I € D(Q),

Al.
br,br € CN(Q)
and
169N o) 197 by < G725 =0,1,..,N;
A2,
[rutda=0, 1€D@), v=01,.. k-1
A3.

Supp ¢, Supp ¥; C [t; — AlI|,t; + AlIl].

Also, we assume that the following condition holds:

A4. A is an unconditional basis for L,(€2), 1 < p < oo, and the Besov space
B (L,(€2)) that will be specified later in §5.

Daubechies wavelets of sufficiently high smoothness provide a basis like this,
see [Da]. For the most parts of this paper, condition (2.3) can be relaxed. It can be
replaced by

C
601 0| < s 1R

with S large enough. Then Mayer’s wavelets as well as smooth spline or other wavelet
basses can be used as old bases (see [Da], [HW], [Me], [W]).



e Construction of a new system (basis) on Q2 = IR. Let N and k be the
parameters of the old basis. Let M > 1 and ¢ > 0. We select a function # € C*(IR)
that satisfies the following conditions:

WD) -0V @) <@ +t)™, teR, j=0,1,...k (2.4)
and
/ﬁmwﬁ:m i=01,... k-1 (2.5)
Q
We define
t—1
9[(t) = |I|71/29 <T|I> , ] € D
Simple change of variables in (2.4) and (2.5) shows that 0; satisfies the following
properties:
B1.
: : it —t\ "
0 - s (1 ) L vem o
and
B2.

/tWﬂﬂﬁ:Q i=01,... k-1
R
By A1, A3, and B1, we obtain the following decay property

|t —t]
7|

-M
|1/)§j)(t)|, |9§j)(t)| < C|]|fj*1/2 (1 + > , telR, j=0,1,....k (2.6)

We define now the new system B by
B = B(]R) = {QI}IED(R)'

It will be shown in §6 that functions § € C*(IR) that satisfy (2.4) and (2.5) exist.
Therefore, new systems exist.

e An old basis on Q2 = [0,1]. Let again N and k be positive integers so that
N >k+1andlet A > 1. Let

A= A([0,1]) == {¢1}1ep,, U {1} icUmsm Py M0 >0,

be an orthonormal wavelet basis for Ly [0, 1] with the following properties: there exists
a ladder of finite dimensional subspaces of Ls[0, 1]

Vine C Ving+1 C - -+

with
UmZmOVm = L2[07 1]
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so that
Vin = Span {¢r}rep,, and W, :==V,,116V,, = Span {¢r}rep,,, m = mg, mo+1,...,

with ¢; and 1 satisfying properties A1 - A4 with 2 = [0, 1] (see the properties of
the old basis on 2 = IR). In addition to this we assume that A satisfies the following

property:
A5. Ais a Schauder basis for C[0, 1].

When the basis functions of A need to be ordered, we assume that they are
ordered from low to high levels and from left to right on a given level.

Wavelet bases like this have been constructed in [CDV] and [AHJP]. Note that
Ciesielski’s spline bases (see [C], [CD]) can also be used as old bases.

e Construction of a new system (basis) on 2 = [0, 1]. Let N and k be the
parameters of the old basis A([0, 1]). Let M > 1 and € > 0.

For each I € U5, Dim, we select a function 0y € C*([0,1]) so that

B1.

|t — ;]
7|

—-M
) -l < el (1 ) T ep G0k

and
B2.

1
/ 20,8 dt =0, j=0,1,... k1.
0

Also, we select, for each I € D,,,, a function w; € C*([0, 1]) such that
B3. - |
169 — P llopy < el j=0,1,.., k.

Note that A1, A3, B1, and B3 yield the following decay property: For j=0, 1, ...,

k, we have

|t —t]
1|

M
0L PO I Ol 0 < el (14 D e pa, e
where we have the restriction I € D,,, when considering w;.

Now, we define the new system B on [0, 1] by

B := B([0,1]) := {wr}rep,,, U {GI}IGUmZMODm'

It will be shown in §6 that functions 07, w; € C*([0,1]) satisfying B1 - B3 exist.
Therefore, new bases on [0, 1] exist.

It will be convenient for us to unify the notation of the basis functions from
A([0,1]) and B([0,1]) as follows. Since #{¢s}iep,,, = #Dm, = 2™, we can use the



set D_; UUp<m<mg—1Dy with D_y := Dy := {[0, 1]} for reindexing the basis functions
{¢I}16Dm0 C A and {w[}lepmo C B. We set

{Urtrev 1cpemy 10w = {01}1en,,, and {Ortrev ic,cpny 10w = {WrtieD,,;

where the one-to-one correspondence between D,,, and U_i<y<me—1Dpm is deter-
mined by the natural order among the intervals in D,,, (from left to right) and
in U_i<m<mo—1Dm (as it was explained before).
We denote again
D :=D([0,1]) := Up>_1D,,.

Thus we conveniently have

A([0,1]) = {¢r}rep and  B([0,1]) = {01} rep-

We can now summarize that, for I € D,,,, m > my, 0 satisfies properties B1 and B2
and, by B3, we have
B3'.

109 — 6P |cro < ell| 772 1€Dy, —1<m<mo—1, j=0,1,...,k

e Construction of new bases of periodic functions. Clearly one can utilize
our small perturbation technique to the construction of new bases in the periodic case.
We leave the details of this construction to the reader.

In the next sections we shall show that the new systems introduced above inherit
most of the good properties of the old bases, provided the parameters ¢, k, and M
are properly selected.

3 Basic properties of the new systems

We let Q = IR or Q = [0,1]. Let B := B(Q2) = {0;}1ep, D := D(Q2), be the new
system constructed in §2. Since A := A(Q) is an orthonormal basis for L(2), then

0 = Z (Z(I, J)l/)] with (Z(I, J) = <9[,¢J>, I €D, (31)

JeD

where the inner product is defined by (f,g) := [, f(t)g(t) dt. We denote the matrix
of the coefficients by

A = (a([, J))I’Je'D. (32)

The following lemma shows that A is very close to the identity matrix. In what
follows ¢, k, and M will be the parameters of A and B, see §2.



Lemma 3.1 Let k > 1 and M > k + 1. Then the entries a(I,.J) of A satisfy the
following properties:

1 171 b tr—ts] \ M

and

la(l,1) — 1] < Cie, (3.4)
where C1 > 1 is a constant independent of ¢.
Proof. Let first Q = R. Let I,J € D, I # J, and |J| < |I|. We shall estimate both
la(I, J)| and |a(J, I)| under these conditions. This is sufficient for the proof of (3.3).

Without loss of generality we shall assume that |[I| = 1 and ¢; = 0. We have,
using the orthogonality of ¢); and ¢,

(1, 0) = [ 0r(epes (0 de= [ (B:(0) = r(0))ui (1) . (35)
We denote
gr :=0r — ¢r.
We use the vanishing moments of ¢, (see A2) and (3.5) to obtain

at, D = | [ lor(t) zgl (t)(E = t2)" Jlhes (8)

k-1

< /|gl = X ot (- )/l )] de

where the integral over IR is split up into integrals over 7' := {¢ : |t — t;| > 1} and
Te.
For Z;, we use B1, (2.6), and the definition of T to obtain

-M
t
I, < Ce|J|*1/2/T[( + [t])~ +Z|t—t1| +|tJ|)M]<1+| |J|"|> dt

—-M
t—1t
< 05|J|I/Q/T[(1+|t|)M+|t—t1|k1(1+|tj|)M]<1+| J') at

||
it—t, ]\
Cs|J|’1/2/T(1+|t|)’M <1+ 7 > dt

IN

t—ts]\ 7
+ Cs|J|‘1/2(1+|1tJ|)‘M/T|t—1t!,|’“‘1 <1+T|J> dt

= Ill =+ 1-12.



To estimate Z;; we define U := {t : |t| < |t;|/2}. We shall integrate over TN U and
T NU® separately. If t € U, then |t —t;| > |t;| — |t| > |t;|/2 and hence

1
[t = tsl/1J] 2 max{L, [t;1/2}/17] = S (L + [ts])/]J]. (3.6)
Ift € U°:={t:|t| > |t;]/2}, then 1+ |¢| > (1 + |ts]). Using this and (3.6), we find

IH S 06|J|_1/2 </TﬂU+ TﬂUC>

< Cela T (1M )™ [ (1 pe) Vs

jt—ts]\ 7
+ ()™ 1+ ! dt
t—ts|>1 |.]|

Ce|J[M 2 (1 + [ts) M.

IN

We have

1.12

IN

k12 ur =ty
CelJ[FV2(1 + |t,)) / 1+ dt
lt—t,]>1 |J|
< Cel MY 4 |ty]) M.
The above estimates for Z;; and Z;, imply
T, < CelJ|M=V2(1 + |t,)~™. (3.7)

For the integral Z, over T° := {t : [t —t,| < 1}, we have, using Taylor’s formula,

-M
_ t—t
I, < CelJ| I/Z/TC|t—tj|k||g§’“’||Lm<At>(1+' m”) dt, (3.8)

where A, is the interval with end points ¢; and ¢t. For each £ € A;, we have
L+ €] =21+t = [E—ts[ =1+ [ts] = [t = ts] = [ts]
and hence 1+ |£] > (1/2)(1 + |t;]). Therefore, by B1,
197 ) < 2 max(L+ (€)™ < Ce(L+|ts) 7.
We use this in (3.8) to obtain

|t =t
7]

—M+k

T, < CelJ|F=12(1 4 |t,))™ . (1 + ) dt < Ce|JF=12(1 4 |t,])~M.
t—ty|<1

This estimate and (3.7) yield (3.3) when I # J, and |J| < |I].

9



Let us now estimate |a(.J, )| when I # J and |J| < |I]. As in (3.5), we have
Al 1) = [ (00 = o) (t) at
= [ n(0) = T~ 1) 105 (0) = w0

where we used that #; — 1; has k vanishing moments, see A2 and B2. We estimate
la(J,1)| using estimate (2.6) for |1;(t)| and |\ (¢;)|, and B1 for |6,(¢) — 1, (t)|.
Everything else is exactly the same as in the estimate of |a(Z, J)| and will be omitted.
Thus (3.3) is proved.

To estimate |a(I, I)| we use that ||77||r,(r) = 1 and write

o, 1) = /IR 0, (£) i (£) dit = 1 + /]R(el(t) () (8) dt.

Now, B1 and estimate (2.6) for ¢; yield (3.4). Thus (3.3) and (3.4) are proved when
Q=R.

Let Q =[0,1]. If I, J € UpysmeDm, then |a(I,.J)| and |a(J, I)| can be estimated
exactly as in the case 2 = IR and (3.3) and (3.4) hold.

If J € UnsmoDm and I € U<y Dy, then in the estimate of |a(Z, J)| and
la(J, I)| B3' replaces B1 and everything else is the same as in the case Q@ = IR. As a
result, (3.3) holds.

If I, J € Up<myDy, and I # J, then B3’ with j = 0 yields

la(L, J)],|a(J,I)] < Ck.

This estimate implies (3.3) in this case (with C; depending on my).
If I € Up<mgDm, then (3.4) can be proved exactly as in the case Q = IR by

using B3’ instead of B1. This completes the proof of Lemma 3.1. O
Let

G = (gL, ))rgep == ((01,05)); jep (3.9)

be the Gram matrix of B, where D = D(Q2) with Q@ = IR or Q = [0, 1]. The following
lemma shows that G is very close to the identity matrix.

Lemma 3.2 Ifk>1 and M >k + 1 then

lg(1 J)|<Cs< i {|l| |J|}>k+1/2<1+ It — >_M I#J,1,J€D
g4, = min § v, 757 T N ) y 4y )
[ J]" ] max{|1|, [J[}
(3.10)

and
lg(I,1) = 1| < Ce, T€D, (3.11)

where C > 1 s a constant independent of ¢.

10



Proof. Let first Q = IR. Let I,.JJ € D and I # J. We have

101, 05)| < |(0r — U1, 05)| + | (V1 00)| = [(Or — Y1, 01)| + |a(J, I)]. (3.12)

The functions {6, }ep as well as {11 },ep satisty the decay conditions (2.6) and have
k vanishing moments (see B2 and A2). Also, B1 holds. Hence (6 —11,0;)| can be
estimated exactly as |a(],.J)| was estimated in the proof of Lemma 3.1. Therefore,
the upper bound from (3.3) holds for [(#; — 1, 0;)|. Thus (3.10) holds.

It is readily seen that

1O, 0r) =11 < [{01,0r — )| + [{0r — Y1, 0n) | + [(Yr, ¢r) — 1
= |(0r,0r — )| + |01 — 1, ¢r)). (3.13)

This, B1, and (2.6) yield (3.11).

If Q = [0,1], then we proceed again similarly as in the proof of Lemma 3.1,
using (3.12) and (3.13). The details are omitted. Lemma 3.2 is proved. O

We shall next prove that the matrices A from (3.2) and G from (3.9) are
invertible. This will enable us to proof that the new systems have most of the good
properties of the old bases.

We denote by (2 (D) the weighted £, space of all sequences (cr)ep such that

(cr)renller (o) := sup |er|[I]* < oo
1D

Theorem 3.1 Let k > 2 and M > k + 1. Then there exists eq > 0 such that for
each 0 < € < g the matriz A from (3.2) is the matriz of an invertible bounded linear
operator A : €3, (D) — (3, (D), |A| < 1/2. Moreover, [[Id — Allp . < 1 and hence
A1 can be defined by its Neumann series

A7l = i(ld —A)" (3.14)

n=0

that is absolutely convergent. In addition to this, the inverse operator A~! has a
matriz

A~ = (b(1,)))r.sep, (3.15)

that satisfies the following property: For any selection of the constants o and (3 so
that 3/2 <a <k+1/2, 1< <M, and 2a > 3,

(] 1IN =t \7’
|b([,J)|§C’35<m1n{m,m}> <1+m> , T #J (3.16)

and

b(1, 1) — 1] < Cse, (3.17)

where C5 is a constant independent of <.

11



Remark 3.1 The proof of Theorem 3.1 is fairly standard. To mention some related
works we refer the reader to [FJ], [Mii], and [L]. However, since we could not find
a reference that was good enough for our purposes and for the completeness of the
present paper we give the following proof of this theorem.

For the proof of Theorem 3.1 we need the following lemma.

Lemma 3.3 Let M; = (\i(I,J)); jep i = 1,2, be two matrices satisfying the follow-
ing properties, for I,.J € D,

(T, )] < @m{%,%})a (1+%>ﬂ (3.18)

o(I, )] < @m{%,%})m (1+%>ﬁ, (3.19)

where o > 1, 3 >1,0 >0, and 2a > 3. Let

and

M = MlMg == ()\(I, J))I,JE’D .

Then we have

NN tr—ts] 7
I < — — 14+ —-" I D 2
AT, J)| < Gy (mln{|J|,|]| e WL) L nren o)

where Cy > 1 is a constant depending only on «, (3, and §.

We give the proof of this lemma in the appendix.
Proof of Theorem 3.1. We shall prove this theorem only when 2 = IR. Let

L:=Id—- A =:(c(I,J))ryep

and let L : 2 (D) — A (D) denote the operator with matrix L. We shall show that,
for sufficiently small e, |L|p p < 1.

Let @ and f be so that 3/2 < a <k+1/2,1 < < M, and 2a > (3. Evidently
such o and [ exist. Lemma 3.1 yields

1IN\ =t )’
|c(I,J)|§C'6<m1n{—,— 1+ ———1) , I,JeD, (3.21)
' 17" ] max{[1], ] J]}

where 6 := k +1/2 — a > 0. It is readily seen that

ILlley, ey, = sup > |e(Z, J)[ITPYT]

IeD JeD

12



We shall use (3.21) and that [A| < 1/2 to estimate ||L||, 0, . We have, for a fixed

[eD,
Dol DI = 30 + > =01 +o0a
jep Il 11
To estimate oy we set I, := I + p|I|. Using (3.21), we find
or = > le(L DI
<[]

> D S P TP

JOREEJ C 1,

| J| = 277|1]
< % 2 max{|e(1, )| : T C I, |J| = 279|1|}
j=0 ueZ
< 0y 273D N ()P
§=0 HEZ
< Cg,

where we used that « > 3/2, 6 > 0, and § > 1.
We next estimate 0,. For fixed j > 1, let J; be the dyadic interval with the

properties: Jo D I and |Jo| = 27|I|. Write J,; := Jy + p|Jo|. We estimate now, using
(3.21),

o2 = > |, DIIPI
|71>11]
= 22 leld I
Jj=luceZ
= nggfj(awfi%/?) Z(1+|M|)7ﬁ
j=1 insy/4
< Ck,

where we used again that o > 3/2, 6 > 0, and 8 > 1. Therefore,

> eI, J)| =01+ 05 < Ce

JeD
and hence, for sufficiently small ¢ > 0,

Therefore, A=t : (A (D) — (A (D) exists and (3.14) holds.
Let
Ln = (Cn(], J))LJGD.

13



We shall prove that, forn = 1,2, ..

*)

len(I, J)| < (Be)" (min {% %})a (1 + %) " rieo, (3.23)

where B = (5 with C'; and C5 from Lemma 3.1 and Lemma 3.3, respectively. We
shall carry out the proof of (3.23) by induction in n. From (3.21), it follows that
(3.23) holds for n = 1. Suppose that (3.23) holds for some n > 1. Then we apply
Lemma 3.3, using (3.21) and (3.23), to conclude that (3.23) holds for n 4+ 1. This
completes the proof of (3.23).

We are now in a position to prove that (3.16) and (3.17) are valid. It follows,
by (3.14) and (3.23), that, for e < 1/B and I # J,

WLﬂ|s§?%mﬂ|
< S (n {5 ) (+ mvti)

B (. (1] |7\" it —ts \7’
< I 1 _— .
_l—BsGm{MWﬂ T max{ (1], |7}

Therefore, (3.16) holds. The proof of (3.17) is similar. Theorem 3.1 is proved. O

Corollary 3.1 Letk > 2, M > k+1, and 0 < £ < gy, where gq s from Theorem 3.1.
Then the new system B(Q) is related to the old basis A(S2) as follows

0 = Z a([, J)'Q/)J and ’Q/)[ = Z b([, J)e], IeD:= D(Q), (324)

JeD JeD

where a(I,.J) are from (3.1) and b(1,J) are from (3.15), and both series converge
1

1

absolutely in L,(2), 1 < p < co. Moreover, (||0|1,())1ep € €3 7 (D).

Proof. It follows by A1 that (|[¢1]|r,))rep € % "(P) (1 < p < 0o). Therefore,
since the operator A : (A (D) — (A, (D) (]A\] < 1/2) is bounded, the first series in
1 1

(3.24) converges absolutely in L,(2) and (||0r]|1,0))rep € (% * (D). Similarly, by
Theorem 3.1, A= : /A (D) — (X (D) (J]A\] < 1/2) is a bounded operator and, since

(101]1,0))rep € €3 7 (D), then the second series in (3.24) converges absolutely in
L,(Q) as well. O

Theorem 3.2 Let k > 2 and M > k + 1. Then there exists eq > 0 such that for
each 0 < e < gy the matriz G, defined by (3.9), is the matriz of an invertible bounded

14



linear operator G : €3 (D) — €3,(D), || < 1/2. Moreover, |[Id — G|y i < 1 and
hence G™1 can be defined by its Neumann series

Gl= i(ld —G)"

n=0

that is absolutely convergent. In addition to this, the inverse operator G~ ! has a
matriz

G‘ri1 =: (f]([, J))I,JED; (325)

which satisfies the following property: For any selection of the constants o and 3 so
that 3/2 <a<k+1/2, 1< <M, and 2« > 3,

_ N tr—ts] \7’

and
9(1,1) = 1] < Cie, (3.27)

where Cy > 1 is a constant independent of ¢.

Proof. By Lemma 3.2, the entries g(I,.J) of G satisfy the same inequalities as
the entries of A (see Lemma 3.1). Therefore, Theorem 3.2 follows by the proof of
Theorem 3.1. Note that G is a self-adjoint operator. O

Remark 3.2 Let (,(D), 1 < p < 00, be the space of all sequences (cr)rep such that

(en)zenlle ) = (3 |er|?)/? < o0
IeD

with the l,-norm replaced by the sup-norm if p = oo. It can be proved that the
operators A and G from Theorem 3.1 and Theorem 3.2, respectively, are bounded
and invertible, considered as operators from £,(D) onto (,(D), 1 < p < co. The proof
s similar to the proof of Theorem 3.1.

Corollary 3.2 Let k > 2 and M > k + 1. Then for sufficiently small £ the new
system B(Q2) = {01} rep) with Q@ = IR or Q = [0,1] has a dual B(Q) = {é[}[ep(g)
with .

9[ = Z g([, J)gj, (328)

JED
where the series converges absolutely in L,() and 0; € L,(Q) for each 1 < p < oo.
Thus
<9[,9~J> :(SLJ fOT' I,J € D.

1 1

Moreover, (||0r|1,@)1ep € £ " (D), 1 < p < co.
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Proof. We select € so that 0 < & < gy, where g is from Theorem 3.2. By (2.6) or
1

11

(2.7), it follows that (||0||,))rep € €% " (D), 1 < p < co. We have, by Theorem 3.2,
that G=" : £2,(D) — €3,(D) (|A| < 1/2) is a bounded linear operator. Therefore, the
series from (3.28) converges absolutely in L,(£2) and hence 6; € L,(22), 1 < p < o0

and (||07]|2,0))rep € € ? (D). Using this, we obtain, for I,.J € D,

<9J,9[ Zg[ A 9J,9A Zg[ A A,J):(S[,J,

AED AE€D

since GTIG=1Id. O

4 The new system on [0,1] is a Schauder basis for

Co,1]
It is our main goal in this section to prove the following theorem.

Theorem 4.1 If k > 4 and M > 5 , then for sufficiently small € the new system
B = B([0,1]) from §2 is a Schauder basis for C[0, 1].

It is easy to prove that a good orthogonal wavelet basis (like the old basis A) is a
Schauder basis for C[0, 1] because of the existence of the scaling functions {¢;};cp,,
which span V,,,. Our plan is to create a similar structure in the new system B and
use it to prove that B is a Schauder basis for C[0, 1]. Our construction will be based
on the following proposition.

Proposition 4.1 Let {0,}2, be a sequence in a Banach space X. Then {0,}22, is
a Schauder basis of X if and only if the following conditions hold:

(i) {0.}52, is complete in X (the closed span of {0,};%, is the all of X ).

(ii) There exists a dual system {6,}52, C X* ((0,,0,) = 6, ).

(ili) For each m > mg (mg > 0 is fized) there exist sets {wym}ie, C X and
{@um}2s; U{Oum}oiom 1 C X* such that the following conditions hold:

(a)

Span {w, ,}>", = Span {0,}2", =: X,,.
(b)
{Bom Y U By} gy is the dual of  {wym Yory U {0,122 0m 1.
(c) For each f € X and 0 < i< 2™,

AL )

I Z > @vm wum+ > S bt < KIS, (4.1)

=2m41

where K is a constant independent of f, m, and i; (f, ) denotes the value of the
linear functional g € X* at f.
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Remark 4.1 We recall that {0,}52, C X (X a Banach space) is called a Schauder
basis for X if for each f € X there exists a unique sequence of scalars {a,}52 so
that f =352, a0, in X, see, e.g., [LT] or [KS].

Note that conditions (i) — (iii) readily imply that {Qym Yo" U {0, Y2 0m  is the
dual of {wym}2ry U{0,}0m 1 (the dual is unique) and hence 0,,, = 0, v > 2™.
Therefore, in the formulation of Proposition 4.1, {9~,,7m},‘j°:2m+1 can be replaced by
{0,3720m 1

We note that Proposition 4.1 is an adaptation to our situation of the standard
criterian for checking whether a given sequence is a Schauder basis. Condition (iii)
is usually replaced by the following equivalent condition (or a similar one), see, e.g.,
[LT] or [KS]:

(iii") There exists a constant K > 0 such that, for every f € X,

||Z(f,9~,,>9,,|| <K|fll, n=12,....
v=1

For completeness, we give the proof of the part of Proposition 4.1 the we need in the
appendiz.

We denote

m—1
Em=J D, and Xy = Span {01} ee,,,

v=—1

where 6, are from B|0, 1]. Note that #&,, = dim X,,, = 2™.

In what follows, we shall assume that £ =4 and M > 5. Also, we shall assume
that the parameters o, 3,7, ', and ' are selected so that the following inequalities
hold: 3/2<a<k+1/2,1<fB<M,2a>p,a>r+3/2,a+1/2>p3,1<r <k,
B>r+1,3/2<d <r+1/2,1 <3 <f,and 2¢/ > ', where r is an integer. These
parameters should be selected in the following order: (', a’,r, 3, and a. Here is one
possible selection of the parameters: ' =1+n, o =15+n,r=2, =3+mn, and
a = 3.5+ n with n > 0 sufficiently small. We assume that my is the constant from
62. Also, we shall assume that £ > 0 from the construction of the new system B in
§2 is small enough, namely, so small that Theorem 3.1, Theorem 3.2, Corollary 3.1,
and Corollary 3.2 apply.

Lemma 4.1 For any m > mg and I € D, there exists w; € X,,, such that

|t =t
1]

. - . _ﬂ
|¢$ﬂ’(t>—w§”(t>|scsur]‘l”(” ) HE0,1],7=0,1,..,r,  (42)

where C' is a constant independent of e, m, and I.
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Proof. If m = my, then (4.2) follows by B3 with w; defined in B3 and C' depending

on my.
Let m > my and let I € D,,. We have, by the properties of the old basis,
6r=3 o, )y with c(I,J) = /Q &1 (1) (2) dt. (4.3)
JEEM

By A1 and A3, we readily find

I
e(1, )| < CHIITH21T| 21| = C (M) it |tr —ts] < 24]J],

|71
and c(I,J) = 0 otherwise. From this, it follows that
1] tr—ts\ ™
<o () (is SV (44
|71 |71

with C depending on A and f3.
We next approximate each ¢z, |J| > |I|, from the subspace X,,.

Lemma 4.2 For each J € D, —1 <v < m — 1, there exists A\j € X,, such that, for
7=0,1,...,r,

) . . . t—1
[0 (1) = AP ()] < Celg|I7Par el (1 +! 7 J') . tef0.1] (45)
where C' is a constant independent of e,m, J and t.

Proof. We have, by Corollary 3.1,

by =Y b(J,A)0a,

AED
where the series converges uniformly. Let
Ay = Z b(J, A)GA, Ay e X,

A€ER

Then
Yy == Y b(J,A)fa.

AED\gm
Using (2.7) and Theorem 3.1, we obtain, for j =0,1,...,r,

/ A :
> AW, < Ce Y X (|J|> INERT:
AED\Em p=m A€D, ||
|A| a—j—1/2
pw=m AeD, |J|

< el i g~ (u—m)(a—r—1/2)
nw=m
< 00,
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since a > r + 3/2. Therefore, the series

S (5,009 (1)

AED\En,

converges uniformly on [0, 1] and hence, for ¢ € [0, 1],

WP (&) - AP0 < S (1, A) 109 (1))

AED\gm

5 3 (8) (15 (o 5

H=m A€D,

—j—1/2 — —v)(a—j—1/2 |tJ—tA| - |t_tA| -
§C6|J|3/22(“ )(J/)Z 1+T 1+ x

pu=m A€D,

IN

Applying Lemma 8.1 to the last sum above, we find

_ﬂ o0
~ ~ ; t—1t ;
WP () = AP @) < Celg| <1+ It —t; 7 J) S 2 (rwemi=1/2)
u=m

1/2 j—1/2 |t_tJ o
< Celg| V2o tmes1) (1 4 7 ,

where we used that o > r + 3/2. Thus (4.5) is proved. O
Completion of the proof of Lemma 4.1. We define, for I € D,,,

wr 1= Z C(I, J))\], wr € Xm,

JEEM

where ¢(I, J) are from (4.3). Using (4.4) and Lemma 4.2, we find
67(1) = O < 3 Je(, D17 (@) = A7)

JEEM

/2 -8 -8
|I| ' |tI - tJ| —J— —(m—v)(a—j— |t - tJ|
o5 z(m 14 M) gy oes (1 P

v=—1J€eD,

Ljm1/2 " o—(mv)(at1/2) tr—ts]\ ™" t—ts]\
< Cell > 2 > o1+ 7] 1+ 7]

v=—1 JED,

IN

Applying Lemma 8.1 to the last sum above, we obtain

. . i m—1 t—t —p
917'(t) =i (B)] < Cel|7712 3 e (1 L=l QJ')

v=—1

Clearly

|t—t1| |t — t7]
> 9 (mv) [
2 M
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and hence

. . ) - =B m-1
169 — P (8)| < CelI|771/2 <1+|t tf') § g-(m-v)a+i/2=5)

v=—1

-8
. t—1
< CelI|7i-12 (1 + %) :

where we used that & +1/2 > 3. Lemma 4.1 is proved. O

Proof of Theorem 4.1. We shall prove that conditions (i) - (iii) of Proposition 4.1
hold with X := C[O, 1], {HV},?OZI ~: {91}1697 {GV}SOZI = {91}1697 and {w,,ym 12121 =
{wr}rep,,, m = 0,1,..., where ; are from Corollary 3.2 and w; € X,, are from
Lemma 4.1.

Since A is a Schauder basis for C[0, 1] (see property A5 of A) A is complete
in C0,1]. This and Corollary 3.1 imply that B is complete in C[0, 1] as well. Thus
condition (i) holds.

By Corollary 3.2, we have that B := {é[}[e'p with

Or:=> g(I,7)0;, I €D, (4.6)

JeD

is the dual of B. Thus condition (ii) holds. Note that the dual B is unique since B is
complete in C[0, 1].

It remains to prove that condition (iii) holds. Let m > mg. Let DY := D,, (D%,
is a copy of D,,,) and D;f := U2 D,. We define

B :=A{wr}iepy, U{01}eps,
where wr are from Lemma 4.1. Let
Gy = (gn (1, J))I,JeDg’nuD; (4.7)
be the Gram matrix of B,,. We next show that G,, is close to the identity matrix.

Lemma 4.3 We have, for I,.J € D° UD},

r+1/2 —B
N It — 1]
gm(I, J §C€<mln{—,— 1+ ——= , I #J, 4.8
9 (T, 7)1 7]’ 1] max{|1], | J|} (4.8)

and
\gm (I, 1) — 1] < CE, (4.9)

where C > 1 s a constant independent of ¢.
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Proof. If I, J € D;, then (4.8) and (4.9) follow by Lemma 3.2 (k > 7).
By (2.7) and Lemma 4.1, it follows that, for I € D,,, and j =0,1,...,r

)

-6
, , ; t—t
67 OL 107 O kO, 167 ()] < €177971 (1 +! 7 I') L te0,1). (410)
Let I,J € DY and I # J. Then we have

\gm (L, )] = |(wIan>| = [wr,ws) = (¢1,0.)]
< [wr,ws— o0+ wr — 1, 07)|

< [ lor®llest) = ool dt+ [ lorte) - 610)llgs(0)] v,
where we used that (¢, ¢;) = 0. This and Lemma 4.1 (with j = 0) yield

— -8 _ - . -8
g1, )] < Cel]™ [ (HV tf|> (HIt m) dt§06<1+|t1 m)
" ] 1] 1]

(4.11)
Hence (4.8) holds for I,.J € DY and I # J. Similarly, we obtain, for I € D2,

|gm([7[) - 1| = |<w17w1> - ]'| < Ce.

This is (4.9).
Let I €D J €D} and I # J. We have

\g(1, )| = w1, 05)| = {wr, 05) = (&1, V)| < [wr, 05 — Y1) + [{wr — o1, ¥0) ],

where we used that (¢, ;) = 0. We note that w; satisfies (4.10), 6, — ¢, satisfies
B1 and has k (k > r) vanishing moments, by A2 and B2. Also, w; — ¢; satisfies
(4.2) and 1, satisfies (4.10) and has k£ (k > r) vanishing moments. Therefore, we
can estimate |(wr,0; —1;)| and |(w; — ¢r, 1 s)| exactly as in the proof of Lemma 3.1
and obtain the upper bound (4.8). The roles of M and k are played now by / and r,
respectively. We omit the details. Thus Lemma 4.3 is proved. O

Lemma 4.3 enables us to prove that the Gram matrix Gy, is invertible.

Lemma 4.4 There exists €1 > 0 such that for each 0 < ¢ < g1 the matriz Gy, defined
by (4.7), is the matriz of an invertible bounded linear operator Gy, : 5 (D% UD;") —
0.(DS, UD}), [A] < 1/2. Moreover, ||Id — Gumllp i < 1 and hence Gy, ™' can be
defined by its Neumann series

o0

Gm ' =Y (Id - Gp)"

n=0

that is absolutely convergent. In addition to this, the inverse operator Gm ' has a
matric

Gmi1 = (gm(l, J))I,Jewnupina (4-12)
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that satisfies the properties

] NN it —ts \7”
|gm(I,J)|§C'6<m1n{—,— 1+ ————— , T # (4.13)
! 7] |1] max{|T], | J]}

and
|G (1, 1) — 1] < Cle, (4.14)

where Cy > 1 is a constant independent of ¢.

Proof. It is readily seen that Lemma 3.3 holds with D replaced by DY U D, (m
fixed) and C5 independent of m. Now, Lemma 4.4 follows by Lemma 4.3. The proof is
almost identical to the proof of Theorem 3.1 (or Theorem 3.2). The roles of M, k, «,
and 3 are played now by 3, r, o/, and [, respectively. Note that we assumed earlier
that the latter parameters satisfy the inequalities 3/2 < o/ <r+1/2,1 < ' < 3, and
2’ > (3" which replace the corresponding inequalities for o and  from Theorem 3.1
and Theorem 3.2. We leave the details of this proof to the reader. O

Completion of the proof of condition (iii). We define

ori= Y gul,Nws+ > Gu(l,J)0;, I€Dy, (4.15)
JeD?, JeDy,
and .
Orm = Y, Gu(l,Nws+ > Gu(I,J)0;, I€D. (4.16)
JeDY, JeDy,

Exactly as in the proof of Corollary 3.2, it follows, by Lemma 4.4, that

B, = {@r}repo U {él,m}lebfg'

is a dual of B,,. This yields that {w;} ecpo is a linearly independent set and hence
Span {wr}repo = Span {0;}se¢,,. Therefore, By, is complete in C[0,1] as well as B.
Hence the dual B, of B,, is unique and (see Remark 4.1)

é[ = é[,m, I e D;,

where ; is from (4.6).
Next, we use Lemma 4.4 and the good localization properties of w; and 6; to

show that &; and 6; (I € D,,) have good localization properties. We have, combining
(4.10) (with j =0), (4.13), (4.14), and (4.15), for [ € DY ,

jw0r(t) —wi(®O)] < gm (1, 1) = 1|wi ()]

+ > gL Dlws@OI+ D2 G, D)110(1)]

JeDy,, JAI JeD},
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g g
ty—t t—t
< CelI 2y <1+|’|I| "|> <1+| |I|"|>

JeDY,
o —1/2 -5 -5
_ Bl |t — t] |t — )]
+CelI|7/? (— 1+ — 1+
2\ 7 7
=: 01+ 09.

We apply Lemma 8.1 to the sum in o; to find

~1/2 |t —t] 7
oy < Cell| 1+ 7|[| ) (4.17)
We have
00 - —p
/ tr —t t—t
oy < CelI|7V2Y " 2me=1/2) (1 L J|> (1 n I|> .
=0 JEDms 1] 1]

Applying Lemma 8.1 to the last sum, we obtain

it —t,]\ 7 & ,
oy < CellI|V/? <1+ > S o3
|]| n=0

-8
t—1
< C€|I|_1/2 <1+| |I|I|> ,

where we used that o/ > 3/2. From this and (4.17), it follows that

,ﬂ’
t—t
&7 (t) — wi(t)] < CelI|~Y/? (1 + %)

and hence

iy
t—t
o (t)] < 1|72 (1 + %) , telo,1], TeD. (4.18)

Proceeding exactly as above (using (4.10), (4.13), and (4.14) in (4.16)), we obtain

|t —t]
7|

_ﬁ’
16,(t)| < C|I|7Y/? (1 + ) , te€l0,1], I €Dy, (4.19)

We are finally completely ready to prove that condition (iii) holds. Let n = 2™ + i,
where 2™ < n < 2™t and 0 < i < 2™. Let

Pu(f) = > (f.onwr+ > (f.0n)0r,

1€DY, 1eDg, ;
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where Df, ; is the set of the first ¢ intervals I € D,, (ordered as usual from left to

right). We have
/ K, (t,y) f(y)dy,

where

Kt y) = > Or()wr(t) + Y- 0i(y)ou(t

IeDY, 1€Dy

We use (4.10) (8 > ('), (4.18), and (4.19) to obtain, for ¢,y € [0, 1],

)l < 30 1@l + 3 18:()l16: ()]

IeDY, IeD<>

_ﬂ
t t—1

1€Dpm,

Applying Lemma 8.1 one more time, we find

g
_ t—y
ma<cn (1 0) L el

Therefore, we have, for f € C([0,1]) and ¢ € [0, 1],

N
PO < [ Il < clieir [, (14 5 < e

where we used that 3 > 1. Hence condition (iii) holds and this completes the proof
of Theorem 4.1. 0O

5 The new system is an unconditional basis for L,
1 < p< oo, and Besov spaces

From the way the new systems were constructed in §2 and their properties from §3, it
is clear that they should be unconditional bases for all reasonable spaces of functions
of a certain smoothness. In this section we prove this for L,, 1 < p < oo, and Besov
spaces, using standard techniques. For the sake of completeness we give the proofs of
these results. We shall utilize them to nonlinear n-term approximation in §7.

Theorem 5.1 If k > 2 and M > k + 1, then for sufficiently small ¢ > 0 the new

system B(Q2) with Q@ = IR or Q = [0, 1] (see §2) is an unconditional basis for L,(2),
1 <p<oo.
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Proof. We assume that ¢ > 0 from the construction of B(£2) is small enough. Namely,
let € be so small that Theorem 3.1 and Corollary 3.1 apply. We select the parameters
«a and (sothat 3/2 < a<k+1/2,1 < < M, and 2« > 3. Therefore, Theorem 3.1
can be used. One possible selection is o := 1.6 and § := 1.6. We shall give the proof
only when 2 = IR. We denote briefly L, := L,(IR).

It is well known (see, e.g., [KS], [LT], [W]) that necessary and sufficient condition
for B to be an unconditional basis for L,, 1 < p < oo, is that B satisfies the following:

(i) B is complete in L, (the closed span of B is the all of L,).

(ii) For any finite sequence of numbers (d;);ep, we have

1S dibille, = 132 1dibi?) 2|2, (5.1)

I1eD 1€D

with constants of equivalence depending at most on p. Here and later A ~ B means
that there are two constants C1,Cy > 0 such that C1B < A < (5,B.
The completeness of B in L, follows by the completeness of .A and Corollary 3.1.
To prove that condition (ii) holds we shall use the Fefferman-Stein vector valued
maximal inequality, see [FS]: If 1 < p < oo and 1 < ¢ < o0, then

||(§o:1 M (f)) ]|z, < Clp, @H(i £z, (5.2)

j=1
with
M) = sup Q] [ 1f (@)l da,

where the sup is taken over all intervals ) containing ¢.
By the properties of ¢; and 6; (A1, A3, B1, and ||¢||, = 1), we obtain

M) ~ M) ~ M) ~ 1112 (1 ML |}|’”'> L 63

where \; := |I|7%/2x; is the characteristic function of I normalized in L,. By (5.2)
and (5.3), it follows that, for any sequence (d);ep,

N Ndror ) 21|, = N 1dibi?) 2 e, 2 1 1A ) P Lz, (5.4)

1€D 1eD 1eD

Let (dj)rep be a finite sequence of numbers. We denote

f = Z d[9[.

IeD

Since A is an unconditional basis for L, (see A4), then

f=> erpr with ¢ = /Rf(t)wl(t) dt

1eD

25



and

AL, 2 I lervor )2, (5.5)

IeD
Note that
lerl < Wl llle, < flle, I[P 2 TeD, 1/p+1/p =1,

and hence (c;);ep € (/277 (D). Using Corollary 3.1 and Theorem 3.1, we find

;=S a(l,J)d; with a(I,.J) :/ 0,(t)ws(t)dt, J €D, (5.6)
= IR
and
d; =S b(I,J)e;, JeED. (5.7)
IeD

In order to prove (5.1) it is sufficient to prove that

1O JerA )21z, = 10 ldine?) ], (5.8)

IeD 1€D

Indeed, if (5.8) holds then, using (5.4) and (5.5), we obtain
1Lz, =~ NG lervor) 2, = 1O lerAd) 2,

IeD IeD
~ 1 A )2 L, = I3 1di0r?) 1,
IeD IeD

Thus (5.1) holds.
To prove (5.8) we shall use the properties of a(/, .J) and b(I, J) from Lemma 3.1
and Theorem 3.1. We shall only prove that

1O 1deA?) 2 e, < CNCE lerAd) 2, (5.9)
1eD IeD

The inverse estimate follows in the same way.
The next lemma will help us in the use of the maximal function. We borrowed
the idea for this lemma from [FJ].

Lemma 5.1 Let J € D, |J| =27, and pn € Z. Let (ha)aep, be any sequence of
numbers. Then the following properties hold.
(a) If u < v, then

Yo lhal(l+28ta =) < CM ( > |hA|XA) (t) for teJ (5.10)

A€ED, A€ED,

(b) If u > v, then

S olhall+2%ta —ty) P < C2vV M ( > |hA|XA> (t) for teJ  (5.11)

A€ED, A€ED,
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We give the proof of this lemma in the appendix.

Completion of the proof of Theorem 5.1. We have, using (5.7) and Theorem 3.1,

12 1 Asl?) 2 e, < IO 0 1A, DllealAn)®) e,

IN

+

JeD JED AED
(O SRODED DD DI DI b Kl I
veZ JeD, pulv AeD, w>v A€D,,
1] a—1/2 lta — )] -8 / 2\ 1/2
. (Y™ (1 Lot g
2= (ZZ A &
LP
1/2
a+1/2 - 2
|A|> i ( |tA—tJ|> —1/2
¢ () (2 ealiar
é%@%m 7
LP
o1 + 03.

We first estimate 0. We use Lemma 5.1 and (5.2) to find

Ol > (o2 Wmtem2 57 (14 2ta — ta) P leall A7 2x0)) 2,

01

IN

IN

IN

veEZ JED, ulv A€D,

OIS S 27 e 2M (Y feallAT2xa)xs)) 2,
veZ JeD, u<lv A€D,

O 27 WM (Y7 eall A2 xa)) 2L,
veEZ p<v AeD,

O IMC Y feallA2xa)P) e,

vEZ A€D,

O LY leall A2 xa) s,

VEZ AED,

Ol (ealra)®) e,

A€ED

where we used the following inequality (see, e.g., [DL]):

S (X 27mmig <y ay, 6§>0.

vEZ pu<v UEZ

We now estimate 0,. Using again Lemma 5.1 and (5.2), we get

Ol 3o (o 27t 37 (1 24jts — ) P leall A7 2x0)?) 2,

09

<

VEZ JED, B>V A€ED,

Ol > [ 27wttt pr (3 Jeall A2 xa)xa1%) s,

vEZ JED, p>v A€D,

Ol (D22 e EIM S Jeall AI2xa)) 2,

VEZ p>V A€ED,
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< O IMCY leallAY2xa) ) 2L,
VEX AGD;J,

< OI(ZLY leallAlT2xal) 2,
VEZ AED,

< O learal)?|ls,,
AE€D

where we used again inequality (5.12). The above estimates for oy and o9 imply (5.9).
Theorem 5.1 is proved. O

The Besov spaces are usually defined by moduli of smoothness (see [Pee],
[Me], [DL)): f € Bi(L,(IR)), s > 0,0 < p,q < o0, if f € L,*(IR) and

00 dt 1/q
|f|Bg(Lp(lR)) = (/0 (t*su)k(f, t)p)q 7) < 00,

where the L,-norm is replaced by the sup-norm if ¢ = oo; wi(f,t), is the kth modulus
of smoothness of f in L,(IR), k > s+ 1. Note that in the above definition f is not
necessarily in L,(IR), however, Af f € L,(IR) for every h € IR. The Besov spaces on
[0, 1] are defined similarly. For the sake of simplicity we consider in the present paper
only Besov spaces on IR which are embedded (modulo polynomials of degree < k) in
L4, for some n > 0. Besov spaces like these are needed in nonlinear approximation
(see §7.2).

The following characterization of the Besov spaces holds (see [Me], [FJW], [De],
[K]). Let A = {¢r}rep be an orthonormal wavelet basis (like the old basis from
§2) so that the mother wavelet 1 is compactly supported; 1 € BT (L,(IR)) for some

7 > s; 1 has k vanishing moments with £ as above, and s > (1/p — 1);. Then
B}(L,(IR)) is embedded in Ly, (IR) for some n > 0 modulo polynomials of degree
< k. If f € Bj(L,(IR)), then there exists a polynomial P of degree < k such that
f—=P=> cpprin Ly, with ¢ := [ f(£)¢r(t) dt (5.13)
IeD
and
|flgpmy = (D [ 3 ({17572 |e|)Pep) e (5.14)
mEZ 1€Dm,

with the usual modification when ¢ = oco. In describing the convergence of the series
from (5.13) and the series that will occur later in this section, we should specify
the ordering. We do not do this because all our function series are unconditionally
convergent (A and B are unconditional bases for L,, 1 < p < oo) and all our series
of scalars are absolutely convergent.

In the following theorem we show that the new systems are unconditional bases
for Besov spaces.
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Theorem 5.2 Let 0 < p,g < oo and s> (1/p—1)y. If k >2s+2 and M > k+1
then, for sufficiently smalle > 0, the new system B(IR) (see §2) satisfies the following:
For every f € By (L,(IR)) there exists a polynomial P of degree < k such that

f—P= Z drf; in Ly, (IR), for somen >0,

1€D

and

flBsnymy = (D (D2 (|77 1/2HR |, |)p)aley e (5.15)

meZ 1€Dm

with the {4-norm replaced by the sup-norm if ¢ = oo.

Proof. Let ¢ > 0 (from the construction of B(IR)) be so small that Theorem 3.1,
Corollary 3.1, and Corollary 3.2 apply. We first select the parameters o and [ so that
the following inequalities hold: 3/2 < a <k+1/2, 1< < M, 20> 3, 0> s+1/2,
B>s+1,and a— 3 —s—1/2+1/p > 0. Here is one possible selection of & and f3:
f:=s+140and a:=2s+3/2+ 20 with § > 0 small enough.

Let f € B}(L,(IR)). Then there exists a polynomial P of degree < k such
that f — P € Ly, (IR) for some n > 0 and (5.13) and (5.14) hold with ¢; from A.
By Theorem 5.1, B is an unconditional basis for L;;,(R). Therefore, f — P can be
represented uniquely in the form

f—P: Zd]gj in L1+77(R)7

IeD

where d; = [ f(£)0;(t) dt with {8;};cp the dual of B from Corollary 3.2. By using
the same corollary, we have

10|, < C|I|" V#1471 <p< oo
Hence, using Holder’s inequality, we find
el < W eas 100 lnspyy < N F s, [ 11725700 T e D.

Similarly, we have
ler] Nl (172400 T e D.

Therefore,
1__n 1_n
(cr)rep € €3 ™" and  (dr)rep € loo ™. (5.16)

By Corollary 3.1, Lemma 3.1, and Theorem 3.1, it follows that

cy=>_a(l,J)d; and d;= > b(I,J)e;, JeD, (5.17)

IeD IeD

where both series converge absolutely because of (5.16) and the fact that A and A~!
are both bounded operators from ¢3 onto ¢ for |A\| < 1/2. The properties of a(I,.J)
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and b(1,J) are quite similar (see Lemma 3.1 and Theorem 3.1). For this reason, we
shall prove only that

[ Flsyamy < CCY0 (30 (72 Pldg|ryae) e (5.18)

meZ I€Dp,

with 0 < p,q < co. The inverse estimate can be proved exactly in the same way.
Using (5.14), (5.17), and Lemma 3.1, we find

s oy < C 22 132 (17207 37 Ja(1, J)di])?]7)

meZ JEDy, I1eD
TN -\ T

<oy | T e (—) (1+ ) s

meZ | JEDm \IED,|I|>|J]| |I| |I|

I ° B p4/p
+C Y [Z ( > gt (M) (1+|“_t"|> |d1|>]
meZ | JEDm \IeD,|I|<|J| || ||

=: 01+ 09,

where, in applying Lemma 3.1, we used that « < k+1/2 and 3 < M.
We denote hy := |I|7*~Y/2+Y/?|d;| and v := s +1/2 — 1/p.
Case I: p > 1. We first estimate o;. We have

e lE (60T

meZ | J€Dm \I€D,|I|>|J]
r |t ; | -8 p1a/p
c oy |y [y ormen v (1+ f J) b
meZ | JEDm \n<m I1€Dy |]|
[ |t ; | -8 p\ 1/p719
< oY |Totmen (v [T (1 Ll J> n
meZ [n<m JEDy \IED, |I|

q

= O Z Z 2*(m*n)(a*7)5mn

meZ |n<m

Y

where we used Minkowski’s inequality (p > 1). Since n < m, then

wozm (505 )

A€EDy, JED,, JCA \IED,

-8 p
tr —t
< conn Y Z<1+7|I A') hl
A€D, \IED, 1]
where we used that
tr —t 1 tr —t
L "|z—<1+M> if JC A, AeD,.
1] 2 1]
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We now define i by the identity I =: A + i|A|. We have

S < C2 IS (314 [i]) Phaia)?)

A€Dy, i€EZ

< C9(m=n)/p Z 1+ i)~ Z hA+z\A| P

icZ
where we applied Minkowski’s inequality. Therefore, since 3 > 1,

S < C2m PN pROE, (5.19)
A€ED,

We use this to estimate o;. Let ¢ > 1. Then we have

o < C( Z [Z 2*("1*")(0*7*1/11)( Z h}li)l/p]q)l/q

meZ n<m A€D,
O
< C( Z [Z Q*V(af%l/p)( Z hg)l/p]q)l/q
meZ v=0 AEDm—_w

< 022 vla=Un (N (ST Ry,

meZ AED,,_ .,
where we used again Minkowski’s inequality (¢ > 1). Therefore,

o < C(D (>0 mR)Yr)He, (5.20)

neZ A€D,

where we used that « —y —1/p=a—s—1/2>0.
If ¢ < 1, then we use (5.19), the g-triangle inequality ((3 |y;])? < X |y;]9), and
change the order of summation to obtain

o < CY Y o-mmeige

meZ n<m
SCZZanavl/p thq/p
meZ n<m AED,
SCZZanavl/p Zh}’q/p
neZ m>n AEDn
< CY (X )
neZ A€D,

where we used that « —y —1/p = a — s —1/2 > 0. From this and (5.20) it follows
that
0 < C(Y (X (7 20a Pyt 0<q<os  (5:21)

meZ AED,
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We similarly estimate oy. We have

S 0 G M A

meZ | JEDm \I€D,|I|<|J|
i it — 1| -8 pya/p
< C Z Z Z 9—(n—m)(a+7) Z <1+ ! J> h;
meZ | J€D,, \n>m 1€D,, ||
[ it — 1] -8 p\ 1/p] 1
< C Z Z 9—(n—m)(a+7) Z Z (1 4+ M J> h;
meZ |n>m JEDy \IE€Dn ||

= O Z Z 2—(n—m)(a+7)5mnr,

meEZ Ln>m

where we used Minkowski’s inequality (p > 1) as before. Now, we have n > m and
hence

Shn = 2 (Z > (1+|“|;|t"|>ﬁhl>p

JEDm \AED, I€D,,ICA

,,3 D
tA — 1t
cyY | v <1+7'A J') S onll
JEDm | AE€Dm /] 1€D,, ICA

IN

where we used that

1+

tr—t;] _ 1 ( |tA_tJ|> .
> (14822 e A AeD,,
| J| 2 ]|

We now define j by the identity J =: A + j|A|. We have

1P\ 1/p
s < o5 g wlf)
JEDm |jEZ I€Dy, ICT—j|J| ]
p\ 1/p
< CZ(1+|j|)ﬂ<Z ( > hf)
JEZ JEDm \I€Dy,ICT—j|J|

p\ 1/p
< CZ(HUD‘B(Z ( > hf)

JEZ JEDm \IED,,ICI—j|J|
< CQ(H*M)(lfl/p)( Z h’})l/”,
1€D,
where we used Minkowski’s and Holder’s (for the last estimate) inequalities. There-

fore,
S < CQ(H*M)(lfl/p)( Z h?})l/p‘

1€Dy,
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We use this to estimate oy similarly as we used (5.19) to estimated o;. We get the
same upper bound for oy as the one for o; from (5.21). We leave the details to the
reader. Thus (5.18) holds if p > 1. Case I is completed.

Case II: p < 1. We first estimate o,. We use the p-triangle inequality and
change the order of summation to obtain

[ |J| (Oé—’Y)p |t[—t]| —0Bp q/p
WYY Y (m) (Him ) h’}]

meZ | JEDm I€D, |1|>|J]

—(m=n)(a—)p tr =\, "
S C 2 2 Z 2 2 1 + |I| h[

meZ | JEDm n<m IeD,,
|t 4 ~Bp a/p
éCZEﬁm“”ﬂZZ( )
meZ | n<m I€ED,, JED /]

a/p
< CY | Yoo Zh”] ,

meZ |[n<m 1D,

where we used that

ity —ts] _ |/ ( |t1—t1|>
1+ > -— |1+ . I > |,
1] 1] ]|

and

—Bp
3 (1 L t"') <CY (1+ihP<C Bp>pB/(s+1)> 1.
JEDm, |J| Nz
We further estimate oy by using Minkowski’s inequality if ¢/p > 1 and the ¢/p-triangle
inequality if ¢/p < 1. Using that « —y— f=a - —s—1/2+ 1/p > 0, we obtain
that in both cases o, satisfies (5.21).

Finally, we estimate 05. We have as above

1 R () R O

meZ | JEDm IED,|I|<|J]

< C Z Z Z 2—(n—m)(a+’y)p Z 1 n |t[ — t]| —Bp hp_ ‘I/p
B 7] !

meZ | JEDy n>m 1€Dy,

N |t1 B tJ| _pp /P
<oy |potmen sy (1l

meEZ n>m IeDy, JEDy,

qa/p
gcz§pnmwzﬂ.

MEZ [n>m I1€Dy,
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We complete the estimate of oy as above and get the upper bound from (5.21).
Theorem 5.2 is proved. 0O

6 Approximation by linear combinations of shifts
and dilates of a single function

Let the function v satisfy the following properties:

Y € CN(Q), with @ an interval so that 0 € Q and |Q| > A (Q can be R), (6.1)

1P| < C, §=0,1,...,N, (6.2)
Supp w - [_Aa A] n Q: (63)
/t”w(t)dtzo, v=01,... k-1, (6.4)
Q
and
19/ 22@) =1, (6.5)

where N > k+1, k> 1,and A > 1. The mother wavelet ) of Daubechies compactly
supported and sufficiently smooth wavelets satisfies (6.1) — (6.5).

We are interested in approximating such functions ¢ by linear combinations
of shifts and dilates of a single smooth and rapidly decaying function. Our general
setting is the following: Let {®,}°°, be a sequence of function with the following
properties:

®, € C*(IR), (6.6)
: C neitt
PV ()] < —————, teR, j=0,1,...,k+1, 6.7
| ”()|_1+(n|t|)M J (6.7)
and
/ O, (1) dt = 1, (6.8)
R

where M > k and k, M, a, and C' are independent of n and ¢.
We now let ®x denote the set of all functions € of the form

0(t) = a;®,(t+b;) with mn < K. (6.9)
=1
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Theorem 6.1 Let 1) satisfy (6.1) — (6.5) and let ®,, satisfy (6.6) — (6.8). Then for
any € > 0 there exists a function 0 € O with K depending on € and the parameters
M, k, A, and C from (6.1) — (6.8), so that

() — oD ()] < —= te =0.1,... .k 6.10
|1/) () ()|— (1+|t|)M7 Qa J ) s vy ( )
/tm@yuzo, v=01,. . k—1. (6.11)
Q
and
1 e < [0l < 1 +=. (6.12)

Proof. Without loss of generality we shall assume that A =1 and @Q = IR. We first
prove that there exists § € © that satisfies (6.10). We define

)= [ 0= )@l dy = [ 9@t~ ) dy (6.13)

Using (6.8), we have

If |t| < 2, then we find, using (6.7),

[ 189 =00t = y)]|[@a(y) dy

< [lplFD /‘ & (y) dy < /“3——fﬁ——-d <OnL.
< WOe [ bl dy < ¢ [Ty < on

[O(t) = A ()]

IN

If |t| > 2, then

WO@ 2001 < [ W06 - ylieawldy= [ 160 (w)]1@a( )l dy

C/ n(t—u)|dy < Cn < Cn 0
Y =T =M = 0+ ™

<

Therefore, for sufficiently large n,

. ; e .

We now discretize the second integral in the definition of A from (6.13). To this
end we use a very simple quadrature formula. Let

2 . 2
MWzazwwﬂN—W)mmzw—4+%
p=1
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Note that 6, € ©,,,. We have, for j =0,1,...,k,

D) -0 0)] = |2 [ R~ ) — ()2~ )] du
y r—
where we used the following obvious inequality
/|f (0] du < b—a/|f ) du, € la,b].
Therefore,

. , C . .
XD @) = 00 @) < (19 = et + 1959 = o).

From this and (6.7), it follows that

A0 =0 ()] < —————, |t <2,
and ) Okl C'n~M+a(k+1)+1
O =000 < S < e M
This and (6.14) yield that, for sufficiently large m,
W) — () < —2 _ teR, j=0,1,....k (6.15)
(1 + [t)™

Next, we arrange the needed vanishing moments of . Let n := & () — ;). We

have, by (6.15),
2

H<—= _ telR 6.16
(0] < (6.16)
We define L)
) expla=), It <1,
w(t) = { 0, 1] > 1.
Note that w € C*°(IR) and Supp w = [—1,1]. We now orthogonalize the powers of ¢:
1,¢,t%,... with respect to the inner product
1
.9y = [ FDg(Ey()dt.
Thus, we obtain a sequence of polynomials pg, p1,ps, ... so that (p,,p,) = 6,, and

pu(t) = >i—0 ay;t! with a,, > 0. Note that
1

Za,,]<c el < C) [ 2Ot < CH). (617)

-1
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Lemma 6.1 There exist numbers aq, o, ..., 1 So that

/R [n(t) - (kf ozupu(t)) w(t)] At =0, v=1,2,... k-1, (6.18)

and
la,| < C(k,M), p=12,....k—1. (6.19)
Proof. Evidently, (6.18) is equivalent to the following system in «g, g, ..., Qg 1:
> aup,t’) = / n(x)t"dt, v=0,1,...,k—1. (6.20)
pn=0 R

The matrix A of this system is triangular and the entries along the main diagonal
are

1 1 k—1
(py,t"y = —(pu,pv) = —, v=0,1,....,k—1, and hence det(A)= Ha;}.
v=0

vv vv

Therefore, using (6.17), we find
det(A) > C(k) > 0.

It follows, by (6.17), that |(p,,t")| < C(k). On the other hand, by (6.16), we get
| [rn(t)t” dt| < C(k, M). Therefore, system (6.18) has a unique solution and (6.19)
holds. Lemma 6.1 is proved. O

We have, using (6.17),

%[pu(t)w(t)]HLw(R)Sc(k), §=0,1,....k (6.21)

Now, by the first part of the proof of the theorem, applied to p,w instead of v, it
follows that for any ¢ > 0 there exist functions g, € @y, N = N(4), so that

Supp p,w = [~1,1] and ||

i ’ J )
‘%[pu(t)w(t)] - 99)@)‘ < T j=0,1,....k v=0,1,...,k—1. (6.22)
Let us consider the following system in af, o, ..., a5_:

k—1
/R[n(t) Y arg B dt =0, v=1,2.. k-1, (6.23)
n=0

which is equivalent to the system

k—1
S o /R (O dt = /Rn(t)t” dt, v=1,2,... k-1 (6.24)

u=0
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We have, using (6.22) and that M > k,

‘/mg“(t)ty dt — /llpu(t)w(t)t” dt‘ < /ngu(t) — pu(Dw(t)||t]” dt
< o[ (@) Mt < o

Therefore, the coefficients of system (6.24) tend to the coefficients of system (6.18)
as 0 — 0. From this and Lemma 6.1, it follows that, for sufficiently small ¢ (de-
pending only on k£ and M), system (6.24) ((6.23) respectively) has a unique solution
{af,at,...,a; 1} and

laf| < C(k, M), p=0,1,....k—1. (6.25)

We denote

k-1

Oy :=> G-

n=0

and let
0:=0,+¢cb, € ®mn+kN-

We use (6.23) and the fact that ¢ has & vanishing moments to obtain, for v =
1,2, k—1,

/Rﬁ(t)t” dt = — /R(z/)(t) —0,(t) — ebo(t))tV dt = —= / (1(t) — Bo(1))t” dt = 0.

R
Thus (6.11) holds. Also, we use (6.21) and (6.22) to obtain

g9 (1)] < ‘%[py(t)w(t)]—gﬁj’(t)‘+ %[ u(t)w(t)]‘
5 C C

+ < .
(LD (L )™ = (L + )M
From this and (6.25), it follows that

k-1 k-1
, , ; C .
070 < 3 lopllg ()] < Ol M) X Ng O] € gy =01k,
=0 =0 (1 +[¢])
and hence, using also (6.15), we have
Ce

W= O] < W E)-07(1)—=05 ()] < W 007 @) 1+210 (0] < G
Thus, 6 satisfies (6.10) with £ replaced by Ce (C independent of ). So, if we replace
the original € by €/C', then (6.10) will hold.

We derive (6.12) from (6.5) and (6.10) by replacing again the initial € by Ce
with C' small enough. This completes the proof of Theorem 6.1. O
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Remark 6.1 (a) Clearly, the assumption Supp ¢ C [—A, AN Q (see (6.3)) of The-
orem 6.1 can be relaxed. It can be replaced by the property

()] < te R,

(1 + [t
with S large enough.

(b) Our method of proving Theorem 6.1 is rude. The point is that we do not
need a sophisticated approximation method since we do not have to relate tightly e
and K. The structure of the approrimation is important.

7 Construction of concrete new bases and their
application to nonlinear approximation

7.1 Bases generated by a single function. Rational bases.

We want to construct bases B = {0 };cp) on 2 = IR or Q = [0, 1] with {6} linear
combinations of a fixed number of shifts and dilates of a single function ®,,, namely,
0, € Ok, where O is defined in (6.9). For this, we shall use the construction of
bases from §2 and the results from §4 — §6.

Theorem 7.1 Let {$,}°°, be a sequence of functions satisfying (6.6) — (6.8) with
k>2and M > k+1. Then, for Q = IR and Q = [0, 1], there exist K > 0 and bases
B(2) = {0} 1ep) with 0; € Ok so that the following properties hold:

(i) B([0,1]) is a Schauder basis for C[0,1] provided k > 4 and M > 5.

(ii) B(2) is an unconditional basis for L,(Q), 1 < p < oo.

(iii) B(IR) is an unconditional basis for the Besov spaces B} (L,(IR)), 0 < p,q <
00, s > (1/p— 1)y, provided k > 2s+2 and M >k + 1 (see Theorem 5.2).

Proof. This theorem follows immediately by Theorem 4.1, Theorem 5.1, Theo-
rem 5.2, and Theorem 6.1. O

Next, we apply Theorem 7.1 with some concrete functions ®,,. We denote by
Rk the set of all rational functions of degree K.

Corollary 7.1 For Q = IR and Q = [0,1], there exist rational bases B.() =
{ri}tiep) with r; € Ri, K fized, so that the following properties hold:

(i) B-([0,1]) is a Schauder basis for C|0,1].

(ii) B,(2) is an unconditional basis for Ly(€2), 1 < p < oo.
Moreover, for any 0 < p,q < oo and s > (1/p — 1)y, B.(IR) (depending only on s)
can be constructed to be an unconditional basis for the Besov spaces Bj(Ly,(IR)) as
well.
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Proof. Evidently, the rational functions ®,(t) := C(M)n(1+ (nt)?)~™M] with M > 1
and C(M) such that [, ©,(t) dt = 1 satisty (6.6) — (6.8) with a = 2 for any k. We fix
M > 5and k > 4. By Theorem 7.1, there exist rational bases B, (£2) = {0;};ep) with
0, € Ok, K fixed, that satisfy properties (i) — (ii). In addition to this, if & > 2s + 2
and M > k+1, then (again by Theorem 7.1) B,(IR) is an unconditional basis for the
Besov spaces B, (L,(IR)) as well. Note that ®, € Rop) and hence @ C Ro i
This completes the proof of Corollary 7.1. O

The Gaussian @, () := 7~'/2e~* and its dilates ®,,(t) := 7~ /2ne~ )" is another
interesting example of functions satisfying (6.6) — (6.8) (a = 2). We denote by Gg
the set of all function ¢ of the form

Z cje MU with  mn < K. (7.1)

As above, Theorem 7.1 yields the following.

Corollary 7.2 For Q = IR and Q2 = [0,1], there exist bases By(2) = {g1}1ep) with
gr € Gg, K fized, so that the following properties hold:

(i) By([0,1]) is a Schauder basis for C[0,1].

(i) By(S2) is an unconditional basis for L,(2), 1 < p < 0.
Moreover, for any 0 < p,q < oo and s > (1/p — 1), By(IR) (depending only on s)
can be constructed to be an unconditional basis for the Besov spaces B;(L,(IR)) as
well.

Another example of functions {®,, } satisfying (6.6) — (6.8) is @1 (¢) := (2/m)e'(1+
e?)~! and its dilates @, (t) := @ (nt).

Any reasonable smooth function ® supported on a compact interval, say [—1, 1],
and its dilates ®(nt) can also play the role of {®,}. Here are two examples of ®’s
like this:

Cexp( t <1, ; sin 2~ ”§
O(t) = { 0. (7=1); ItI 51 and  ®(t) :=up(t) == / ﬁyl—[

For more information about the up—function, see [RR]|. Results similar to the ones
from Corollary 7.2 hold for the above selections of functions ®,,.

7.2 Application of bases to nonlinear approximation

In this part, we show how our bases can be used in nonlinear approximation. We
shall restrict our attention to the case 2 = IR.

e n-term approximation from a basis. Let B = {0;};cp be a sequence
(basis) of functions from L,(IR). We denote by ¥, := X, (B) the set of all functions

S of the form
S = Z CL[G[,
IeAn
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where A,, C D and #A,, <n. The best n-term approximation of f from B in the L,
norm is defined by

on(f, B)p == Slengn If - SHLp(lR)-
Let A7 := AY(L,, B) be the approximation space of all functions f so that

o0

Ly = (O (070u(f B))'-) 10 < oo (2

n=1

with the /,-norm replaced by the sup-norm if ¢ = oo as usual. A basic problem
of nonlinear approximation is to characterize the approximation spaces A7. The
standard way of doing this is by first proving Jackson and Bernstein inequalities and
then using interpolation spaces.

Theorem 7.2 Let B = {0;}icpar) be one of the new basis so that B is an uncondi-
tional basis for L,(IR), 1 < p < oo, and for the Besov space B:(L,(IR)) with s > 0
and % =s+ %. Then the following inequalities hold:

(Jackson inequality) on(fiB)p < Cn”*| flBs(r.(my, f € Bi(L:(IR))NL,(IR),
(Bernstein inequality) 1S|Bs L.y < Cn°||S||p,r)y, S € Zn.

Remark 7.1 We make the assumption f € B:(L,(IR)) N L,(IR) in Theorem 7.2
instead of simply f € BS(L,(IR)) because B:(L,(IR)) is embedded in L,(IR) modulo
polynomials of degree < k. Therefore, we have to eliminate the polynomial that may
occur.

Proof. This theorem follows by Theorem 7.1. The proof can be carried out similarly
as the proofs of Theorem 5, Corollary 1, and Theorem 6 from [De]. We leave the
details to the reader. O

The Jackson and Bernstein inequalities from Theorem 7.2 imply the following
characterization of the approximation spaces A7 (see [DL] or [PP]):

Theorem 7.3 Let1 <p < oo and s > 0. We have, for 0 < v < s and 0 < g < 00,
Ay (Ly, B) = (Ly(IR), By (L (IR)))/s,q

with equivalent norms, where (X,Y)q, is the real interpolation space between X and
Y.

In the particular case of the rational and Gaussian bases from §7.1, we obtain
the following.
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. Let B be the rational basis
from Corollary 7.2 Then the

Corollary 7.3 Let 1 < p < o0, s > 0, and % =5+
B,(IR) from Corollary 7.1 or the Gaussian basis By(IR
following inequalities hold:

(J) on(f, B)y < Cn*|flBsr (), [ € BI(L:(IR))NL,(IR),
(B) |R|Bs(r,(ry) < C1°|| Ry, I € En(B).
Therefore, for 0 < v < s and 0 < g < 00,

A (Lp, B) = (Ly(IR), B (L+(IR)))/s.4-

~— =

e Approximation from dictionaries. We now consider n-term approxima-
tion from dictionaries. Dictionaries are collections of functions larger than bases and
are redundant. Consider the dictionary D of all shifts and dilates of a single function
®. We would like to consider n-term nonlinear approximation from such a dictionary
D. We denote by D,, the set of all functions

S=3 0;%;, ;€D (B;(t) = B(a;t +1b;)).
=1

The best n-term approximation of f from D in the norm of L,(IR) is defined by
ou(f, D)y := dnf |[f =S|z, m)-

The approximation spaces A7 (L,, D) are defined similarly as the approximation spaces
AY(Ly, B) (see (7.2)). We are interested in characterizing the approximation spaces
AY(Ly, D).

A natural problem arises: If there exists a basis B consisting of functions from
D so that the approximation spaces A](L,, D) and A7 (L,, B) are the same? If this
happens to be true, then the problem for n-term approximation from D reduces to the
easier problem for n-term approximation from B. In this case, one can use the n-term
approximation algorithm discussed in the Introduction. In particular, it is interesting
if the bases from this paper could give the desirable bases for some dictionaries D.

Two examples are in order.

(i) Let R be the dictionary of all shifts and dilates of 7(¢) := (1+¢%)"!. Tt is easily
seen that the rational function (1 + #*)™™ can be approximated in L, (1 < p < 00)
with any precision by linear combinations of m dilates of r. Indeed, we have

m—1
Oaqm—1
and hence the (m —1)-th differences of (a+t?)~! in a at 1 will give the approximation

we need. Now, let 1 <p < o0, s> 0, and % =5+ %. Corollary 7.3 yields

(L)), [ € BI(L-(IR)) N Ly(R).  (7.3)

(a+ )= (=D (m—1)(a+ )"

on(f,R)p < onlf, Br)p < Cn | f
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This estimate is equivalent to a result of Pekarskii for rational approximation on
[—1,1], see [Pekl]. In [Pek2], Pekarskii proved the following Bernstein type inequality:

1Bz 110 < Cn°l|Rllz, 1, R € R, (7.4)

and used it to relate the rational and spline approximation. By a simple change of
variables, these results can be extended on IR. Together with (7.3) and Corollary 7.3,
they imply that the approximation spaces of R and B, are the same, namely,

AZ(LP,R) = AZ(prBT) = (Lyp(IR), B (L (IR))) /5,4

with equivalent norms provided 1 < p < o0, 0 < ¢ < 00, and 0 < v < s. Therefore,
the order of the n-term approximation of a function f in L, from R can be achieved
by n-term approximation of f from the basis B,.

(ii) We consider now the same problem for the dictionary G of all shifts and
dilates of the Gaussian. The problem is again whether there exists a basis B con-
sisting of functions from Gy with K fixed (see (7.1)) so that the approximation
spaces AY(Ly, G) and A7(L,, B) are the same. The problem would be solved, taking
into account Corollary 7.3, if the following Bernstein type inequality holds (an open
problem):

Gl (L, (ry) < Cn°||G| L, ()

for any function G of the form G(t) = Xj_, a;e” i) bi c; € IR, provided
l1<p<oo,s>0,and £ =5+ .
The same problem for other dictionaries D seems also interesting.

8 Appendix

8.1 Proof of Lemma 3.3.

We need the following technical lemma for the proof of Lemma 3.3.

Lemma 8.1 Let m be an integer, a,b € IR, ¢ > 0, d > 0, and 3 > 1. Then the
following inequality holds

A}; (1 + Lﬂ) ’ (1 + H%;“) 7 < C(14+2™min{c,d}) (1 + %) 75,
: s

where C' is a constant depending only on (3.

Proof. We consider only the case when D,, = D,,(IR). Let a < b and ¢ < d. Let
§ :=2"™. Let o denote the sum from (8.1). We split up o into two sums as follows

o= Z + Z =: 01+ 03.
A €D, A €D,
|tA—a|>d |tA—a|§d
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To estimate o; we use that

tA — d tA —
fa CL|>— 1—|—|A al when [ta —a| > d.
c 2c d

—6 —6
tA — tA—0
(1—1-7|A a|> (l—i-7|A |>
A€EDy, d d

e\ B
20 (= > + >
<d> A €D, A €D,
ta<(a+0)/2 ta>(a+b)/2

g — [\’ jta —a]\ "
g€ [ A
’ (d) (H 2d > 2 (H d
A €D,
ta < (a+0)/2

We find

VAN
O]
=
7N
IO
N——
=

01

IN

IN

+ > <1+|t%d_b|>ﬁ

A €D,
ta > (a+0)/2

VAN
Q
7/~
ISHEe
S~
=
7N
p—
+
B
S
S
N~
=

VAN
Q
7/~
ISHEe
S~
=
7N
p—
+
B
S
S
N~
|
=
- |
—_
S—
8
/N
p—
+
SIS
N——
|
=
QL
o~
N~

Therefore,

ee () () () T (e () e

We now estimate o5. We shall use that

— 1 -
1+|t%‘lb|z§<l+|afdb|> when [ta —al < d.

We get

. -8 . —p

AED,, ¢
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IN
Q
N
—_
_I_
=
S
<
N——
=
i [M]2
N
—_
_I_
|T
(&%)
N——
=

C
la—b]\ " %0 st\ ™"
< o1+ 221 1 14—
_C<+ - [T+ Z) a
c la — b| 7
< c(1+3) (1
_C<+5>(+ d)

This and (8.2) imply (8.1). Lemma 8.1 is proved. O

Proof of Lemma 3.3. Evidently, it is sufficient to prove the lemma only when
Q=1IR. Wefix I,J € D so that |I| > |J|. Let I € D, and J € D,,, p > 0. Hence
|I| = 2#|J|. We have

AL )] < AE;JIM(LA)IIAQ(A,J)I

= 2+ >+
AL [JISIAIIE [A>
=: 01+ 02+ 03.

We first estimate 0. Using (3.18) and (3.19), we find
a a+é . -8 B -8
Ny
2\ 7 7]
|J|>“ (|A|>2a”( |n—m|>‘ﬁ< m—m)”
< | = 1+ 12
(7 2\ 1 7]

|J|> o ( tr — tal\ ™’ lta — ]\
S 9~ 7 (2a+6) 1+ 1+7
(m Z 2 7 7

AEDy 4 putj

We apply Lemma 8.1 to the last sum (over A € D, ,;) to obtain

7] It — 1]\~ (ks [\ ltr— s\’
< j(2a+ 1<
7 C(m T ;2 =c\m) 1

(8.3)

To estimate oo we use again (3.18) and (3.19) and find

i) (5 () ()
o2 < - {1 1+ 1+
i |J<|2A:<|I| ( 1] A 1] |A

|J|> i ( |tI_tA|>ﬂ< |tA_tJ|>ﬂ
< 277 1+ 1+ —
() 2 7 N
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We apply Lemma 8.1 to the last sum above to find

UZ<C<||i||> <”|tl|f|tj|> 22]5 <%>a<l+|t1|;|m>ﬁ' 54

Finally, we estimate o3. Using again (3.18) and (3.19), we obtain
( ] > (m) (1 L= m)‘f’ (1 s m)*’
NSNSV A IN

|J|>“ (0t4) ( |tf—tA|>ﬂ< m—m)ﬁ
< 9~i(2a+9) 14— 14 =
<|f| 2 2 3 A

Aepufj

03

Applying Lemma 8.1 to the last sum above (over A € D,_;), we find
TN & i |tI—tJ| -
< C § 97 (2a+9) .
» < o) £ 27
< <|J|>
- 1]
< <|J|>
B 1]

where we used that 2o > 3 and

t—tsl 1 (=t} _ 1 it — 1]
1 1 .
T 2y SR BT ST

The above estimates for o3, (8.3), and (8.4) imply (3.20) in the case when [I| > |J|.
The proof of (3.20) when |I| < |J| is quite similar and will be omitted. Lemma 3.3 is
proved. 0O

tr — 1]

> Z 9~ (20+0-p)
1] =

[
(i tt)

1|

—_

_|_

8.2 Proof of Proposition 4.1.

We shall only prove that conditions (i) — (iii) from Proposition 4.1 imply that {6, }>°,
is a Schauder basis for X. To this end it is sufficient to prove that each f € X has
the representation

fzio:(f,é,,w,, in X. (8.5)

The uniqueness of this representation follows by (i) and (ii).
Let € > 0. Since {6,}2, is complete in X, there exists

N
fv =Y a8, suchthat |[f— fn| <e
v=1
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We now select my so that 2™ > N. Let n > 2™!. Then there exists m > m; such
that n = 2™ 4+ ¢ with 0 <7 < 2™. Since fy € X,,, then

2m

Z(fN;a)u,m>wu,m - fN- (86)

v=1

As we pointed out in Remark 4.1, it follows, by (i) — (iii), that {f,m}0m,, =
{0, }529m 1. From this, it readily follows that, for each g € X,

2m 2m
Z(ga 91/>01/ = Z <g; (Du,m>wu,m- (87)
v=1 v=1

We use now (4.1), (8.6), and (8.7) to obtain

n

||f - Z<f7 §u>91/|| S ||f - fNH + ||fN - Z<f7 §u>91/||
v=1 v=1

2m ~
€+ || Z(fNa(Du,m>wu,m — Z(fa 9V>9V||

<
v=1 v=1
2™ 44
= 6_|_||2: fNawllm wum"‘ Z fN,
v=2m41
2M g N
o Z<f7 ‘DV,M>wl/,m - Z <f7 9u>9u||
v=1 v=2m+41
2m 2m 4 _
= e+ | D v = fOvmdwum+ D (v —f.0.,)0,]
v=1 y=2m41

< e+ K|f = full £ (K + 1)

Therefore (8.5) holds. Proposition 4.1 is proved. O

8.3 Proof of Lemma 5.1.

We first prove (a). Without loss of generality we can assume that t; = 0. Let u < v.
We denote
gj’[] = {A € D# : 2#|tA| < 1}

and . .
Erj:={A €D, : 271 <2ta| <27}, j=1,2,....
We have
Yo [hal(M+20ta)™ < C2777 37 |hal
AG(‘:JJ AES‘],]‘
< 0272 [ 3 Jhalale) do
R ace;;
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< C12_jﬁ2u| UAESJ,]' AH UAESJ,]' A|_1/ Z |h’A|XA(x) dx

Aeg; ;A NN

< cz—m—”M(z mm) 1), te

A€ED,
Summing over 5 =0, 1,..., we obtain, for ¢t € J,
m .
> hal(t+2¢ta) < C 32/ OM | 37 fhalxa | (1)
A€D, j=0 Acéy;

< C (5032“7“‘”> M ( > mm) (1
¢ on (g hae)

A€D,
Thus (5.10) is proved.
We now prove (5.11). Let us assume again that t; = 0. Let g > v. We now
denote
.,ij() = {A c DH : 2V|tA| < 1}

and . '
Frj={A€D, 27 <2|tp| <27}, j=1,2,....
We find
> lhal(l+2ta))7°
AEFy;
< 2 Y fhal <0272 [ fhalxa(e)do
AEFy; AG}-JJ
< 02759 User,, AllUser,, Al /U L2 Ihala(@)da
AEFy; 5 AEFy
< 027D A (ST |halxa | (1), tE
A€ED,
Summing over j =0, 1,..., we obtain, for ¢t € J,
w .
> hal(1+270tal) P < €2 329 IM | ST Jhalxa ) ()
A€ED, j=0 AEFy,

IN

e (S e 5 )0
< O27'M ( > mm) (t)

A€D,

48



Thus (5.11) is proved. This completes the proof of Lemma 5.1. O
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