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ABSTRACT

Let Ex(n, k, µ) denote the maximum number of edges of an n-vertex graph in which every
subgraph of k vertices has at most µ edges. Here we summarize some known results of the
problem of determining Ex(n, k, µ), give simple proofs, and find some new estimates and
extremal graphs. Besides proving new results, one of our main aims is to show how the
classical Turán theory can be applied to such problems. The case µ =

(
k
2

)
− 1 is the famous

result of Turán.
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0. INTRODUCTION AND NOTATION

We consider undirected graphs G without loops and multiple edges. The set of vertices, the
set of edges, and the chromatic number are denoted by V (G), E(G), and χ(G), respectively.
We denote the number of vertices (resp., edges) by v(G) (resp., e(G)). The first subscript
in the case of graphs indicates the number of vertices, e.g., Ck, Pk are the cycle and path
graphs on k vertices. For X ⊆ V (G), G[X] denotes the subgraph induced by X and e(X)
denotes the number of edges in it. Let dG(v) denote the degree of vertex v in G, and put

δ(G) = min
v∈V

dG(v) and ∆(G) = max
v∈V

dG(v).

For vertex-disjoint graphs G1, . . . , Gk, their product, Πi≤kGi is the graph obtained by taking
their vertex-disjoint copies and joining x, y when they belong to different Gi’s. The product
of two graphs G1, G2 is also denoted by G1 ⊗ G2. The complement of G is denoted by G.

Given a family L of forbidden graphs, what is the maximum number of edges a graph Gn,
i.e., a graph on n vertices, can have without containing subgraphs from L? Here “containing”
means there is a copy of a member of L, not necessarily induced. The maximum is denoted
by ex(n,L) and the L-free graphs attaining this maximum are called extremal graphs.
The family of extremal graphs is denoted by EX(n,L).

The case L = {Kk} was solved in 1941 by Turán [34], who showed that the unique optimum
is the graph Tn,k−1 described as follows: The Turán graph Tn,p on n vertices and p classes
is obtained by grouping the vertices as evenly as possible into p parts and joining two vertices
by an edge if and only if they belong to different parts. The case ex(n, {K3}) = �n2/4� had
been proved in 1907 by Mantel [25].

In the 60’s a whole new area, called Extremal Graph Theory, emerged around Turán’s
Theorem. One aim of this paper is to exhibit the strength and usefulness of the general
theory through a special interesting class L.

The main question we investigate in this paper is the

The Dirac-type Extremal Problem. Given the parameters k and µ, and the
number of vertices n, determine the maximum number Ex(n, k, µ) of edges a graph
Gn can have if no k-vertex subgraph of Gn has more than µ edges.

Many people investigated this question, starting with Dirac [5] and Erdős, and continuing
with Simonovits [29], B. Stechkin [33], Abloncy (unpublished). Analogous problems for
hypergraphs were investigated by Brown, Erdős and T. Sós [3], [4], where the problems
become much more involved, and sometimes extremely deep. One result illustrating this is
due to Ruzsa and Szemerédi [26]. For more about Turán-type hypergraph results consult
the surveys by Füredi [16] and Sidorenko [27].
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Let Lk,µ be the family of all graphs of k vertices having more than µ edges, so that

Ex(n, k, µ) = ex(n,Lk,µ).

For µ :=
(
k
2

)
−λ, let Lk,−λ denote the family of graphs on k vertices with more than

(
k
2

)
−λ

edges. EX(n, k, µ) is the family of extremal graphs for Lk,µ. Let I(k, λ) denote the set of
graphs in which every subgraph of k vertices has at least λ edges missing. The graphs Gn

having maximum number of edges in I(k, λ) for a fixed n are just the graphs in EX(n, k, µ)
for µ =

(
k
2

)
− λ.

It is convenient 1 to denote the number of edges in the Turán graph Tn,p by the function
tp(n). Then t2(n) = �n2/4�, and, in general,

tp(n) =
(

1 − 1
p

)(
n

2

)
+ O(n).

Dirac’s Theorem is a direct strengthening of Turán’s Theorem.

Dirac’s Theorem. [5, Thm. 3] For p ≥ 1, if e(Gn) > e(Tn,p), then Gn contains a subgraph
consisting of Kp+r+1 with at most r edges missing, for every r such that 0 ≤ r ≤ p − 1 and
n ≥ p + r + 1.

1. OVERVIEW OF KNOWN AND NEW RESULTS

THE ASYMPTOTIC DESCRIPTION OF Ex(n, k, µ)

(a) The Kővári–T. Sós–Turán Theorem [23] asserts that ex(n, Ka,b) = O(n2−1/a). For µ <
�k2/4� we can apply this result with a = �k/2�, b = �k/2� to get that

if µ <

⌊
k2

4

⌋
then Ex(n, k, µ) = O(n2−1/[k/2]) = O(n2−(1/

√
µ)).

In most cases there are better exponents. We mention here only one result of Goldberg
and Gurvich [18], when Ex(n, k, µ) is linear in n. Consider the smallest case not covered
by Dirac’s Theorem, Ex(n, 3, 1): G contains no two intersecting edges, hence it is uniquely

1 However, we shall also continue to write e(Tn,p) when we wish to emphasize, not just this number, but its

connection to the Turán graph. For we believe extremal graph theory should be made in terms of extremal

graphs and extremal structures, and not so much in terms of formulas, whenever this is possible.
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optimal to let Gn consist of �n
2 � disjoint edges. In general, it is not hard to find the extremum

for 0 ≤ µ ≤ k − 2 (see [18]). A proof of the corresponding result can be found also in [19],
where the structure of the extremal graphs is also determined.

(b) The case µ = k − 1 is related to the well-known, difficult, unsolved problem of finding
the maximum number of edges in graphs of girth exceeding k. The best upper and lower
bounds are due to Bondy and Simonovits [2] and to Lazebnik, Ustimenko and Woldar [24],
resp.,

for k = 2s + 1, ckn1 + 2/(3s−3+a) < ex(n, {C3, C4, . . . , Ck})
≤ Ex(n, k, k − 1) ≤ c∗kn1 + 1/�k/2�,

(1)

where a = 0 or 1 according as s is odd or even. 2

(c) From now on, we assume that µ ≥ �k2/4�. Then Tn,2 contains no forbidden subgraphs,
showing that Ex(n, k, µ) ≥ t2(n) = �n2/4�. In this case we always know the asymptotic
behavior as n → ∞.

Erdős and Simonovits (3) showed that, as a consequence of a 1946 result of Erdős and Stone
[12], that the order of magnitude of ex(n,L) depends only on the minimum chromatic number
of the excluded subgraphs:

lim
n→∞

ex(n,L)(
n
2

) = 1 − 1
p

, (2)

where p = p(L) is defined by

p(L) = min
L∈L

χ(L) − 1. (3)

Note that t2(k) < t3(k) < . . . < tk−1(k) < tk(k) =
(
k
2

)
. For fixed k and µ define p ≥ 2 by

tp(k) ≤ µ < tp+1(k). Then we have

Ex(n, k, µ) ≥ e(Tn,p) = tp(n).

For all graphs L ∈ Lk,µ, we have e(L) > e(Tk,p). Since Tk,p has the most edges of any
p-colorable graph on k vertices, it follows that χ(L) > p. Since Tp+1,k ∈ Lk,µ, we have in (3)
that p(Lk,µ) = p. Hence, by Erdős-Stone (2),

Ex(n, k, µ) ∼
(

1 − 1
p

)(
n

2

)
∼ e(Tn,p), (4)

as n → ∞.

2 This is the best asymptotic lower bound for all s ≥ 2, �= 5. For s = 5, the regular generalized hexagon gives

a better bound, Ω(n1+1/5).
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EXTREMAL GRAPHS FOR DIRAC’S THEOREM

Let us compare estimates on Ex(n, k, µ) with the number of edges in the Turán graph Tn,p.
We call Ex(n, k, µ)− e(Tn,p) the remainder term. There are 3 cases:

– Tn,p is extremal (i.e., the remainder term is 0);
– the remainder term is positive but has an O(n) upper bound;
– the remainder term is at least n1+c and at most n2−c, for some constant c ∈ (0, 1).

Dirac’s Theorem belongs to the first case. We prove it in the following form:

Theorem 1.1. Suppose n ≥ k ≥ 2λ > 0. If Gn ∈ I(k, λ), then

e(Gn) ≤ tk−λ(n).

Equality is attained, e.g., when Gn is the Turán graph Tn,k−λ. Our proof, presented in
Section 2, is simpler and shorter than Dirac’s. It involves an edge-density argument that
is equivalent to the method used by Katona, Nemetz, and Simonovits [22] to prove Turán’s
Theorem. Katona [21] used this method again to investigate 3-graphs. The method was also
described by Gessel [17], who explored the solutions to the recurrence, (8) below, generated
by this argument. One of our purposes in writing this paper is to make this edge-density
approach accessible to a wider audience.

Following the proof, we discuss more general bounds due to Dirac.

In Section 3 we shall investigate the structure of the extremal graphs in Dirac’s Theorem.
We will see that the Turán graph is the unique extremal graph for Theorem 1.1 except in
the following two cases:

– when k ≥ 2λ ≥ 4, and n = k.
– when k = 2λ ≥ 2 and k + 1 ≤ n ≤ 2k − 2.

In the first of these two cases, there are always at least two extremal graphs for Theorem 1.1,
since any graph on k vertices with λ edges missing will do. The second case is included in
Theorem 1.3 below.

Theorem 1.2. Let k > 2λ > 0 and n ≥ k + 1. If Sn ∈ I(k, λ) and e(Sn) = tk−λ(n), then
Sn = Tn,k−λ.

Theorem 1.3. Suppose k = 2λ > 0 and n ≥ k + 1. If Sn ∈ I(k, λ) and e(Sn) = tk−λ(n),
then Sn is one of the following graphs, depending on n:

(1) For n = 2λ + r with 1 ≤ r ≤ λ, λ − r components of Sn are paths on one or more
vertices and the rest, if any, are cycles.

(2) For n = 3λ + r with 1 ≤ r ≤ λ, r components of Sn are K4’s and the rest, if any,
are cycles.

(3) For n ≥ 4λ + 1, Sn is the Turán graph Tn,k−λ.
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Theorem 1.2 is due to Dirac. Theorem 1.3 is new except that Dirac described it for λ = 2.
For n > n0(k, µ) one can derive all of the theorems above from the general Erdős–Simonovits
structural theorem, Theorem 1.8 below, or from Theorem 7.4 of the Appendix. Theorem
7.4 is a general result, describing a large family of cases when the remainder term is linear,
including all the cases of Lk,µ with linear error terms. Those cases where the extremal graphs
are the Turán graphs follow also from Theorem 1.9 below. For n ≥ 2(k − λ), the part of
Theorem 1.2 for which Tn,k−λ is extremal follows from Theorem 1.11.

About some related results of the second author see also [32].

FURTHER EXACT VALUES

The next two theorems extend the inductive arguments of Section 2. We describe all cases
(k, µ, p), µ ≥ e(Tk,p), such that Ex(n, k, µ) = e(Tn,p) + O(n) as n → ∞. To be meaningful,
we need k > p here. Writing µ = e(Tk,p) + a, we distinguish these three cases depending on
a for given k, p.

(a) For 0 ≤ a <
⌊

1
2 �k/p�

⌋
, adding a + 1 independent edges to a largest part of Tn,p

results in a forbidden graph.
(b) For

⌊
1
2 �k/p�

⌋
≤ a < k/p, adding a + 1 independent edges to Tn,p creates no

L ∈ Lk,µ, but adding a path Pa+2 does.
(c) For a ≥ k/p, adding Pa+2 to the first class of Tn,p still creates no forbidden subgraphs.

We remark that the formula above has another form that is more natural:⌊
1
2

⌈
k

p

⌉⌋
=

⌊
k + p − 1

2p

⌋
.

Theorems 1.4 and 1.5 below describe Cases (a) and (b), respectively. Case (c) is a prototype
of the situation that Ex(n, k, µ) − e(Tn,p) is non-linear in n. We shall describe it here only
superficially, in the paragraph preceding Theorem 1.6, and present a typical case in Theorem
1.7.

We begin with Case (a). We prove this result, from our main inductive lemma, at the end
of Section 2.

Theorem 1.4. Suppose 0 ≤ a <
⌊

1
2

⌈
k
p

⌉⌋
. Then there exists a threshold n0(k, p, a) such

that
Ex(n, k, tp(k) + a) = e(Tn,p) + a for n ≥ n0(k, p, a).

We denote by Tn,p,a the graph obtained from Tn,p by putting a independent edges into
the largest class of Tn,p . This is an extremal graph for Theorem 1.4, but there are others.
One can distribute the a edges arbitrarily among the classes, and they do not have to be
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independent. For another example, letting a1, a2 ≥ 1 such that a1 + a2 = a + 1, we can put
a star of a1 edges into one class of Tn,p , put a star of a2 edges into another class, and then
delete the edge between the centers of the two stars.

Moving next to Case (b), our next theorem asserts that if a < k/p, then there exists an
extremal graph obtained from Tn,p by adding as many edges to it as possible without getting
forbidden subgraphs. Recall that for graphs G1, . . . , Gp, with pairwise disjoint vertex-sets,
their product

∏
Gi is obtained by joining each vertex of Gi to each vertex of Gj .

Theorem 1.5. Suppose
⌊

1
2

⌈
k
p

⌉⌋
≤ a ≤

⌈
k
p

⌉
− 2. Let µ = e(Tk,p) + a. Then there exists

a threshold n0(k, p, a) such that for n ≥ n0(k, p, a), there exists an extremal graph Sn for
Ex(n, k, µ) having product form, Sn =

∏
Gi, where |v(Gi) − n

p | ≤ 1 for all i; G1 is the

vertex-disjoint union of trees, all but one of which have the same size; and
∑

j>1 e(Gj) < a.

Using this theorem one can easily get the precise value of Ex(n, k, µ) for this range. Applying
the Structure Theorem 1.8 (or Theorem 1.9) all extremal graphs Sn can be determined, and
this is done implicitly in our proof, which is presented in Section 4.

Remark. A more precise description of the product extremal graphs of Theorem 1.5 is the
following. Take a Turán graph Tn,p . Let its classes be A1, . . . , Ap. To get a good lower
bound in Theorem 1.5, let us try to put as many edges in its first class A1 as possible. If
we put a tree Tγ into A1 for some γ > a + 1, then we certainly get some Tk,p with ≥ a + 1
additional edges: we get a forbidden L ∈ Lk,µ. Therefore, if we add edges to A1 so that the
resulting graph contains no forbidden subgraphs, then each component has at most a + 1
vertices. Let γ = γ(k, µ) be the maximum for which we can put vertex-independent trees
T1, . . . , Tj of equal order γ ≤ µ into A1 so that (i) the number of vertices not covered is
smaller than γ and (ii) the resulting graph S0

n contains no L ∈ Lk,µ. Clearly,

e(S0
n) − e(Tn,p) =

(
1 − 1

γ

)
n

p
− O(1).

By definition, a k-vertex subgraph L ⊆ S0
n will have at most µ edges. Let µ′ be the maximum

number of edges in a k-vertex subgraph of S0
n. Put ρ(k, µ) = µ−µ′ ≥ 0. Here µ′ and ρ(k, µ)

depend only on k and µ, and can be calculated easily. Add ρ(k, µ) edges to S0
n arbitrarily:

adding to A1 is also allowed. The obtained graphs contain no L ∈ Lk,µ. One can prove
that for n large enough, all these graphs are extremal. (There may also be further extremal
graphs. To get other extremal graphs, one can slightly adjust the sizes of the trees Tj by
diminishing some and increasing others, or we can add slightly more edges elsewhere.)

As for Case (c), if a ≥ k/p, then Ex(n, k, µ) > e(Tn,p) + c1n
1+γ for some γ > 0: One can

put a graph of girth exceeding k – described in (1) – into one class of Tn,p . We shall not
give a detailed discussion of this case. Rather, we describe one very typical example: the
case k = 6, λ = 4, i.e., when at least 4 edges are missing from each G6 ⊆ Gn. This is the
problem Ex(n, 6, 11). First we recall the Octahedron Theorem, which concerns the exclusion
of the octahedron graph O6 = K3(2, 2, 2).
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Theorem 1.6. (Erdős and Simonovits [10]) For n > n0 every graph Sn ∈ EX(n, O6) can be
obtained as Sn = Um ⊗Zn−m, for some Um ∈ EX(m, C4) and some Zn−m ∈ EX(n−m, P3),
where m = n/2 + o(n).

Here Zn−m is the graph of
⌊

n−m
2

⌋
independent edges. The maximum size of a C4-free graph

on m vertices and the extremal graphs are determined by Füredi [14, 15] for infinitely many
values of m. However, this is not enough to determine the exact value of m in Theorem 1.6.
It seems to be hopeless, since e(Um) is strongly connected with the existence of some finite
geometries.

In Section 5 we shall prove the following result for the Ex(n, 6, 11)-problem. This theorem
and its proof are very similar to the Octahedron Theorem. Here, Zn−m has no edges.

Theorem 1.7. For n > n0 every graph Sn ∈ EX(n, 6, 11) (i.e., Sn is extremal for L6,−4)
can be obtained as Sn = Um ⊗Zn−m, for some Um ∈ EX(m, {C3, C4}) and Zn−m ∈ EX(n−
m, P2), where m = n/2 + o(n).

THE GENERAL THEORY OF TURÁN PROBLEMS

In the proofs of Theorems 1.5 and 1.7 we shall use the structural variant of the Erdős–Stone–
Simonovits theorem, formulated below. This Structure Theorem asserts that in all cases the
structure of extremal graphs is asymptotically the same as the structure of the Turán graph.
Recall that p(L) = minL∈L χ(L) − 1.

Theorem 1.8. (Erdős, Simonovits, [7,8,28]) Let Sn be extremal for a family L. Let
p = p(L). Then for any x ∈ V (Sn), d(x) ≥ n− n

p + o(n). Further, V (Sn) can be partitioned
into p classes A1, . . . , Ap with the following properties:

(a) |Ai| = n
p + o(n) (i = 1, . . . , p) and for all p–partitions

∑
e(G[Ai]) is the minimum

possible.
(b) For every ε > 0 the number of vertices of G[Ai] of degree ≥ εn (the degree counted

in G[Ai]) is at most Ωε for some constant Ωε.
(c) Fix a graph M , and let ε < 1

2v(M) . Denote by A∗
i the subclass of Ai consisting of

the vertices joined to Ai by fewer than εn edges. If M ⊗Kp−1(k, . . . , k) contains a forbidden
subgraph L ∈ L, then M 
⊆ G[A∗

i ].

The vertices in (b) will be called exceptional. There are L’s where the exceptional vertices
play an important role but in some other cases the main point of the analysis is just to show
their nonexistence. In all cases considered in this paper the existence of such vertices can
be ruled out. (Exceptional vertices can always be ruled out when Kp+1(1, k, . . . , k) contains
some forbidden L. In Dirac-type problems with linear remainder terms this always holds.
The exceptional vertices can also be ruled out in Theorems 1.6 and 1.7, but for completely
different reasons.)
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In our cases, to determine exactly or estimate the value of Ex(n, k, µ) we
(i) first characterize the family Lk,µ,
(ii) next find out which members of Lk,µ really influence the order of magnitude of

ex(n,Lk,µ), and
(iii) finally apply a known exact theorem or known estimates to some forbidden subfamily

L∗ ⊆ Lk,µ (such as Theorem 1.8).

It is surprising that most phenomena occuring in Turán-type extremal problems do occur
already in Dirac-type problems.

There are various general theorems implying Dirac’s Theorem relatively easily, assuming that
we care only for the large values of n: we want to prove the results only for n > n0(k, µ).
Among others, it is not too difficult to derive it from Theorem 1.8. Later we will see two
inductive proofs. Here we quote a general theorem that easily implies Dirac’s Theorem.

Theorem 1.9. (Simonovits [28], cf. Erdős [6] for p = 2) Given a family L of simple
graphs, the following statements are equivalent:

(i) For n > n0(L), Tn,p is an extremal graph.
(ii) For n > n1(L), Tn,p is the only extremal graph.
(iii) Every graph L ∈ L has chromatic number > p and there is an L0 ∈ L with an edge

e for which χ(L0 − e) = p.

Proof of Dirac’s Theorem 1.1 for n > n0(k, λ). Given n ≥ k ≥ 2λ > 0, take L = Lk,−λ.
Removing an edge decreases the chromatic number by at most one, so for each L ∈ L,
χ(L) ≥ χ(Kk) − (λ − 1) > k − λ. Taking L0 − e to be Kk with λ disjoint edges removed
gives χ(L0 − e) = k − λ. Thus, (iii) of Theorem 1.9 holds with p = k − λ, and it follows by
(i) that e(Gn) ≤ tk−λ(n), if Gn ∈ I(k, λ) and n > n0(k, λ).

Theorem 1.9 has an interesting consequence: If, for n > n0(L), Tn,p is extremal, then, for
n > n1(L), it is the only extremal graph. Here we give a strengthening of this statement by
specifying an n1(L). It will be proved in Section 3.

Theorem 1.10. If for all n > n0(L), Tn,p is extremal, then for all n > n0(L) + 2p + 1,
Tn,p is the only extremal graph.

As a matter of fact, if n1 > n0 + p + 1 is a multiple of p, then n ≥ n1 is enough.

THE MAIN INDUCTION LEMMA

Let p be given and (Sn) be a sequence of graphs obtained from Tn,p by adding a < n
2p

independent edges to one of its larger classes. Then Sn is almost regular in the sense that the
minimum degree and the maximum degree differ by at most 1. If one deletes an appropriate
vertex x ∈ Sn, then one gets an Sn−1. This motivates the following theorem.

9
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Theorem 1.11. Let L be a given family of graphs. Let (Sn)n≥m be a sequence of graphs
with the following properties:

(A) Sn contains no L ∈ L.
(B) Sm is extremal for L.
(C) There exists a vertex x ∈ V (Sn) of minimum degree such that Sn − x = Sn−1, for

n > m.
(D) ∆(Sn) ≤ δ(Sn) + 1, for n > m.
(E) Each Sn has at least 3 vertices of minimum degree for n > m.

Then
(i) For every n ≥ m, Sn is extremal for L.
(ii) for every Gn not containing subgraphs in L, δ(Gn) ≤ δ(Sn).
(iii) For every extremal graph Qn for L, δ(Qn) = δ(Sn). If x is a vertex of minimum

degree in Qn, then Qn − x is also extremal.

The Inductive Lemma, Theorem 1.11, will be proved directly in the next Section, without
using the deeper theorems. Theorem 1.10 will also have an “elementary” proof.

2. THE MINIMUM DEGREE PROOF
OF DIRAC’S THEOREM

Here we prove Theorem 1.1. The proof described below could also be called the average-
degree-proof. The basic idea of the proof is that deleting a vertex of minimum degree from
a G ∈ I(k, λ) we get a similar graph on n − 1 vertices. Since the Turán graphs are almost
regular, the number of edges goes down roughly by the same amount as in the Turán graph.
So we can use induction on n. The average degree is not necessarily integer, and if it is not,
we should delete any vertex of degree smaller than the average. We need a lemma from [22].

Lemma 2.1.
e(Gn)(

n
2

) =
1
n

∑
v∈V

e(Gn − v)(
n−1

2

) . (5)

More generally, if m < n, then

e(Gn)(
n
2

) =
1(
n
m

) ∑
G∗⊆Gn

v(G∗)=m

e(G∗)(
m
2

) , (6)

where the summation is taken on the induced m-vertex subgraphs.

Proof. Display (6) follows by observing that every e ∈ E(Gn) appears in
(

n−2
m−2

)
of the

graphs G∗.

10
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One can rewrite (5):

e(Gn) ≤ 1
n − 2

∑
v∈V

e(Gn − v). (7)

Proof of Theorem 1.1. It is easy to see that Tn,k−λ ∈ I(k, λ). To start the proof of the
upper bound one sees that Tk,k−λ has precisely λ edges missing, so the theorem holds when
n = k. We use this as the basis for induction on n with fixed (k, λ), k ≥ 2λ > 0. Let n > k
and assume the theorem holds for n − 1. If we assume that Gn ∈ I(k, λ), then for all v,
Gn − v ∈ I(k, λ), so e(Gn − v) ≤ tk−λ(n − 1), by induction. By (7),

e(Gn) ≤ n

n − 2
tk−λ(n − 1).

So

e(Gn) ≤
⌊

n

n − 2
tk−λ(n − 1)

⌋
.

The desired bound on e(Gn) follows provided that

tk−λ(n) =
⌊

n

n − 2
tk−λ(n − 1)

⌋
. (8)

Consider Tn,p for arbitrary p, where we express n in terms of p by n = qp+r with 1 ≤ r ≤ p.
Deleting a vertex v from one of the r parts of size q +1 leaves a graph isomorphic to Tn−1,p ,
while deleting a vertex from one of the p − r parts of size q leaves a p-partite graph with
tp(n − 1) − 1 edges. The second case occurs q(p − r) times. Applying (7) to Tn,p and
simplifying gives

e(Tn,p) =
n

n − 2
tp(n − 1) − q(p − r)

n − 2
.

Thus for n > p + 1 we have q(p − r) = n − (q + 1)r < n − 2, implying

e(Tn,p) =
⌊

n

n − 2
tp(n − 1)

⌋
.

(Notice that this fails for n = p + 1.) The desired conclusion (8) now follows since n ≥
k + 1 > (k − λ) + 1.

In fact, Dirac [5] proved the following more general bound. If every k-vertex subgraph of Gn

has at most e(Tk,p) − β edges, then e(Gn) ≤ e(Tn,p) − β. Indeed, if we add β edges to Gn

in an arbitrary way, then the graph obtained satisfies the conditions of Theorem 1.1. When
β = 0, the bound is sharp and is attained by Gn = Tn,p . However, for β > 0 and n large
this upper bound is too weak: it is weaker by ≈ n2

2p(p−1) than e(Tn,p). As mentioned in (4),
the Erdős–Stone Theorem implies that

Ex(n, k, tp(k)) − β =
(

1 − 1
p − 1

)(
n

2

)
+ o(n2).

11
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THE INDUCTIVE PROOF FOR THE EXTREMUM

Proof of Theorem 1.11. We use induction on n. By (B), Sm is extremal. Assume that
n > m and we know that Sn−1 is extremal. We assumed that Sn contains no forbidden
subgraphs. To prove that it is extremal it is enough to show that if e(Gn) > e(Sn), then Gn

contains some forbidden L. One can assume that e(Gn) = e(Sn) + 1.
(a) If δ(Gn) ≤ δ(Sn), then we select a vertex x ∈ Gn of minimum degree. For Gn−1 =

Gn − x we have, by (C),

e(Gn−1) = e(Gn) − d(x) > e(Sn) − δ(Sn) = e(Sn−1).

Thus for some L ∈ L, we have L ⊆ Gn−1 ⊂ Gn.
(b) The other case is when δ(Gn) > δ(Sn). Now, by (E),∑

dG(xi) ≥
(∑

dS(xi)
)

+ 3,

and therefore e(Gn) ≥ e(Sn) + 2. This contradiction completes the proof of (i). Now that
we know that (Sn) is a sequence of extremal graphs, (ii) is trivial (from e(Gn) ≤ e(Sn)) and
(iii) immediately follows from the argument of (a) applied to a Gn satisfying e(Gn) = e(Sn).

Corollary 2.2. Under the conditions of Theorem 1.11, if Qn ∈ EX(n,L) is an arbitrary
extremal graph, n > m, then

(i) δ(Qn) = δ(Sn) and
(ii) for every vertex x of minimum degree, Qn − x is an extremal graph.

Proof of Theorem 1.4. With µ := e(Tk,p) + a, apply Theorem 1.11 to Lk,µ and to the
sequence (Sn) = (Tn,p,a). Clearly, Sk is extremal for Ex(n, k, µ) (though not the only one),
and the other conditions of Theorem 1.11 are automatically satisfied.

3. EXTREMAL GRAPHS FOR THEOREM 1.1

Lemma 3.1. For n > p, if e(Gn) = e(Tn,p) and if x, y ∈ V (Gn) are two independent
vertices such that Gn − x � Gn − y � Tn−1,p , then Gn � Tn,p .

Proof. Tn,p can be characterized by saying that it is the unique p-chromatic n-vertex
graph with maximum number of edges. So we may assume that χ(Gn) > p, otherwise
Gn = Tn,p , by the uniqueness. Gn − x = Tn−1,p , hence x is joined to each class of Tn−1,p

(by χ(Gn) > p) which implies that there is a Kp+1 ⊆ Gn containing x. This Kp+1 does not
contain y, so Kp+1 ⊆ Gn − y = Tn−1,p , a contradiction.

12
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Remarks. (a) There are many other ways to prove this simple but important lemma.

(b) If we drop the condition e(Gn) = e(Tn,p) , then the assertion of Lemma 3.1 will not
necessarily be true anymore. For example, take a Tn,p and let x, y be two vertices from two
distinct larger classes, then delete the edge x, y.

Proof of Theorem 1.10. (a) First we show that for n = p� > n0(L) + p + 1, Tn,p is the
only extremal graph. Apply Theorem 1.11 with Sn = Tn,p . Let Qn be an arbitrary other
extremal graph. By Theorem 1.11(iii), δ(Qn) = δ(Tn,p). Clearly, since Tn,p is regular, and
e(Tn,p) = e(Qn) and the minimum degrees are the same, therefore Qn is also regular, of
degree (p − 1)�. Delete any p + 1 vertices x1, . . . , xp+1 from Qn. If eX = e({x1, . . . , xp+1}),
then

e(Qn−p−1) = e(Qn) −
p+1∑
i=1

d(xi) + eX . (9)

Deleting a set Y of p + 1 appropriate vertices of Tn,p we get a Tn−p−1,p. Therefore

e(Tn−p−1,p) = e(Tn,p) −
p+1∑
i=1

dT (yi) + eY . (10)

Here e(Y ) =
(
p+1
2

)
− 1. Since all degrees are the same and

e(Qn−p−1) ≤ tp(n − p − 1) and e(Qn) = e(Tn,p),

from (9) and (10) we get that eX ≤ eY : Kp+1 
⊆ Qn. So we may apply the uniqueness part
of Turán’s Theorem: Qn = Tn,p .

(b) Let n∗ be the smallest n described in (a), so it is the smallest multiple of p greater than
n0(L) + p + 1. Now we show that if n > n∗, then Tn,p is the only extremal graph. We use
induction on n. Assume that for n − 1 we know that Tn−1,p is the only extremal graph.
Let Qn be an arbitrary extremal graph. By Theorem 1.11(iii), δ(Qn) = δ(Tn,p). Deleting a
vertex x of minimum degree of Qn we get again an extremal graph Qn−1 = Tn−1,p. If there
are 2 independent vertices of minimum degree in Qn, then we are home, by Lemma 3.1.

Let now x be any vertex of Qn of minimum degree. By induction, Qn − x = Tn−1,p . Let
the classes of this Tn−1,p be A1, . . . , Ap, where A1, . . . , Aj have q + 1 vertices, Aj+1, . . . , Ap

have q, 0 ≤ j < p. The trivial case j = 0 will be left to the reader, assume that j > 0. The
minimum degrees are equal to δn := (n − q − 1) in Tn,p and Qn. The minimum degree of
Tn−1,p is δn−1 = δn − 1. By the properties of the Turán graph, in a larger class of Tn−1,p

every vertex is of minimum degree δn −1 and stays of minimum degree δn even in Tn,p. Any
vertex y ∈ Ai for i = 1, . . . , j will be of minimum degree in Qn if it is joined to x. If, on the
other hand, y is not joined to x, then it will have degree δn − 1 < δ(Tn,p), a contradiction.
So, all the vertices of A1, . . . , Aj are joined to x.

Since x is not joined to all the vertices, we may assume that there is a y, say, in Aj+1

not joined to x. The degree of y in Qn is the same as its degree in Qn − x = Tn−1,p, i.e.,
(n−q−1) = δn. So y and x are 2 independent vertices of minimum degree, and consequently,
Qn − y = Tn−1,p as well. By Lemma 3.1, Qn = Tn,p .

13
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Proof of Theorem 1.2. We know by the previous results that the uniqueness holds for
n > n1(k, λ) and the only thing missing is that this n1 is so small.

The proof goes by induction on n with (k, λ) fixed. The real new point is that here we have
the “induction basis” for a smaller n0. For the induction basis, suppose n = k + 1. Clearly,
no vertex of Sn is on two missing edges. This forces Sn to be a Turán graph: Sn = Tn,k−λ.

Now suppose n ≥ k + 2. Then part (b) of the proof of Theorem 1.10 works: it uses only
Theorem 1.11 and that for n − 1 we already know the uniqueness. Thus Sn = Tn,k−λ.

Proof of Theorem 1.3. It can be checked that every graph described in Theorem 1.3
belongs to I(2λ, λ) and has e(Sn) = tk−λ(n). It remains to show that these are the only
graphs.

In case (1), where n = 2λ + r, the complement Tn,k−λ of the Turán graph consists of r K3’s
and λ − r K2’s. By Theorem 1.11, ∆(Sn) = ∆(Tn,k−λ) = 2, so Sn is a disjoint union of
paths and cycles. Since e(Sn) = e(Tn,k−λ) = λ + 2r = n − (λ − r), it must be that λ − r of
the components are paths.

For n > 3λ, we proceed by induction on n, having already dealt with n = 3λ in case (1).
For case (2), with n = 3λ + r, the graph Tn,k−λ consists of r K4’s and λ − r K3’s. By
Theorem 1.11, ∆(Sn) = ∆(Tn,k−λ) = 3. Let v be a vertex in Sn of degree δ(Sn) = n − 4.
Since e(Sn − v) = e(Tn,k−λ − v) = tk−λ(n − 1), then by induction, Sn − v consists of r − 1
K4’s and 3(λ−r+1) vertices in a disjoint union of cycles. Thus in Sn, vertex v has degree 3
and can be adjacent only to vertices of degree 2 in Sn−v, i.e., to vertices on cycles. Suppose
w is adjacent to v, and let x and y be its neighbors in the cycle for w in Sn − v. Similarly
considering Sn−w, we find x and y have degree 2, so they have degree 3 in Sn, so they must
be adjacent to v. Next considering Sn − x, we conclude that x and y are adjacent in Sn.
So we have a K4 on v, w, x, y, and Sn consists of r K4’s and a disjoint union of cycles. This
completes case (2). Notice that Sn must be the Turán graph Tn,k−λ for n = 4λ and 4λ − 1.

It remains to consider case (3) with n ≥ 4λ+1. Define q and r by n = qλ+r, 1 ≤ r ≤ λ. By
the Lemma 3.1, Sn has a vertex v of degree δ(Sn) = δ(Tn,k−λ) = n − 1 − q. By induction,
Sn − v = Tn−1,k−λ. If Sn 
= Tn,k−λ, then v is adjacent to all λ parts of Tn−1,k−λ and (at
least) twice adjacent to at least λ − 1 parts. Then we can find 2λ vertices in Gn with just
λ − 1 missing edges, contradicting Sn ∈ I(2λ, λ). Hence Sn = Tn,k−λ, as claimed.

4. THE CASE OF LINEAR
REMAINDER TERMS

We will deduce Theorem 1.5 from the Structure Theorem 1.8. One can relatively easily
prove Theorem 1.5 using the results of [30], (Theorem 7.4 of the Appendix). However, the
proofs in [30] are much more involved, and here we will use only the “cheaper parts” of those

14
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proofs:

Claim. Using the notations γ(k, µ) and ρ(k, µ) defined in the second paragraph following
Theorem 1.5, and ν = �k/p�, we have, under the conditions of Theorem 1.5, for µ =
e(Tk,p) + a, ρ(k, µ) <

⌊
ν
2

⌋
.

Proof. The condition on a means that γ(k, µ) > 1. We must show that if the first class of
Tn,p is filled up with independent edges, (or larger blocks), then in the next class we cannot
put �ν/2� independent edges. Indeed, putting as many independent edges as possible into a
large class of Tk,p, and into a small class, we get at least as many edges as by putting a path
Pν into a large class: we get an L ∈ Lk,µ. So ρ(k, µ) <

⌊
ν
2

⌋
.

Remark. As a matter of fact, for large k,

ρ(k, µ) <
ν

γ(k, µ)
− ν

γ(k, µ) + 1
≤ ν

2
− ν

3
=

ν

6
.

Proof of Theorem 1.5. For simpler formulation of some facts, we introduce L∗
k,µ which

consists of all graphs containing some L ∈ Lk,µ. Obviously, the extremal problems for L∗
k,µ

and Lk,µ are the same.

All such proofs include a construction, i.e., a sequence (Un) of graphs not containing any
L ∈ L and therefore providing the lower bound. Now the graphs described in the second
paragraph following Theorem 1.5 yield the lower bound: show that if Sn is an arbitrary
extremal graph, then

e(Sn) > e(Tn,p) +
(

1 − 1
γ(k, µ)

)
n

p
− kp. (11)

We shall use (as in the proof of the claim) that γ(k, µ) ≥ 2. In other words, now arbitrarily
many independent edges can be put into the first class of Tn,p without getting forbidden
subgraphs. Therefore

e(Sn) > e(Tn,p) + cn (12)

for c = 1
3p > 0 and n large.

(A) First we show that Theorem 1.8 is applicable. One can easily check that if Ta+1 is any
tree of order a + 1, then Ta+1 × Kp−1(ν, . . . , ν) ∈ L∗

k,µ. In particular, Kp+1(1, k, k, . . . , k)
contains some L ∈ Lk,µ. Hence we can apply Theorem 1.8 with p(Lk,µ) = p: we can partition
V (Sn) into classes Ai so that (a), (b) and (c) of Theorem 1.8 hold.

Notation. Let N(x) denote the neighbourhood of a vertex x and if x ∈ Ai, then let
α(x) := |Ai ∩N(x)|, β(x) := |V (Sn)−Ai −N(x)|. In words, β(x) is the number of “missing
edges” and α(x) is the number of “extra edges” (compared to the corresponding complete
p–partite graph). Put Gi = G[Ai].

15
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(B) We can now easily improve (b) by showing that there are no exceptional vertices in Ai.
As a matter of fact, there are no vertices joined to Ai by at least k edges. Indeed, let Bi ⊆ Ai

be the set of vertices joined to at least εn vertices of Ai. By Theorem 1.8, |Bi| = O(1). Each
x ∈ Bi is joined to some y1, . . . , yk ∈ Ai − Bi. All but o(n) vertices of ∪j �=iAj are joined
to each y� (� = 1, . . . , k). By the choice of the partition, (by the minimality of the number
of missing edges) |N(x) ∩ Aj| > n

2p − o(n) if j 
= i and |N(y) ∩ Aj | > n
p − εn − o(n) if

y ∈ Ai − Bi, j 
= i. Hence, if Bi 
= ∅, then we can find a Kp(k, . . . , k) in the neighbourhood
of an x ∈ Bi, and therefore a Kp+1(1, k, k, . . . , k) ∈ L∗

k,µ in Sn, a contradiction. So Bi = ∅.
By (c) of Theorem 1.8, applied to M = K(1, k), ∆(Gi) < k. Thus α(x) < k and β(x) = o(n)
for every vertex x. As a matter of fact, we obtained that ∆(Gi) ≤ a.

Since for every tree Ta+1 of a + 1 vertices, Ta+1 ×Kp−2(ν, . . . , ν) ∈ L∗
k,µ, hence Gi := G[Ai]

contains no trees of order > a. Thus, Gi has no connected components of more than a
vertices. Furthermore, (by a similar argument) Gi has no connected components of a or
more edges.

(C) We show that for all but at most one i ≤ p, e(Gi) ≤ a.

(C1) If we add a+1 edges to Tm,p arbitrarily, (m ≥ k), then the resulting graph will contain
some L ∈ Lk,µ.

(C2) Clearly,
e(Sn) ≤ e(Tn,p) +

∑
j

e(Gj) − M, (13)

if M denotes the number of missing edges. If e(A1) > a, then denote by A∗
j the subset

of Aj joined to all the endvertices of these edges (j > 1). By (C1) e(G[A∗
j ]) ≤ a. Since

|Aj−A∗
j | = o(n) and ∆(Gj) < k, therefore e(Gj) = o(n). If there were two classes containing

a + 1 edges, or M > cn holds, then for all j, e(Gj) = o(n), and therefore

e(Sn) = e(Tn,p) + o(n)

would follow from (13), contradicting (12). So we may assume that e(Gi) ≤ a for i > 1 and
M = o(n). This implies that

e(G1) = e(Sn) − e(Tn,p) − pa > γ(k, µ)
n

p
− o(n).

Therefore all but o(n) vertices of G1 are covered by trees in G1, of size γ(k, µ).

(D) We show that e(Gi) ≤ ρ(k, µ) for each i > 1. Indeed, assuming the contrary, we may fix
ρ(k, µ)+1 edges in Gi and delete (at most) o(n) vertices of each Gj (j 
= i) joined to at least
one of these edges by a missing edge. We can easily find k components of the remaining part
of G1, completely joined to these edges and each having at most γ(k, µ) vertices and at least
γ(k, µ)− 1 edges. These will provide an Lk ⊆ Sn with e(Lk) > µ edges, by the definition of
ρ(k, µ), a contradiction.

(E) “Filling in a missing edge (u, v) by an extra edge (a, b)” means below that (a, b) is an
edge of some Gi and we delete it, u, v are not joined in Sn, belong to different classes and
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we join them. If we fill in the missing edges by extra edges from ∪i>1E(G[Ai]), then the
resulting graph is extremal again and is a product. To show this we distinguish two cases.

(E1) If the number of missing edges was larger than the number of extra edges, then – in a
second run – we fill in all the remaining missing edges as well. In the resulting graph S∗

n,
e(S∗

n) > e(Sn). So there is a subgraph Mk ⊆ S∗
n with e(Mk) > µ. In S∗

n A2, . . . , Ap contain
no extra edges. Now we apply the so called symmetrization: for j = 2, . . . , p we replace the
vertices of Mk in Aj by the same number of “typical vertices wh ∈ Aj”, which are joined in
Sn to all the vertices of V (Mk) ∩ A1, and to the replaced vertices of the other Ai’s: we get
an M ′ ⊆ Sn with e(M ′) > µ, a contradiction.

(E2) In the other case we have filled in all the missing edges: we obtained a product S∗
n. By

the Claim, there exists an Mk ⊆ Sn with
∣∣∣|V (Mk) ∩ Ai| − k

p

∣∣∣ < 1, containing all the extra
edges of Sn. In other words, a Turán graph Tk,p can be put onto V (Sn), so that it covers all
the extra edges. Clearly, the number of edges in such an Mk does not increase while filling in
the missing edges. So, if the resulting S∗

n contained a forbidden subgraph, then the original
Sn would also contain one. This contradiction completes the proof.

5. THE CASE OF SUPERLINEAR
REMAINDER TERMS

Here we prove Theorem 1.7. The proof is similar to that of the Octahedron Theorem.

Lemma 5.1. If Uh contains neither C3 nor C4 and e(Wm) = 0, then Uh ⊗ Wm ∈ I(6, 4):
it contains no subgraphs on 6 vertices and 12 edges.

We shall need a slightly modified version of Lemma 2 of [10] stated below without proof. It
applies to K2(a, b) if a = 1, 2, 3 but we formulate it only for C4.

Lemma 5.2. (a) For every η > 0 there exists a ϑ > 0 such that if Gm contains neither
C3, nor C4, and has a vertex x of degree ≥ ηm, then

e(Gm) ≤ (1 − ϑ)ex(m, {C3, C4}).

(b) If, in addition, Gm has a subgraph G∗ of ≥ (1 − ε)m vertices with e(G∗) ≤ Cm, then

e(Gm) ≤
√

εm3/2 + Cm.

(For related results see also [13].)
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Proof of Theorem 1.7. (Sketched) Since O6, the octahedron graph is a 6-vertex graph
with only 3 missing edges, O6 is one of the excluded graphs. Since χ(O6) = 3 and all the
other graphs with 6 vertices and 12 edges contain a K4, Theorem 1.8 can be applied and the
proof of the Octahedron Theorem 1.6 can almost be copied. For the sake of completeness
we sketch this proof, pointing out those parts where the proofs of Octahedron Theorem and
Theorem 1.7 differ.

In the Octahedron Theorem 1.6 we exclude only one graph, the octahedron, and we concen-
trate on two types of occurences of it:

O6 = C4 ⊗ K2 and Q6 ⊆ P3 ⊗ P3,

implying that if Q⊗R contains no Q6, then neither Q nor R can contain C4 (unless Q or R
is a single vertex); Further, if one of them contains a P3, then the other does not.

In our case, i.e., in the case of L6,11 the above assertions must be satisfied, of course, and in
addition, we know that neither one of Q and R can contain K3 either, and (finally), if say
Q contains a P4 then R cannot contain edges at all.

We shall fix a sufficiently small ε > 0, say ε = 1
10000 . Let Sn be an extremal graph for L6,−4.

By Theorem 1.8, we can partition V (Sn) into two classes A1 and A2 of size ≈ n
2 so that

e(A1) + e(A2) be the minimum possible. This means that each x ∈ Ai sends more edges to
the other class than to its own one.

(i) Lemma 5.1 provides a lower bound on e(Sn):

e(Sn) ≥ max
m

{m(n − m) + ex(m, {C3, C4})} . (14)

It is known that ex(m, {C3, C4}) ≥ m3/2

2
√

2
+ o(m3/2). 3 By symmetry, we may assume that

e(A1) ≥ e(A2). So we know that

e(A1) ≥
1
2
ex (|A1|, {C3, C4}) ≥

1
20

n3/2. (15)

(ii) We call the vertices of Ai joined to at least εn vertices of their own class exceptional
and denote their set by Bi. By Theorem 1.8(b), |Bi| = O(1). In this part we can ignore the
O(n) edges represented by Bi in G[Ai], (i = 1, 2). Let A∗

i = Ai − Bi. Then G[A∗
1] contains

neither C4, nor C3, otherwise we would have a subgraph on 6 vertices and 12 edges.

Further, e(A∗
2) = 0. To prove this we use that e(P2 ⊗P4) = 12. Thus, if G[A∗

2] contained an
edge xy, then P4 
⊆ G[N(x)∩N(y)∩A1] would follow, implying that e(G[N(x)∩N(y)∩A1]) =
O(n). By |A1 − N(x) − N(y)| < εn and by Lemma 5.2(b),

e(G[A1]) <
√

εn3/2 + O(n),

3 Erdős conjectures that here equality holds, see below.
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contradicting (15). (In the octahedron problem here we allow a 1-factor: exclude only vertices
of degree 2 in G[A2].)

(iii) Now we show that Bi = ∅. If, indirectly, e.g., x ∈ B1, then any C4 or C3 of G[A1]
containing this x and 2 or 3 further vertices from A∗

1 can easily be extended into an L =
K(2, 2, 2) ∈ L6,−4 or into a C3 ⊗ C3 ∈ L6,−4. Thus the subgraph G∗∗

1 spanned by x and
A∗

1 contains neither C4 nor C3. Applying Lemma 5.2(a) and e(A2) = O(n), we get that for
m = |A1|

e(Sn) < m(n − m) + O(n) + e(G∗∗) < e(Sn) − c2(εn)3/2,

a contradiction. A similar argument shows that B2 = ∅, too.

(iv) Now we know that G[A1] contains neither C3, nor C4 and G[A2] = 0. Hence, by (14),
each vertex of A1 is joined to each one of A2.

6. HOW MANY SUBGRAPHS
SHOULD BE EXCLUDED?

In this section we investigate whether or not one excluded subgraph can replace a whole
large family of excluded subgraphs. In many cases one finds that for a given L there is one
appropriately chosen L∗ ∈ L for which

ex(n, L∗)
ex(n,L)

→ 1 as n → ∞. (16)

In some other cases we have the even stronger

ex(n, L∗) = ex(n,L). (17)

The answer to the question if (16) or (17) always hold is not so simple: e.g., for (16) NO if
p(L) = 1 and YES if p(L) > 1. We illustrate the situation through some simple examples
which mostly follow from known results.

The case when there is a bipartite L∗ ∈ L was investigated by Erdős and Simonovits e.g. in
[11]. Let us consider the case of L4,−2 : The family of graphs on 4 vertices with ≥ 4 edges.
Since C4 ∈ L4,−2, and a triangle with one hanging edge is also in L4,−2, one can easily see
that

ex(n, {C3, C4}) = ex(n,L4,−2) + O(n).

However, to decide if ex(n, {C3, C4}) ≈ 1
2n3/2 or ex(n, {C3, C4}) ≈

(
n
2

)3/2 or is somewhere
in between seems to be one of the difficult problems in extremal graph theory. According to
a famous conjecture of Erdős, (see e.g. [11])

ex(n, {C3, C4}) ≈
(n

2

)3/2

,
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i.e., probably neither (16) nor (17) holds.

The Erdős–Stone–Simonovits theorem [9] immediately implies that in the so called non-
degenerate cases, i.e., if L contains no bipartite graphs, then (16) must always hold. We
have seen (Theorem 1.9) that if Tn,p is an extremal graph for L, then there is always a graph
L∗ ∈ L such that

ex(n, L∗) = ex(n,L)

for n > n0, i.e., (17) holds.

Now we give an example where there is no such L∗: as a matter of fact, we shall provide two
examples. The first, deeper case is that of Ex(n, 6, 11). We show that

ex(n, L) > Ex(n, 6, 11) +
n

4
− o(n) (18)

if v(L) = 6 and e(L) = 12. Indeed, by Theorems 1.6 and 1.7 describing the extremal
problems of O6 and of L6,11, we know that

ex(n, O6) > Ex(n, 6, 11) +
n

4
− o(n). (19)

(To be more precise, we know for the case of O6, that if Sn is extremal for L6,11, then
Sn = Um ⊗ Wn−m for some Un not containing C4, (neither C3) and for some Wn−m with
e(Wn−m) = 0. Now, an easy Lemma of [10] corresponding to Lemma 5.1 asserts that if Q
is a graph containing no C4 and R is another graph containing no P3, then O6 
⊆ Q ⊗ R.
So, adding [n−m

2 ] edges to Wn−m will not create any O6 in the product. This proves (19).)
Further, if L ∈ L6,−4 and L 
= O6, then K4 ⊆ L. (As a matter of fact, this is Turán’s
Theorem for n = 6 and K4.) Therefore

ex(n, L) ≥ ex(n, K4) ≈
n2

3
,

completing the proof of (18). (If the Erdős conjecture holds, then n
4 can be replaced by(

1
2 − 1

2
√

2

)
n
√

n.)

Now we provide another, simpler example where the family Lk,−λ cannot be replaced by
just one excluded subgraph. Fix an r ≥ 2 and a 2 ≤ a ≤ r/2. Put k = 2r and µ = r2 + a. If
n > 2r, then ex(n,Lk,µ) =

⌊
n2/4

⌋
+ a by Theorem 1.11. (For some related results see [28]

or [30].) On the other hand, we have

Theorem 6.1. If k = 2r, a > 1 and µ = r2 + a, then for any L∗ ∈ Lk,µ one has

ex(n, L∗) > n2

4 + n
4 + O(1).

Proof. Pick an arbitrary L∗ ∈ Lk,µ. If there is no v ∈ V (L∗) for which χ(L∗−v) = 2, then
Zn = K3(1,

⌈
n−1

2

⌉
,
⌊

n−1
2

⌋
) (i.e., the graph obtained from Tn−1,2 by joining a new vertex w

to all its vertices) contains no L∗ and e(Zn) =
⌊

n2

4

⌋
+

⌊
n−1

2

⌋
, proving the assertion.
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The other case is when for some v ∈ V (L∗), χ(L∗ − v) = 2. Let now Zn be the graph
obtained from Tn,2 by adding a 1-factor to the first class of Tn,2. Now e(Zn) ≥

⌊
n2

4

⌋
+

⌊
n
4

⌋
and Zn contains no L∗. This is easy for large values of k and takes a little work for small
values of k. So we are done.

7. Appendix: A GENERAL THEOREM
IN THE CASE OF LINEAR ERROR TERMS

A fairly general theorem of Simonovits [30] tells us that if for some sufficiently large t, L ∈ L
and L ⊆ Pt ⊗ Kp−1(t, . . . , t), then there exist extremal graphs of fairly simple structure.
This theorem of [30] also provides a necessary and sufficient condition for having only these
symmetrical extremal graphs. This theorem is applicable in all the cases when Ex(n, k, µ)
has linear remainder (though this is not trivial).

We include these results here, since we feel that the theorem below best describes the situation
investigated in this paper (though we could easily prove our results from Theorem 1.8). To
explain this theorem first we have to define the notion of a family of fairly symmetrical
graphs.

Definition 7.1. Let Tj for j = 1, . . . , q be distinct connected subgraphs of G. They are
called symmetrical if

(i) V (Tj) ∩ V (T�) = ∅ for 1 ≤ i < j ≤ q, and
(ii) there are no edges joining Tj to T� for 1 ≤ i < j ≤ q, and
(iii) there exists an isomorphism ωj : T1 → Tj such that for every x ∈ T1, u ∈

G \
⋂

� V (T�), x is joined to u if and only if ωj(x) is joined to u.

Definition 7.2. A property A of graphs will be called a chromatic condition if
(i) G ∈ A and H ⊃ G implies H ∈ A.
(ii) If ρ = ρ(A) is a sufficiently large integer, then the following holds: if T1, . . . Tρ are

symmetric subgraphs of an A-graph G, then G − Tρ is also an A-graph.

To rule out the uninteresting cases, we mostly also assume that there are graphs of property
A and of arbitrarily high girth.

Example. The property Āk,p, that one cannot delete k vertices of G to get a graph of
chromatic number at most p, is one of the typical chromatic conditions.

Definition 7.3. (Family of symmetrical graphs) G(n, r, p) is the class of graphs Gn satis-
fying the following symmetry condition:

(i) It is possible to omit ≤ r vertices of Gn so that the remaining graph G∗ is a product:

G∗ =
∏
d≤p

Gmd
where

∣∣∣∣md − n

p

∣∣∣∣ ≤ r.
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(ii) For each fixed 1 ≤ d ≤ p, there exist connected graphs Hd,j ⊆ Gmd
(and isomor-

phisms ωd,j : Hd,1 → Hd,j) such that Hd,j (j = 1, 2, . . .) are symmetric subgraphs of Gn

and Gmd
is the union of the graphs Hd,j .

The vertices described in (i) have degree > n − n/p + cn in the typical cases, for some
constant c > 0.

Given a family L of graphs and a chromatic property A, we say Gn is (L,A)–extremal if
it has the property A, contains no L ∈ L and has maximum number of edges under these
conditions.

Theorem 7.4. (Existence of sequences of symmetrical extremal graphs) Let χ(L) ≥ p + 1
for every L ∈ L and χ(L∗) = p + 1. Let v(L∗) = τ . If

L∗ ⊆ P τ × Kp−1(τ, . . . , τ), (20)

then there exists a constant r = r(L) such that for every n, G(n, r, p) contains an extremal
graph for L. Furthermore, if there exists an n0 such that for n > n0, G(n, r, p) contains only
one extremal graph, then for sufficiently large values of n this is the only extremal graph.

We have mentioned that in all the cases when the “remainder” term is linear, Theorem
7.4 describes the situation completely. The reason for this is that in those cases (20) is
applicable: The basic forbidden graphs are obtained by putting trees into the classes of some
Turán graphs, and putting a path into the first class of a Tk,p also yields a forbidden graph.
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[3] W. G. Brown, P. Erdős and Vera T. Sós: On the existence of triangulated spheres in 3-graphs and related
problems, Periodica Math. Hung. Acad. Sci. 3(3-4) (1973), 221-228.
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