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NONLINEAR KOLMOGOROV’S WIDTHS!
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Department of Mathematics, University of South Carolina, Columbia, SC 29208

ABSTRACT. We investigate a generalization of Kolmogorov’s width which is suit-
able for estimating best m-term approximation. We generalize the Carl’s inequality
which gives lower estimate of Kolmogorov widths in terms of the entropy numbers.
Application of these new inequalities gives some progress in the problem of estimating
best m-term trigonometric approximation of multivariate functions.

1. INTRODUCTION

A number of different widths are being studied in approximation theory: Kol-
mogorov widths, linear widths, Fourier widths, Gelfand widths, Alexandrov widths
and others. All these widths were introduced in approximation theory as charac-
teristics of function classes (more generally compact sets) which give the best pos-
sible eccuracy of algorithms with certain restrictions. For instance, Kolmogorov’s
n-width for centrally symmetric compact set F' in Banach space X is defined as
follows

dn(F, X) -—1%f§2§;g§|lf 9llx
where inf is taken over all n-dimensional subspaces of X. In other words the
Kolmogorov n-width gives the best possible error in approximating a compact set
F by n-dimensional linear subspaces.

There has been an increasing interest last decade in nonlinear m-term approx-
imation with regard to different systems. The present paper contains an attempt
to generalize the concept of classical Kolmogorov’s width in order to be used in
estimating best m-term approximation. For this purpose we introduce a nonlinear
Kolmogorov’s (N, m)-width:

d(F,X,N):=  inf inf inf ||f — g||x,
( ) cN,#%Nngc‘éI}LI&N;EL“f gllx

where Ly is a set of at most N m-dimensional subspaces L. It is clear that
dm(F, X,1) =d,(F, X).

IThis research was supported by the National Science Foundation Grant DMS 9622925 and
by ONR Grant N0014-96-1-1003
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The new feature of d,,(F, X, N) is that we allow to choose a subspace L € Ly
depending on f € F. It is clear that the bigger N the more flexibility we have to
approximate f. It turns out that from the point of view of our applications the
following two cases

(I) N < K™,
where K > 1 is a constant, and
(IT) N < m*™,

where a > 0 is a fixed number, play an important role.

We intend to use the (N, m)-widths for estimating from below the best m-term
approximations. There are several general results (see[L], [C]) which give lower
estimates of the Kolmogorov widths d,(F, X) in terms of the entropy numbers
€x(F, X). In Section 2 we will generalize the following Carl’s (see [C]) inequality:
for any r > 0 we have

(1.1) 1r§nka%<nk er(F,X) < C(r)lgnnz?g(nm dm—1(F, X).

We denote here for integer &
ex(F,X) :=inf{e: 3f1,..., for € X : F C UL, (f; + eB(X))},

where B(X) is the unit ball of Banach space X. For noninteger k we set € (F, X) :=
ek] (1, X') where [k] is the integral part of number k. It is clear that

di(F, X,2") < €,(F, X).
In Section 2 we prove the inequality

(1.2) max k"ex(F,X) < C(r,K) max m"d,_1(F,X,K™),
1<k<n 1<m<n

where we denote
do(F, X, N) := sup || f]| x-
fEF

This inequality is a generalization of inequality (1.1). In Section 2 we also prove
the following inequality

1.3 k" F.X)<C "1 (F, X, m*™

( ) lglkagn €(a4r)klog k( ’ ) > 12113%(”777' 1( <4, M )
and give an example showing that klog k in this inequality can not be replaced by
slower growing function on k.

In Section 3 we apply inequalities (1.2) and (1.3) for estimating the best m-term

trigonometric approximation from below. Let 7 := {e!**)} be the trigonometric
system. Denote

om(f)pi=om(f;T)pi= inf 1F = et =),
7=1

T .
IARAS] 3C15--3Cm,



the best m-term trigonometric approximation in L,. For a function class F' we
denote

Om(F)p = 0m(F,T)p = sup om(f, T)p.
feF

As a corollary to a version of (1.2) (see Remark 2.1) we give a new proof (see [DT])
for the estimate

O-m(Wgo: T)l > m—r,

where W7 is a standard Sobolev class with the restriction imposed in the L,,-norm.
We use a version of (1.3) to get some new lower estimates in m-term trigonomet-
ric approximation of multivariate classes MW/ of functions with bounded mixed
derivative in the Li-norm. We prove that

(1.4) O (MW T); > m™"(logm)"(¢=2),

The inequality (1.4) gives a new estimate for small r. In Section 3 we discuss some
results on o, (M Wy, T)p. We remark here that the correct order of the quantity
Om(MWZ,, T )1 is unknown.

In Section 4 we apply the method developed in Section 3 to a general system ¥
instead of trigonometric system 7. We consider best m-term approximations with
regard to a general system W := {1;}%2,

om(f,¥)x =  inf mllf—ZCk%kHX ,
k=1

CkyJk,k=1,...,

O-m(F7\IJ)X .= sup 0m(f7 \I])X
fEF

We prove that for good systems W the estimate
en(F,X) > n"%(logn)®, a>0,beR,
for the entropy numbers implies the same estimate for best m-term approximation:
O (F, W) x > m™*(logm)®
2. SOME GENERAL INEQUALITIES FOR NONLINEAR KOLMOGOROV’S WIDTHS

We begin this section by the proof of the inequality (1.2).
Theorem 2.1. For any compact F' C X and any r > 0 we have for alln € N

max k"ex(F,X) < C(r,K) max m"d,_1(F,X,K™).
1<k<n 1<m<n

Proof. Let X(N,m) denote the union of some N subspaces L with dimL = m.
Consider a collection K (K, ) := {X(K2",25+1)}._, and denote

s=

H(K(K, D) :={f € X :AL1(f),...,Li(f) : Ls(f) € X(K2 2%,
and 3ts(f) € Ls(f) such that

l
Ja()llx <2776, =1k f = a0k <27,
s=1



Lemma 2.1. We have forr >0
€ot (HT(K(K7 l))7X) < C(?", K)2_Tl‘

Proof. We use the following well-known (see[P]) estimate for €,(B, X) of the unit
ball B in the d-dimensional space X :

(2.1) en(B,X) < 3(279).

Take any sequence {ns}ls(gl of I(r) < I nonnegative integers. Construct €, -nets

for all unit balls of the spaces in X(K2s+l,25+1). Then the total number of the
elements y? in these €, -nets does not exceed

M, = K2 o
s = )
We consider now the set A of elements of the form

-r —r(l(r)— I(r .
yjll_I_Q y§2‘|’+2 (I(r) 1)ng(3)’ ]5217---7M57 821,...,l(’l").

The total number of these elements does not exceed
U(r)
M= [ M, < K77 95
s=1

It is clear it suffices to consider the case of big I > I(r, K'). We take now
ne = [(r+1)(1—s)2°T, s=1,...,0(r),

where [z] denotes the integer part of a number . We choose I(r) < [ as a maximal
natural number satisfying

and
M M+210g K < 211,
It is clear that
I(r)y>1—-C(r,K).
Then we have l
M <2%.
For the error €(f) of approximation of f € H"(K(K,!)) by elements of A we have

() l
e(f) <2 lt() =27y Ik + >0 1t ()lx
s=1 s=Il(r)+1
I(r)
< C(?“, I()2_Tl + Z 2_7’(5—1)6713 (B(Ls(f), X)
s=1
I(r) .
S C(’I“, K)Q—rl +3 Z 2—1’(5—1)2—713/2
s=1

< C(r,K)27.



Lemma 2.1 is proved now.

We continue the proof of Theorem 2.1. Assume

1£nn§}§(n(m) dm—1(F,X,K™) < 1/2.

Then for s = 1,2,...,1; | <[log(n — 1)] we have
doo (F, X, K?") < 27771,

This means that for each s = 1,2,...,[, there is a collection L2+ of K2 2s-
dimensional spaces Li,7 = 1,... ,K?", such that for each f € F there exists a
subspace L (f) and an approximant as(f) € L$ (f) such that

If —as(HIl <2777

Consider

(2.2) ts(f):=as(f) —as—1(f), s=1,2,...,L

Then we have
() € () @ LS (), dim(I3(F)@ L] (f) <2 +27) <2,

Let X(KQSH,QS‘H) denote the collection of all L; & L;  over various 1 < j; <
K?: 1<j._; <K?¥ ' For ts(f) defined by (2.2) we have

lta(f)]] < 2777t 4 2rlem =t < gmrlem ),

Next, for ag € L° we have
If —aoll < 1/2

and from do(F, X) < 1/2 we get
laoll < 1.

Take to(f) = ao(f). Then we have F C H"(K(K,l)) and Lemma 2.1 gives the
required bound

ex(F) < C(r, K)27" 1 <1< [log(n—1)].

It is clear that these inequalities imply the conclusion of Theorem 2.1.

Remark 2.1. FEramining the proof of Theorem 2.1 one can check that the inequality
holds for K™ replaced by bigger function. For example we have

1r§nka%<nk ex(F, X) < C(r,K) | ax m dm—1(F, X, (Kn/m)™).

We proceed now to the case (II) when N < m®™. We prove a lemma which will
imply the inequality (1.3).



Lemma 2.2. For any compact set F' C X and any real numbers 0 < a < b we
have

€bm logm (F, X) < C(do(F, X)m* ™" + dp (F, X, m*™)).

Proof. Let N := [m®™]. For a given § > 0 denote Ly a collection of m-dimensional
subspaces L;,j = 1,..., N, such that for each f € F there exists j(f) € [1, N] and
an element g(f) € L; s with the approximating property

(2.3) 1 = 9()I < dun(F, X, m®™) 45
Then

lg(H)llx < Ifllx +1If — 9(H)llx < do(F, X) + d(F, X, m*™) + 6 =: a.

Thus we got to estimate e-entropy of the union U of m-dimensional balls of radius
ain L; over j € [1, N]. By (2.1) we have

€n+[log N]+1(U7 X) < a3(2_n/m)‘

If (b—a)mlog m < 1 the statement of Lemma 2.2 is trivial. Assume (b—a)mlogm >
1 and choose n such that n = [(b — a)mlog m| — 1, then we have

n+ [log N] + 1 < bmlogm
and
(2.4) a3(27/™) < Cam®~*.

Combining (2.3) and (2.4) we get the statement of Lemma 2.2.
It is easy to see that this lemma implies the inequality (1.3). We give now an
example showing that we can not get rid of log k in (1.3).

Example. Let 7 > 0 and a > 0 be given. Consider a partition of [0,1] into

N = [n°t1/3] segments I; := [%,%), j =1,...,N, and form the set of all
n-dimensional subspaces of the form

XQ = Span{XIj }j€Q7 Q - {1727 oo 7N}7 #Q =n

where 1 denotes the characteristic function of a segment I. The number of these

subspaces is
N = (V)5 (- s () <

n

Consider
F, = UQBOO (XQ)TI_T.

Then we have F,, C n™"B(Lu ([0, 1]), what implies for all m
dm(Fn, Loo([0,1])) <n7".
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We also have
dn(Fn, Lo ([0,1]),n%) < dp(Fn, Lo ([0, 1]), N(n)) = 0.
This implies that for any s € N we have for the right hand side of (1.3)

" (Fry Loo([0,1]),m®™) < 1,
 max m’dm( ([0, 1), m™™) <

Next, consider the set of functions xg,, Gg = Ujeqlj, where x¢ is the character-
istic function of G. Then for any Q # Q' we have

HXGQ - XGQI HOO 2 1

The number of functions {x¢,, } is equal to N(n). This implies that

€[log N(n)](Fn7 Loo([O, 1])) > TL_T/Z.

Assume we can replace log k in (1.3) by a slower growing function ¢(k). Take
any n € N and let p,, € N be the biggest number satisfying the inequality

(a+7)punt(pn) < [log N(n)].
Then our assumption implies

lim p,/n = co.
n— oo

Thus for the left hand side of (1.3) we get

103X KT Cap () (o X) 2 p€atripnpun) (F X) 2 (i /)" /2 = 00

as n — oo. We got a contradiction to (1.3).

3. BEST m-TERM TRIGONOMETRIC APPROXIMATION IN THE L;-NORM

In this section we apply Remark 2.1 and Lemma 2.2 to get some lower estimates
for best m-term trigonometric approximation. In order to orient the reader we first
give a new proof of the following estimate obtained in [DT]

(3.1) Om(Wo,L1)>m™", r>0.
Let us remind the definition of W in the case of univariate functions
WoLi={f=Brx¢, |¢lw<1, Br(x):=1+2) k™ "cos(kzx —rr/2)}.
k=1

It is known that
en(Wi, L) >»n™", r>0.

7



Moreover, the same estimate is known for the intersection of W2 and the space
T (n) of trigonometric polynomials of degree n. We formulate this estimate in the
following way using the notation 7(n) for the unit Lo.-ball in 7 (n)

(3.2) en(T(n)oo, L1) > 1.

This relation can be derived from the estimate of volume of the set of Fourier
coefficients of polynomials from 7 (n).. The corresponding volume estimate was
obtained in [K]. For multivariate case and the way of deriving estimates for the
entropy numbers from the corresponding volume estimates see [T3]. We will not
go in these details here.

Consider k-term approximation of functions from 7 (n)s. Using the de la Vallée-
Possin operator we confine ourselves to the case of approximation by harmonics with
frequences in (—2n,2n). Then the number of possible combinations of k frequences
from this set is (473;1) =: N < (Kn/k)*. And, consequently
(3.3) k(T (n)oo, L1) > Cdi(T (n) oo, L1, Ni).

The relation (3.2) and Remark 2.1 to Theorem 2.1 imply

(3.4) max. E"dk (T (7)o, L1, Ng) > C(r)n".

Using the obvious inequality
do(T(?’L)OO,Ll) S 1

we get

o K (T ()oc, Lt Ni) 2 Clr)n’,

what together with (3.3) implies
UO(T‘)TL(T(TL)OCML].) > 1,
and in turn
on(W2Z,Li)>n"".

We proceed now to the main part of this section to the best m-term approx-
imation of classes of multivariate functions with bounded mixed derivative. The
first result in this direction was obtained in [T]. We remind the definition of these
classes

d
MW] :={f=B,x¢, llelg<1, B(a1,...,2q):= ][] Brlz:)}.

=1

The first results concerned the case of approximating the classes MW in the L,-
norm for 1 < ¢ < p < 2. Those results were surprising. In the case of univariate
functions it is well known that we have

Om(Wy,Lp) X dm(W,,Ly), 1<q<p<2,

8



and the standard subspace 7 (m) of trigonometric polynomials of degree m provides
both an optimal (in the sense of order) subspace in the Kolmogorov (2m+ 1)-width
and an optimal (in the sense of order) set of harmonics in nonlinear best (2m + 1)-
term approximation. It turned out that in the multivariate case we have in the
same setting the following relations

Om(MW], L,)(logm)=D/a=1/p) < g (MW],L,), 1<g<p<2.

This relation shows that we gain by using nonlinear m-term trigonometric approx-
imation instead of approximating by elements from any m-dimentional subspace.

Some upper and lower bounds for approximating classes MW/ in the uniform
norm were obtained in [B1]. In [KT1] we proved the estimate

Om (MW ) > m™"(log m) DT 1< p<g< oo,

Combining these estimates with known upper bounds for approximation by trigono-
metric polynomials with frequences in hyperbolic crosses (see [T2], Ch.II, s.2)

Eq, (MW, Ly) <27™, 1< q< oo,
we get the asymptotic estimates
Om (MW ]), < m™"(log m)@=D" 1 < p<g< .

As we mentioned in Introduction the main goal of this section is to get some
new estimates for am(MW;)p in the case ¢ = co and p = 1. For completeness we
will obtain first the asymptotic estimates in the case 1 < ¢ <p < 0o, p > 2.

Theorem 3.1. Forr > max(1/2,2/¢g—1/2) and 1 < q¢<p < oo, p > 2 we have
m_(r_l/Q+1/2) (log m)(d_l)(T’_2/Q+1)7 1 < q S 2’

m(MWT), <
om q)p { m_”(logm)(d_l)r, 2 <q< .

Proof. The lower estimates follow from the known result (see [T2], Ch.IV, Th. 2.1)
(3.5) Tm(MWT )3 > 771—(7’_1/q+1/2)(10g m)(d—l)(r—2/q+1), 1<qg<2.

We prove now the upper estimates. It is clear that it is sufficient to consider the
case 1 < g < 2. We will prove a little stronger result than the upper estimates in
Theorem 3.1. Namely, instead of L,-norm we use a stronger one B, 2-norm which
is defined as follows. Let f € L; and

8s(f) := Z FR)e ™™ p(s):={keZd: 2% < |k;| <2%, j=1,2,...,d}
kep(s)

Define the B, 2-norm by the formula

Hf”B%’2 = (Z “‘Ss(f)Hio)l/z-



Lemma 3.1. Forr >2/q—1/2 we have
(MW )p._, < ,ﬁn—(f’—l/q+1/2)(10g m)(d—l)(r—Q/q-H)’ 1<q<2.

Proof. Denote

fii= ) 64(f).

llsllL=1

Then it is known (see for instance [T2],Ch.II, s.2) that for f € MW, 1 < g < oo,
we have
(3.6) Ifilly < 27"
Next, by Lemma 3.1' from [T2] we get for 1 < ¢ <2

1Allg > D 18|20 /2

llslla=1

what implies
(3.7) (D N85V < 27iirsr/emtr,

lIslla=1
We take small k > 0 and specify

my = [2—(1—|—n)(l—n)ld—1] N; = [QTL—R(Z—R)]‘

By [DT], Corollary 5.1 we have for ||s||; =
(3.8) oy (86(f))oo < (2'/N0) /2 10g (2 /N1) 186 ) 2.

Denote D(f,1) the set of m; indices s, ||s||1 = [, for which ||ds(f)||2 take the biggest
values. Then by Lemma 2.1 from [T2] and (3.7) we get

1/2
(3.9) oSN < my 2 iz ),
s¢D(f,l)
Denote
v(l):=#{s: lslh =1} m:=> (m2'+ Nw(l)) + #(Uje, <np(s))-
I>n
From (3.8) and (3.9) we get
1/2
T2t N () B e < | D 116:(F)I3 (2/N,)M 2 log (2 /Ny) <
s¢D(f,1)

ml1/2—1/q(2l/Nl)1/2 10g(2z/Nl)2—z(r+1/2—1/q).

Therefore,

Om(f)Bu» < Z Oy 24 Nw() (1) Bo » K nld=1)(1/2=1/q)9—n(r+1/2=1/q)
I>n

It remains to remark that m < n=127,

We proceed now to the case ¢ = co, p = 1.

10



Theorem 3.2. Forr >0 we have

O (MWL) > m~" (log m)"(4=2),

Proof. In [KT2] (see also [KT1] and [B2]) we proved
(3.10) em (MWL )1 > m™"(log m)r(d_l).
We use the construction from [KT1] and [KT2] in our proof. In [KTI1] for each

k € N we found a number n(k:) € N such that £ < 2”(k)n(k)d_1 and constructed a
set Uy with the following properties

(3.11) Ur c MWZ;

(3.12) ex(UF,L1) > k™" (log k)41,
It follows from the proofs in [KT1] and [KT2] that we can modify (convolve with

appropriate de la Vallée-Poussin kernal) the original set U] in a way such that in
addition to properties (3.11) and (3.12) we can have one more property

(3.13) Ur c T(2nk)+h,

which says that all elements of U; are trigonometric polynomials of degree on(k)+1
in each variable. Let m € N be given. Define k := [bmlog m] with b > 0 to be chosen
later on and consider the set U] with properties (3.11), (3.12) and (3.13). Similarly
to the proof of (3.2) using the de la Vallée-Poussin operator we confine ouselves
to approximation only by frequences in (—2”(k)+2, 2”(k)+2)d. Then the number of

possible combinations of m frequences is N(m) := ((Zn(k):_l)d) < (C(d)m)4™ for

d > 2. We apply now Lemma 2.2 and the inequality
(3.14) Om(Ugt > dm(Ug, L1, N(m)).
Using the property (3.11) we get
do(Ul,L1) < 1
and by Lemma 2.2 and (3.12) we find
din(Ug, L1, N(m)) > C ™ epmiogm(Us, L1) — do(Ug, L1 )m*™ 3> m™"(log m)"(4=2)
for properly chosen a and b.

11



4. ONE ESTIMATE FOR GENERAL m-TERM APPROXIMATION

In this section we use Remark 2.1 to prove a lower estimate for best m-term
approximation with regard to a system satisfying some restrictions. Assume a
system W := {1;}22, of elements in X satisfies the condition:

(VP) There exist three positive constants A;, ¢ = 1,2, 3, and a sequence {n}> ,

N1 < Aing, k= 1,2,... such that there is a sequence of the de la Vallée-Poussin
type operators Vi with the properties
(4.1)

Vk('@by) = )\k,j’tﬁj, Ak,j =1 fOI‘ _] = 1, ey Ny )‘k,j = 0 fOI‘ _] > Agnk,

(4.2) IVellxox < As, k=1,2,...
Theorem 4.1. Assume that for some a > 0 and b € R we have
em(F,X) > Ciym™*(logm)®, m=1,2,...

Then if a system W satisfies the condition (VP) and also satisfies the following two
conditions

(4.3) E,(F,¥):=sup inf |f-— chd)jHX < Con~%(logn)®, n=1,2,...;

feFCIa---,cn J:1

(4.4) Vk(F) C CgF

we have

om(F,¥)x > m™ %(log m)b.

Proof. Let m be fixed. We find a constant Cy such that for all n
(4.5) Ec,n(F,¥) < (2(45 + 1)) ' en(F, X).
Let k(m) be such that

Ng(m) = Cam and  ngmy—1 < Cym.
Then
(4.6) Ni(m) < A1Cam.

Consider a new set

Fry i= Vi) (F).

By our assumption we have F,, C CsF and, therefore, it is sufficient to prove the
required estimate for the set F,,, instead of F.. We get from (4.2) and (4.5)

(A7) em(Fmy X) > em(F, X) = |1 = Vig | x 5 x ECam (Fy ¥) > e (F, X) /2.

12



Denote
Un(f: \IIN)X ;= inf ||f - ZC]wJH:
Ar{cj} .
JEA
where A is a subset of [1, N| of cardinality n. Then using the (VP) property of the
system ¥ we get for F,,

(4.8) O (Fr, ¥ Ay ) x < Aso(Fry, W) x.

(m)

Denote N := [Asngm)] and K := [A3A4:Cy4] + 1. Then the total number of
[-dimensional subspaces of the space span{¢y,...,¥n} is less than or equal to
(Klm) < (Km/l)!. Therefore for each | we have

(4.9) 01 (Frn, ) x > di(Frn, X, (Km/1)1).
Next, from the assumption (4.4) we get
di(Fm, X) < C3di(F, X) < C3E,(F,7).

Using this inequality we obtain from Remark 2.1 with » = a + 1 that for some Cj
we have
"dy(Fp, X, (Km/1)! 1 b
. pax  Udi(Fm, X, (Km/1)) > m(logm)
what with (4.9) implies

0Cym(Fm, U )x > m~*(logm)®.

It remains to use (4.8) in order to complete the proof of Theorem 4.1.
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