RO

INDUSTRIAL
’ ANV 5
ez MATHEMATICS
N

N\ INSTITUTE

1998:03

Ridge approximation and
Kolmogorov-Nikol'skii problem

K.l. Oskolkov

Department of Mathematics
University of South Carolina




Ridge approximation and Kolmogorov — Nikol’skii
problem

K.I. Oskolkov

Our goal is to compare the efficiencies of linear and nonlinear methods in the problem of ridge
approximation. We confine ourselves by functions of two variables f(x) = f(x1,22) and the norm
|| - || of Hilbert space £*(IB?), where IB* is the unit disc |x| < 1 on the plane IR*. By definition,

RY(f):=  nf If =Rl RE(S) = min |If B
€

free equi
REWT <

Wiee — the set of all N-terms linear combinations of functions of the planar wave type, R(x) =
SV Fi(x-8;); x-y denotes the usual inner product. Wave profiles F;(z), 2 € IR! are subject to
optimization in both cases and depend upon the given f. The sets {8; = (cos®;,sind;)}IV (wave
vectors) are beeing optimized only in the problem R the angles ¥; are equispaced in R°™  and
19]‘ = %

The problem R is of a stronly nonlinear nature, due to optimization in {6;}¥ c S'. In
particular, simple examples demonstrate (cf. [1]), that for N > 2 the infimum may be not reachable
(ill-posedness). On the contrary, the problem of R4 is linear and solved by orthogonal projection
in £2(IB?) onto the corresponding subspace.

Further, let P\ := Span {z*}i<n, P& := Span {zfal}rpcn. It is known (cf. [2], [3]), that
if {6;}Y is an arbitrary set of N directions, where the corresponding angles ¥J; are pairwise non-
congruent modw, then each polynomial P(x) € P3_, is a linear combination of N planar wave
polynomials, P(x) = Y P;j(x - 8;), where P; € P_,. Thus, the best algebraic approximations
EJPVOIY(f) ‘= Mmilpepz || f — PJ| provide a natural intermediate characterization for ridge approxima-

tion. In particular, REee(f) < R]e?ui(f) < EJPVOIY(f).

One of the interesting problems: when the nonlinear method R is more effective in the order
than the linear one R°9™ i .e. , when RE*(f) = o (R]e?ui(f)) , N —o0?

The following statement contains the solution of this problem in two model cases: a) radial
f(x) = f(|x|), and b) harmonic functions in the open disc, Af(x) = 0, |x| < 1 (notations: f =
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Jharms f = fraa). For the sake of brievity, we state only order type results, although in several cases
the expicit numerical values of the constants are also known. We use the notation A << B, iff there
is a universal positive constant ¢ such that %B <A< eB;if B<< A<< B, we will write A ~ B.

Theorem 1 The following relations hold true

F = fraa = RE(S) ~ EXY(); F = foamm = EXDL(F) << RE(S) < EXV(F); (1)
[ = foa = RE() 2 sup ([P emb () > sup (| TN - 2)
M>N M>N

[ = fram = RYE(S) << RE(f) << min (Me RS f +Reqm(f)) : (3)

Corollary 1. If f = fua i E537(f) # o (EX7(F)), then RE“(f) # o (RAW™(f)) . N — oco. Thus,

for radial functions the method R is nor more efficient than Re,

This corollary strengthens some preceeding results due to V. E. Majorov [5] (further develop-
ments — in [6]) and V.N. Temlyakov [4] and the author [1]. It also confirms for f = f..q a conjecture,
formulated by D. Donoho and 1. Johnstone [7].

Corollary 2. If f = fham and Je > 0 such that Eﬁ%lya(f) (Epdy(f)), then REe(f) =
(Reqm( f )) Thus, for harmonic functions the method R is more effective in order, than R,

Moreover, if f = fham and da > 0 such that Reqm(f) = O(N~%), then for Ve > 0 : RE*(f) =
o(N~ 2“"'5) i. e. Rfree is “almost square times” more efficient than R4,

This proves, that the part of the conjecture from [7] concerning harmonic functions fails to be
true.

Ridge approximation of an individual function is dual with an infinite series of problems of
Kolmogorov — Nikol’skii type, cf. [8], concerning optimization of quadrature formulas on compact
classes of trigonometric polynomials. A quadrature formula with N nodes on the period [0, 27) is a
sampling linear functional of the form Qn[1] = @ ({19 FEEA {wj}N) [T]:= Zé\f:l w; T(e%7); the global
error Qn(T) in the recovery of a functional F,[T] := & [" a(e™)T(e'’)dv on a certain class K of

. 27
continuous periodic functions T'(¢'?) is defined as the quantity

1 N

o /%a(em)T(em) 4 — 3 wT(e)].

i=1

Q (oK {01 {wi 1Y) = sup

In our case, the classes K are unit balls K, := {T € T,, ||T,£3 || < 1} in the subspaces 7, :=

Span {e¢™?}" = of trigonometric polynomials of nth order. Functionals F,[T] are generated by Fourier
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— Radon analysis with respect to Chebyshev polynomials of the second kind (cf. [2], [9], [10]; 8 :=
(cos ¥, sin ¥)):

a(e”) = an(f,e") := /182 F(X)un(x-8)dx, u,(z):= i (n;l;ll)_a;c)osxv n=01,.... (4

Basic identities which made it possible to “slice” the problem RE(f) into a series of optimization
problems of Kolmogorov — Nikol’skii type, are contained in the next (sm. [1])

Lemma 1 Let f(x) € L2(IB®) and let a,(f,e™”) be defined by (4). Then
2(1R2Yy 1 2 & ) Oy 1 o

(Rﬁ@ee(f)) = 27 inf Z ninf (Q (ano1(f). Kuors {9 }1,{w]}1)) . (5)

{9 }1 N+1 {wj}1

2
Un— 1 £27T

Y

To realize the above scheme, a further concrete analysis is needed, of the arising Kolmogorov —
Nikol’skii problems, for a given concrete sequence of the chebyshevian orthogonal momenta a,,(f).
In general, the momenta are trigonometric polynomials, a,(f) € 7., a,(f, —¢”) = (=1)"a,(f, "),
and 27| f(x), L2(IB?)||> = 57 (n + 1)||an(f), L2, ||* (Parceval’s identity).

The momenta are especially simple for radial and harmonic functions. If f = fi.a, then a,(f)
are constants (all odd momenta ag,1(f) = 0 in this case). If f = fham, then a,(f, ") = a, e +

B,e~ 1. e. pure oscillations of the highest possible frequency in 7,. Further, the momenta of a
sin (n+1)(d—yp)
sin (d—¢)

multiples of Dirichlet kernels. The latter is crucial for the duality of the type (5).

planar wave function F,(x) = F(x- ¢) are of the form a,(F,, ") = a, , 1. e., numerical

Let us consider the corresponding extremal problems of Kolmogorov — Nikol’skii on recovery of
integrals of a trigonometric polynomial and its senior Fourier coefficient on the class &,:

1 2 .
opt o 3
(1,7,) = inf Sup 27r/ T(e )dﬁ—QN[T] :
. 2m . .
o (6_”“9,’];) = IQHE ;u}? L /0 T (6“9) e di) — QN[T]‘ (6)
€

The latter problem can be also reformulated as recovery of the values of analytic polynomials
P(z) = 3§ cnz™ € P at z = 0 via N samples P(z;) taken on the circumference |z| = 1: one



has Q% (e‘mﬁ,’];) = Q¥ (P}), where

N
opt 731 = m sup P(0) — w: Pl -
" ( n) {21078t w1 Pepy, P(ei?)eks, |1P(0) 21: iP(z)] (7)

The solutions of the problems concerning Q%" (1,7,) and Q" (e‘mﬁ, 7;1) turned out to be strikingly
different.

The meaning of the next statement is in the following. First, it is not possible to recover, with
a small error, the integrals of all polynomials from K, , if the number of samples (available point
data) N is somewhat smaller than n, cf. also [16].

In contrast to it, recovery of the senior Fourier coefficient on K,, with a small global error is
possible even in conditions of an “essential sampling deficiency”. One needs only that N be “much
bigger” than /n.

We derive the upper estimate of Q%" (e‘mﬁ, 7;1) by measuring not N point values of polynomials,
but rather a single value, say, at ) = 0, of an appropriately selected differential operator of order N —1.
Namely, the setting of Kolmogorov — Nikol’skii problem admits exploiting of the closure of the set
of quadrature formulas, and, respectively, that of the inequality Q%" (e‘mﬁ,’]}) < Q¢ (e‘mﬁ,ﬂ),
where

<ol (e‘mﬁ,ﬂ) = min sup
PeP)_, TEK,

(8)

% / () ey - p (%) T (<)

Moreover, it is not hard to see, that this approach results in another problem of a classical cheby-

¥=0

shevian nature — discrete method of the least squares for algebraic polynomial approximation:

col (o—ind ) _ : P2 1—P 2, 9
WT) = min ([ 3 Pm) (1= Po) g

Theorem 2 Let n, N be natural numbers and n > N. Then
N2
2
BT~ (1) (10)
n
Further, there exist an absolute positive constant ¢ such that

2N2

T << Q! (e_mg,’];) < Q! (e_im?,’]}b) << ne oA, (11)



In regard of (11) let us note that for n > N, not a single Fourier coefficient can be recovered by
quadratures with N equispaced nodes: the global error on K, is >> 1. Apparently, the qualitative
novelity of (11) compared with the known results of the theory of optimal quadratures (cf. [8], and
also [11], [12]) is an improvement of the error estimates at the expence of the effect of “collapse” of
the nodes. The latter means that in certain natural settings of the type (7), the optimal qadrature
formula in Kolmogorov — Nikol’skii problem does not exist.

Preliminary estimates of discrete algebraic polynomial approximations on the right hand side of
(9) appeared in discussions of the problem with my colleagues P. Petrushev, B. Popov and O. Trifonov
at USC. Clearly, one can take in this problem an appropriately modified Chebyshev polynomial of
the 1st kind and degree N — 1. An upper estimate of the type (11) was communicated to the author
by L. I. Sharapudinov. In a quite recent paper [13] it is proved that the righthand side of (9) is small
if and only if \/WE — 0.

The lower estimate of Q%" (e‘mﬁ, 7;1) in (11) was recently established by the author in collabo-

ration with B.S. Kashin during his visit to USC (April — May 98). It turned out that this estimate
can be derived (cf. (7)) from the following stronger statement regarding polynomials with prescribed
roots on the circumference |z| = 1.

Lemma 2 For cach set N of points {z;}Y, |z;| = 1 and a positive integer m, there is a polynomial
P(z) € Pl satisfying P(0) =1, P(z;) =0, j=1,2,..., N, max),<1 |P(z)] < e

This statement is a corollary of the solution, cf. [14], of the extremal problem of G. Héldsz: find
fom P= iDL p(10) MaX]:|<1 |P(2)| where PU0 .= {P(2) € P! . P(0) =1, P(1) = 0}. For our
purpose, the estimate 1, <1+ 2 is sufficient (cf. [15], Ch. 5).

Lower estimates of Q%'(1,7,) and their multivariate analogs were studied by V.N. Temlyakov
[16]. Basing on some results of B.S. Kashin [17] (cf. also [18]) it is established in [16] that if
N < (1 — e)n, where ¢ > 0, then Q?th(l,’];) > ¢. > 0. This result was used in [1] for estimates of

Riree from below in the case of radial funcions.
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