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Ridge approximation, Chebyshev — Fourier analysis and
optimal quadrature formulas

K.I. Oskolkov

Abstract

Free (non-linear) ridge L2-approximation N'RA,(f), n = 1,2, ..., of a function f(x) =
f(x1,23) in the unit disc IB? is considered:

Hf - Zn: Fi(x-€&;); L*(B?)| = inf in {F;(¢)}} and €31 C St
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where {F;(t)}] denotes a set of n single variate functions. Geometrically, the A"R.A-problem
means approximation of f by a linear combination of n planar waves of arbitrary shapes I; and
directions of propagation (wave vectors) &;.

A duality relation is established between the N’R.A problem and that of optimal quadrature
formulas, in the sense of Kolmogorov — Nikol’skii, for classes of trigonometric polynomials.

On the base of this duality and lower estimates of errors of quadrature formulas, it is proved
that if f(x)is radial, f(x) = f(|x]), then algebraic polynomials in two variables provide “almost
best” tool for ridge approximation:

Cimgn(f) CNRANS) < PAwr(f)s n=1,2,....
0

where ¢q is an absolute positive constant, and P.A,(f) denotes the n-th best algebraic polyno-
mial approximation of f in L?(IB?):

PA(f):= min_||f—p; L*(B%)

2 ko
i Pp:=Span {xlxz}kHSn .
It is known that algebraic polynomials of degree n in two variables can be represented as linear
combinations of n + 1 planar wave polynomials. Radon — Fourier analysis via Chebyshev ridge
polynomials is crucial in the proof.
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1 Introduction

Let n be a natural number, IR. Denote R, the set of linear combinations of n planar waves on the
real plane R?, i. e.

R(x) € Ry = R(x) = 3 Fyx-£).

where Fj(t) are functions of a single real variable ¢, §; are unit vectors, i.e. §; € S* (wave vectors),

and x - £ denotes the usual inner product of vectors x, §&. Thus, functions from R, are linear

combinations of n planar waves, in general, of arbitrary shapes and directions of propagation.
Obviously, double trigonometric polynomials

T(x) =3 cje &
1

are elements of R, for every choice of frequencies w; and wave vectors &..
The fact that algebraic polynomials in two variables of degree n — 1 also belong to the set R,:

P?_, := Span {x’f:z;lz}k_l_Kn_l CR. n=1,2,... (1)

is somewhat less obvious (cf. (16) below). Its significance in problems of Radon inversion and the
so called non-linear ridge approzimation (for brevity, N'RA in the sequel). was demonstrated in [1],
cf. also [2].

A particular case of the latter problem, answering the functions f(x) = f(x1,22), x € IB?
supported in the unit disc IB® := {x: |x| < 1}, and the usual L?(IB*) norm,

| £ 227 = W}B F()]? dx,
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is formulated as follows. Given a function f € L*(IB®), and a natural n, find the quantity

f_R7 L?(]BQ) )

NRA(f) = NRA, (f; L(1B%)) := inf

ReRy

and the corresponding minimizer R*(f) € R,, if the latter exists. Thus, geometrically the N'RA
problem consists in searching for linear combinations of n planar waves, of arbitrary shapes and
directions, that are best fit to f(x) in the sense of L? distance. It obviously follows from the classical
K. Weierstrass’ approximation theorem that NRA,(f) — 0, n — oo, Vf € L?(IB*). Moreover, it
follows directly from (1) that the following inequalities hold true

NRA(F) S PA(f), n=1,2, ... (2)

where P A, (f) denote the values of best algebraic polynomial approximations of f:

PA.(f)=PA, (f, LQ(IBQ)) = min (f—p; L*(BY)|, n=0,1,....

PeP?

It should be noted that even in the simplest case of the metric L?, the extremal problem of
NRA is of highly non-linear nature. This non-linearity dwells in the selection of the optimal set
of wave vectors &, ..., &,, that are allowed to depend upon the given function f(x). Neither
of the basic mathematical questions of existence, uniquenness of the optimal linear combination
R:(x) = R:.(f,x) € R, of n planar waves can be solved in general terms. An a priori reason for the
effect of non-existence can be seen in non-compactness of the class of all admissible single variate
functions {F;(?)}, generating planar waves F;(x - &;). As a result, some of the wave vectors, in
approach to inf in the definition of NRA,(f), can tend to couple, or asymptotically stick together.
The set R, is not closed for n > 2, since no restrictions are imposed on the distribution of the wave
vectors §; € S' . Indeed, if F(t), t € R" is a differentiable function, § := ey = (cos ¥}, sin?)) - a fixed

unit vector, &- := (—sin 4, cos ¥), then the function

f(x) = fo(x):=(x- fL)F’(X €)= OF (a1 COSgﬂ—I— zgsin )

. F(xqcosty + xgsindy)  F(xqcosdy + xgsindy)
= lim +
81 95— Uy — 4 Vy — ¥y

is a limit of a sequence of linear combinations of 2 planar waves, i. e belongs to the closure of R5.

Consequently, for every function f(x) of the type f(x) = (x-&%) F'(x- &) one has N'RA,(f) = 0, but



obviously in general fy(x) ¢ R,. Further, consider the function f(x) := z12,. For ¢ # %”, ke
one obviously has
(v1cosp + xasing)? (a1 cosp — xasinp)?
T1Lg = —

2sin 2¢p 2sin 2

Y

so that again NRAy(f) = 0, the optimal combination of 2 planar waves exists, but is essentially
nON-UNIGUE.
Let us also note the example of the function

F) = X" =[x = 2] + 25 — (a7 + 23)",

which is a radial algebraic polynomial of degree = 4. This function provides a warning against
possible “naive” conjectures about the structure of the set of optimal wave vectors. Such an apparent
conjecture “on the run”, without thorough analysis, is that the optimal wave vectors should be selected
equidistributed on the circle S', simply because the function is radial. In the case n = 2, this would
mean that the two optimal wave vectors should be mutually perpendicular, i. e. & -&§, = 0. However,
we will prove that the latter is not true: for f(x):= |x|* — |x|* and n = 2, the optimal wave vectors
&, & are defined by the relation

3

£ & = ] (3)

The main goal of the present paper is to establish the following statement.

Theorem 1 There exists an absolute positive constant ¢y such that nonlinear ridge- and polynomial
approximations of every radial function f(x) = f(|x|) are related by the following inequalities:

cipAgn(f) CNRAF) < PAA(f), n=1,2 ... )

As mentioned above, cf. (2), only the lower estimate NRA,(f) > %PAgn(f) in this statement is
new. The meaning of this statement is that for each radial function f(|x|) that is “not too smooth”,
namely, PA,(f) = O(PAs.(f)), n — oo, orthogonal projections onto subspaces of algebraic poly-
nomials represent the optimal in order and linear tool of ridge approximation.

In connection with the latter corollary, recent results of V.E. Majorov [4] and V.N. Temlyakov
[5] can be quoted, on estimates from below of upper bounds of N'RA,(f) on variants of Sobolev
classes W7 (IB*). In somewhat loose words, the class W7 (IB?) in the papers [4] and [5] consists of
functions f(x) whose polynomial approximations satisfy the estimate PA,(f) = O (n™"), n — oo,
and existence of a function f(x) € W7 (IB?) is established for which

NRA(f) > (nlnn)™, n=23,....

4



It follows from (4) that the factors (Inn)~" in this result can be dropped: for every radial function
whose polynomial approximations PA,(f) are of exact order n~", the non-linear ridge approximations
NRA,(f) are of the same order of magnitude.

The proof of Theorem 1 relies upon Radon inversion formula and the corresponding Fourier —
Chebyshev analysis in IB®. In the next section we list the necessary facts (for more details, the reader
may be referred to [1], [2] or [3]).

2 Radon inversion formula via Chebyshev — Fourier series

A general approach to the problem of ridge approximation can be seen from the following. On the
first step, find an integral representation of the function f(x) of the form

[0~ o [ Flex-€)de, )

)~ 5 Js
where F'(€,t) = F(f; €,t). Then discretize the integral on the righthand side by a suitable quadrature
formula (Riemannian sum)

[ F(Ex-€)d ~ 3 1AEIF(E, x-,). "

The first step is accomplished by applying direct and inverse Radon transforms. For f(x) €
LY(IR?), denote R(f; &, 1), &€ € St, t € IR' the direct Radon transform:

R &0)= [ o Sy)m(dy),

where m;(dy) stands for the 1d Lebesgue measure on the real line R'. Then each sufficiently smooth
and rapidly decreasing function f(x) can be reconstructed by applying to R(f; €,t) the inverse
Radon transform:

1

T 4r

)= [ (HD)R(: &.)| _ de. (7)

d
t:X~€

Here (HD) denotes the composition of commuting one-dimensional operators of Hilbert transform
‘H and differentiation D, i.e.

(HD)R(f: €.)(1) = =2 [ R(f; &5) cot =2 ds

T oot Jm

5



Thus, in capacity of F(f; €,1) in the integral representation (6) one can take the function

10
 Ax Ot Jre

F(f; €.1) == (HD)R(f: €,)(1) R(f: &5) cot —2 ds.

Obviously, Radon inversion operator (7) is a composition of two operators of polarly different nature.
Singular part (HD) is applied to the direct Radon transform R(f; &€,t) in the space variable t. After
it and the substitution ¢ = x - £, the smoothing operator of averaging i Js1 in the angular variable
& is applied. Thus, the difficulty in the second step of construction of ridge approximation consists
in search of a suitable quadrature formula (6) for the image of the singular operator (HD).

For functions f(x) supported in B, the direct Radon transforms R(f; &,t) are obviously sup-
ported on the interval + € B! := (—1,1). Restriction of the general Radon inversion operator (7) on
the class of such functions naturally generates Fourier analysis where Chebyshev polynomials of the
second kind

1 1 1)
— D, (arccost), where D,(J) := M
Nz

play the crucial role, cf. [1], [2]. These classical polynomials constitute a complete orthonormal
system U = {u,_1(¢)},—, in L2 (—1,1) with the weight w(t) = 2¢/1 — {2

Moreover, these polynomials constitute the complete system of eigen-functions of the operator
(HDw) in the 1d spectral problem (HD)w(t)u(t) = Au(t), t € B'.

After substitution ¢t = x- &, x € IB?, £ € S', u,(x- &) generate a family of complete orthonormal
systems of ridge polynomials in L*(IB?). The fundamental properties of this system

US' = {{u,_1(x- 5)}20:1}6651

un(t) = ,n=0,1,....

sin ¥

are expressed by the following
1. Orthogonality relation.

/]B2 un(x-€)P(x)dx =0 YP(x)eP:,, n=1,2 ..., YEeS, (8)

or u,(x- &) L P2, in L2(IB?).
A proof of this property can be carried out using Chebyshev’s general ideas of polynomials of best
approximation and symmetry of IB*. First of all, not loosing generality we can take & = (1,0). Next,

let f(x) = f(x1) € L*(IB®) be a single variate function in L2(IB*), or f(t) € L2 (IB"), w(t) = 2/1 — {2.



Consider the problem of best approximation of this function by all polynomials in two variables
xy :=t, Ty, of the class P2_,, in L2(IB?):

I f(t) — P(x); L*(IB*)|| = min in P(x)¢& P?_,.

Then using Jensen’s inequality and symmetry of IB* it is not hard to see, that the minimizer P* of
this problem is indeed a single variate polynomial, P*(x) = P*(t) € P}_,. Obviously, we have also
f(t) — P*(t) L P>, in L*(IB*) and in particular

1

[0 = PPy = [ (76— PP di =0 YP(1) € PL,.

-1

If we take f(t) :=1t", we easily see that the corresponding mimimizer t" — P*(¢) is a multiple of the
n-th Chebyshev polynomial u,(t), and (8) follows, because we have t" — P*(t) L P?_, in L*(IB%).
2. Inner products of Chebyshev ridge polynomials.

[ ot €t mas = "1 Vg, veme st )

Furtermore, let 7* denote the subspace of trigonometric polynomials a(£), € € S', of degree dega =
n and satisfying a(—€) = (—1)"a(&), € € S'. Then

% sl ﬁun(f ) n) Cl(’rl) d’? = a(€)7 a(&) € IZ;L:‘:, 6 € Sl (10)

and in particular

1
27 s

The latter two relations simply means that the convolution \/7u,, * @ represents the identity operator
on 7%, i.e. \/7u, is the Dirichlet kernel.

3. Integral representation.

Given a function f(x) € L*(IB?), consider the following Chebyshev — Fourier coefficients, depending
on &£ € S as a parameter:

n(€1 ) n) un(n ) 62) d’? = un(€1 : 62)7 61762 € Sl

a(£.€)= [ F¥)uly - €)dy. n=0.1,.... ges"



The following relation represents the integral form of Chebyshev ridge polynomial Fourier series,
which is in fact Radon inversion formula (7) for f(x) expressed via Chebyshev ridge polynomials:

o) MET N [ (€ - €€ (1)

4. Integral form of Parceval’s identity.

If f(x),9(x) € L*(IB%), then an(f,ﬁ),an(g,ﬁ) € 7.7 and

|, fx)gx)d nzl w [ e (€t (9.€) d€

In particular, if f(x) € L?(IB*), then

1£ (%), LA(B*)|* = - Z nlan-1 (&), LS. (12)

These relations easily follow from (9) and (10).
5. Plancherel’s theorem.
If {a,(&)}22, is a sequence of trigonometric polynomials, satisfying the conditions

o0

a.(§) € TE. 3 nllawa(§), LA(S)|* < oo

n=1

then there exists a unique function f(x) € L*(IB®) such that a,(f,&) = a,(€), n =0, 1, ....
6. Partial sums and orthogonal projections onto P?.
Let n =1, 2, ... ." Then the finite partial sum of the Fourier expansion (11)

Su(F %)= 52 3 [ (e x-€) e

coincides with orthogonal projection of f(x) onto the subspace of algebraic polynomials P?_, in
L*(1B%):
() = Salf, x), LB = min ||f(x) = P(x), L*(B7|| = PAws(f).

n—1
Obviously, S,.(f, x) is a linear integral operator:

n

Sulf; x) = /]B Dn(x,y)f(y)dy, where Dp( Z m /S U1 (X - &)tim-1(y - &) dE.

m=1



The functions D, (x,y) are the corresponding Chebyshev — Dirichlet kernels .

The kernels D, (x,y) are complicated, with complete absence of localization in the usual sense.
They are strongly oscillatory, with large amplitudes of oscillations. It seems interesting to investigate
these kernels more closely, as well as possibilities of other summation methods of the series (11). In
particular, such investigation may be worthy for understanding of ridge approximation in L”-metrics
for p # 2.

7. Discretization.
For a fixed natural n, consider a set of n points =, = Z,(¢,.) = {&},—; equidistributed on a
semicircle:

k i3
E,:={§=es}lyco , where ey= (cos?,sind), O, := {—ﬂ- + c,on} )
n n

k=1

where ¢, is an arbitrary fixed real number. Then using the relations

I' & o2mge [ 1 j=0 (mod n),
E;e" _{ if j#0 (modn) (13)
it is easy to see that
27
|, alerde == 3 ale), val) € Ty, (14)
=,

Next note that for fixed x, y, the product w,_1(x - €)u,—i(y - €), as a function of & € S', is a
trigonometric polynomial of the class ’]'2“(—Ln_1). Therefore,

[t €una(y - €)dE = 30 wnalx - uana(y -€).
€€l—ln

Cosequently, the integral Chebyshev ridge polynomial Fourier series (11) can be rewritten in discrete
form as follows:

BSOS i G (x€), an(f, ) = [ i@ty &)dy. (13)

n= 166‘—’”

It follows that for an arbitrary choice of @, in the definition of =, (¢,) the corresponding, double
indexed, discrete set of Chebyshev ridge polynomials

Us'(@) = {{una(x-Elgez, b o (®:= {a)7)

9



is a complete orthonormal system in L?(IB*). The Parceval’s identity answering such a system is
given by

L0000 dx =3 3 analfs laale. €[5 B =X 3 Jeu(r €

n= 166‘—’” n= 166‘—’”

However note, that such classical aspects of Fourier analysis as proper analogues of Riemann-—
Lebesgue theorem for systems US'(®) and functions f(x) € LP(IB?) with p < 2 are by far not
clarified yet.

The following discrete representation of the Dirichlet kernel D, (x,y) is also an easy corollary of

(13):
- S €ty €, €= (e i T

m=1 k=1 n n

This relation implies, in particular, that a general polynomial of two variables can be represented as
linear combination of ridge polynomials of same degree. Indeed, if P(x) € P2_,, then

n

Py =30 Relx€h) P =3 2 ([ Pty €0 dy ) (), (16)
k=1 m=1

and obviously Px(t) € P}_,.

However, for our direct goal - the proof of Theorem 1 - we will use the integral form (11) of
Chebyshev ridge polynomial Fourier series.
8. A relation between Chebyshev and Legendre polynomials.
Let £ := {l.()}>2, denote the system of Legendre polynomials orthonormal in L*(0,1). Then
following relatlons are true:

1 B 1 l§(|x|2) for even n
27 /51 un(x - §) dE = m(n+1) { 0 for odd n.

Indeed, Chebyshev polynomials w,(f) with odd indices n are odd functions, so the integral on the
left is obviously 0. On the other hand, if n is even, say n = 2m, it is easy to see that the integral
is a polynomial in |x|* of the form P(|x|*), where P € PL. Due to the orthogonality relation (8),
we also have P(|x|?) L P2 _ in L*IB?%), and in particular P(]x|*) L VQ(|x|?) where Q € P} _,

polar coordinates,

(17)

1

0= [ PIxPIQUxP)dx =25 [ rPQut dr =5 [ PR AL vQ € P

0

10



and consequently P(t) is indeed a constant multiple of the m-th Legendre polynomial, i.e. P(t) =
Emlm(t). A calculation of these constants is based on (9) and can be carried out for n = 2m as

—/ P dt—Z/ »P(r dr_l [ PP ) 4; L, (/S un(x-é)dé)zdx
Tl /5/5 </]B (3 - &) unoc- 1) dx) e =1 /5/5 qu )n ign
1

=%/SL un(é-n)dédn:m/()%/()% Dud =) dddp =~

whence (17) follows.

9. Chebyshev ridge polynomial Fourier series of radial functions.

Let f(x) is a radial function, f(x) = f(|x|). Then it is easy to see that the corresponding Chebyshev
ridge Fourier coefficients a,(f, &) in (11) are trigonometric polynomials of degree 0, i.e. simply
constants: a,(f,&) = a,(f). Moreover, for odd n one has a,(f) =0, and thus

follows:

F(x]) ©® QL i 2+ azn(f) [, wan(x- €) d€. (18)

m=0

Using (17) one can express dq,,(f) via Fourier-Legendre coefficients of the function f(v/1), t € (0,1):

won1) = 5 [, aan(1)dE = / <|><|>(1 /1 W e>de) (19)

—/ || |X| / dr
2 —|—1 2m—|—1
\/2m—|—1

Respectively, the partial sums S, (f,x) for radial functions f(x) = f(|x|) can be rewritten as follows:

Sc (i) =5 £ ([ 5D a) ).

2m<n—1

10. Chebyshev Fourier series of ridge functions.
Let 7 € S! be a fixed wave vector, and F(t) € L2(IB'), w(t) = 2¢/1 — 12 - a single variate function,

11



with Chebyshev—Fourier expansion

F(t) ") i F(m)un(t), where F(m)=2 /_ 11 Ft)unm(t) V1 — 24t (20)

and obviously

Therefore (cf. (10)),

. . U (7 - 7E(m
o Fc )€ = £ [l (- €y = Flon) 28 - YEEE )
and if R(x) = X7 Fj(x-§;) is a function of the class R,, then
am(R, &) = mfl > Fi(m)un(n-&), m=01,.... (21)

3 NTRAand optimal quadrature formulas for trigonometric
polynomials

Denote 7,¥(L?) the unit L*(S')-ball in the subspace of trigonometric polynomials 7,%:
Trwh) = {ug e T+ &), L3(SH] <1},

and let f(x) € L?(IB*). By duality, the Parceval’s identity (12) can be rewritten as follows:

2

[, antr€)1(€) de

). 2208 = 32 1) sup (22)

teTE(L?)

The next simple statement contains a duality relation between ridge approximation and errors of
quadrature formulas for computation of linear functionals [g @, (f, £)d€ on T.X(L?). The latter
formulas correspond to the nodes {§;} and weights F;;(m), generated by the given linear combination

of ridge functions R(x) = 37 Fj(x-&;) € Ra.

12



Lemma 1 Let R(x) = Y7 Fi(x-§;)s Then

\M@—MWLW%W
00 21 N - ’
3 2 ) N G S DL

where F( ) denote the Fourier — Chebyshev coefficients of the function Fj(t)

_2/ VT =2 dt.

This statement is a corollary of (22), (21) and (10), because for (&)

Y Fytm) [ VRl o) e = 225 S

J=1

1
[, an(BE)UE) dE = ——

Note the for each m =0, 1, ... ., the expression

on the right of (23) can be interpreted as a quadrature formula with n nodes {£.}7 and weights

A 2 4 ,
w; = w;(m, R) := m_l_le(m), j=1,2 ...,

for computation of the linear functional

An(ft) = /5 an (2 EVE) dE ~ Qlmm, B)(1) = 3 wwt(&

=1

on the class of trigonometric polynomials ¢ € 7.¥(L?). Moreover, the upper bound

= B €)= s [Aa(f0) — QUm.n B

m+1 = ! teT,E(12)

sup

L an(r:€01)
teTE(12) |75
on the right of (23) represents the value of the global error of the quadrature formula Q(m,n, R)

this class.

13



At this point, it is convenient to introduce the following variant of the general notion of optimal
quadrature formulas, due to A.N. Kolmogorov and S.M. Nikol’skii, cf. [6], adjusted to the special
case of compact classes of trigonometric polynomials.

Definition. Let m, n =1, 2, ... . Denote 7, the subspace of trigonometric polynomials of degree
m, and let for 1 < p < oo 7,,(L?) be the LP-unit ball in 7,,:

T,.(L7) = Span {¢*'} | T (%) :={T(0) € T, : [|T(®), L’(0,27)] <1} .
Then the quantity

Q(m,n)(LP) := inf su
( L) {wi 31 {937 {TeTmI()LP) Z:: }

is called optimal quadrature error with n nodes for the class m( Py . If inf in this definition
is attained for certain sets of nodes and weights ©, = {U7}7, W, = {w;}}, the corresponding
quadrature formula 327 w?T(J7) is called optimal for the class T (LP) .

This definition, (23) and (18) imply a lower eslimate for N'RA of each fixed radial function.

Lemma 2 Let f(x) = f(|x]) be a radial function in L*(IB*). Then the following estimates hold true:

2T

0

o0

1

NRA,.(f) > Jﬁ ST @mA Dagn > (Qm,n)(L2)*, n=1,2,..., (24)
m=0

Indeed, as mentioned above, in the case of radial functions, the corresponding Chebyshev — Fourier

coefficients a,,(f, &) are in fact constants, and the latter are non-zero only for even indices m. Thus,

(23) for a radial function f can be rewritten as follows:

azm(f)/o D)) = 5 S0 Fyem) )] . (25)

A polynomial () € T,E is of the form () = T'(200), where T'(¥) € T,,. Thus, the following estimate
from below holds true for each term of the series on the righthand side:

2
2T

() [ 1) 0 = S S (2 10,

i=1

sup
te 75, (L?)

> Jazn(F)? (QUm.n)(L)”,

14



and (24) follows.
The following inequalities are obvious:

Omm)(I9) < Qumm)(I), (02 @) Q. n)(I?) < Qlome,m)(LP), (mr > m);
Q(m,n)(L") < Q(m,n1)(LF), (n1 <n)
Since (cf. (13)) .
/0% T(ﬂ)dﬂ:%’r ZT(Q%), VT €T,, n>m

1

(i.e., quadrature formula of rectangles is exact), one obviously has Q(m,n)(L*) =0 if n > m.
To finish the proof of Theorem 1, now we need explicit estimates of Q(m,n)(L?) from below.
These estimates are discussed in V.N. Temlyakov’s monograph [7]. For our goal, the following
particular case of Lemma 5.1, p. 125, and also Theorem 1.3, p. 31, from [7] is crucial. Part 1) of
this assertion is a result of B.S.Kashin [8] (for a stronger result, involving the norm U of uniform
convergence in 7,,, see also [9].)

Lemma 3 Let ¢ > 0 be a fized number. Then there exvists a constant C(¢) > 0 such that:
1) in every subspace ¥ C T, of dimension dim W > &(2m + 1) there exists a polynomial T € ¥ with
equivalent norms in all LP, 1 < p < oo:

£, L0, 27)[| = C(e)[[t, L*(0,27)]| > 0; (26)
2) if n < (1 —e)m, then the following estimates of Q(m,n) from below hold true
Qn,m)(L>) = C(e). (27)

For completeness sake, let us reproduce a deduction of (27) from (26), see [7], Lemma 5.1, p. 125.
Given a set of n nodes © = {¥;}{, denote ¥ := W(0O) the subspace of all polynomials 7'(?}) € Tz
which vanish at all nodal points, i.e. T'(¥) = 0, V¥ € O (if nodes are multiple — all corresponding
derivatives must also vanish). Clearly we have dimW¥ > 2 [%] +1—-n>m-n—-1>em—-12>
2(2m 4 1) for all sufficiently large m. Thus, according to (26), there exists a polynomial {(J) € W
such that |[t, L=(0,27)|| = 1 and ||t, L*(0,27)||*> > C'(¢). Take T(¥) := [tW)|*>. Then obviously
T € T,, ||T, L=(0,27)|] = 1, T(¥) = 0, V¥ € 0O, so that every quadrature formula with the
nodal points © provides zero result for this polynomial. On the other hand, one has ;7 T()dy =
|lt, L*(0,27)||* > C’(¢), which completes the deduction of (27).
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It follows from (24) and (27) that for each ¢ > 0 there is a constant C”(¢) > 0 such that for all
radial functions f

NRALF) = C"(e) J S @mA Dlagn? = C"(e) Phypaan, n=1,2,.... (28

2m>2(1+<)n

Theorem 1 is a corollary of this relation, corresponding to ¢ := %

4 Comments and open problems.

1. An interesting open problem is to elaborate approach to N'RA in metrics of L? for p # 2, in
particular, for p = co. Here, it is natural to expect that an analogue of Theorem 1 is true in all L?.
Also, N'RA of functions of higher number of variables f(x) = f(xy, g, ... ,24) is the field of big
theoretical and applied interest.

2. Surprisingly little is known concerning classical problem of optimal quadrature formulas for
classes of trigonometric polynomials 7, (L?) in case of deficiency of nodes, i.e. for n < m. It seems
to be interesting to find a direct and simpler proof of the lower estimate (27) of Q(m,n), avoiding
reference to the very deep result (26) of Kashin.

Even the problem of existence of optimal quadrature formula seems to be open. Here, the main
source of difficulty is in non-compactness of the class of admissible weights {w;}7. Thus, a priori
it may be more profitable to measure at certain nodal points 9; not only the point values of the
polynomials T'(1J;), but also those of their derivatives T"(9);) up to a certain order. The nature
of this difficulty is quite analogous to that of existence of the element of best non-linear ridge
approximation, discussed in the Introduction.

It is not hard to see that

> sin (m + %) 9
v Duld) = ——F—5—. (29)

2811&5

=32 LD, (0 0y); L3(0,27)

i=1

Q(m,n)(L?)

= inf
{w]}?7{§]}?

Moreover, for a fixed set © = {¥;}] of pairwise distinct nodes, the corresponding optimal weights
W = W(0) = {w;}} can be selected as a solution of the following system of linear equations:

Z%Dm(ﬂk—ﬂj)zl, k=1,2,...n (30)
7=1
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If 2m +1 > n, the system of shifted Dirichlet kernels {%Dm(ﬁ — ﬂj)}i is linearly independent. Thus
the Gram matrix [%Dm(ﬂk — ﬂj)]: - is nondegenerate, the solution W = W(0) of (30) is unique,
7]:

and the error of the corresponding formula with optimally chosen weights = /27 — 3>~7 w;.
3. Let us apply (29), (30) to the analysis of the simplest non-trivial case.

Lemma 4 The optimal quadrature formula with two nodes (V1, ¥2) for the class of trigonometric
polynomials of second order Ty(L?) exists. The optimal nodes satisfy the relation

1
¥y — 1 = 7™ — arccos 1 <7, (31)

i.e., they are not equidistant on the period [0, 27). One has Q(2,2)(L?) = \/EE and the oplimal

87

weights are given by wy = wy = %

Without loss of generality, we may assume that ¢; = 0. Let 5 := o # 0, and consider the system
(30), answering the case n =m =p =2:

-5
s1n219

where D(V) := Dy(¥) =

= —2-
2s1m2

w1 D(0) + waD(W) ==

w1 D) +w:D(0) ==
Obviously, the weights are equal wy; = wy = w(V) = W, and further, choosing ¥ optimally,
one has

1
2 2y _ _ _ _
Q%(2,2)(L%) = n%m(Zﬂ' 2w(v)) =27 (1 max A D(ﬁ)) .

Thus, we need to find the minimizer ¢ in ming D(¥). It is not hard to see that such ¥ can be found
as the smallest positive solution of the equation D'(¥) = —sind —2sin 20 = —sin (1 +4cos ) = 0.
Thus,

1 1 5
ﬂ:r—arccosz, 1)(19):§—|-cosq9-|-c05219:_§7

5 5 15 8T 2 147
DO)+DW) =5 - =5, wi=w= . (Q(2.2)(2)) =27 —w —wy = —,

which completes the proof.
4. Let us prove the result mentioned in the Introduction, see (3), concerning geometric peculiarity

in N'RA of the radial function f(|x]) = |x|* — |x]|?.
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Lemma 5 The exact solution of the N'RA,-problem

I x4 R ) - Bulx &), 12(1B?)

61-622@7&07 (32)

which means that the optimal wave vectors are not mutually perpendicular. The corresponding optimal
functions Fi(t), Fx(t) are constant multiples of Chebyshev polynomial us(t) of 4th degree, Fi(t) =
Fy(t) = const - uy(t).

NR.AQ == mf
(f) ¢

0° 1;F17F2

is attained for €, &, satisfying

This statement is a corollary of the previous lemma and (23), (25). Indeed, we have
4 2, 1 2 2 1
Fx]) = I = x4+ = = const - (x ), where  L(1) = 6V5 (t - 6)
is Legendre polynomial of order 2 on (0,1). By (17),

F(x]) = const-/Sl walx - €) de,

so that the representation (18) reduces to a single non-zero term answering m = 2. The N'RA,-
problem for such function is reduced to minimization

min
61762?“’1 sW2
and, further, according to (23) — to search of a single optimal quadrature formula with 2 nodes for
trigonometric polynomials of the class 7;5(L?). The latter in its turn is equivalent to Q(2,2)(L?)-

problem for trigonometric polynomials of 2nd degree, considered in Lemma 4. Finally, it is easy to
see that the angle o = arccos (£, - €,) between optimal wave vectors for the N'RAs(f)-problem is

vy — U4 1( 1)
o= = — |7 — arccos — |,
2 2 4

[y - €)dg = wiua(x- &) = waua(x- &), L(1B?)

determined by

whence (32) follows.
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5. Let us note that, due to the general duality relation (23), ridge approximation of functions,
other than radial, requires a progress in the problem of optimal recovery of linear functionals for

I

where A(¥) is a certain fixed trigonometric polynomial in 7,,. An interesting special class of such
problems is reconstruction of a harmonic in polynomials of the class 7,,(L?) :
} .l < m.

It may be conjectured that, say, for n < % the quantities QW(m,n L?) are bounded below by an
absolute positive constant: QW (m,n L?) > ¢; > 0. The latter simply means that it is impossible,

trigonometric polynomials, of the general form
27 n
AT () dv = > w;T(¥;)

0 =

Q(m,n, A, L*):= inf sup
{widt 9537 | TeTn(12)

n

/0% M) d) — 3 wT(;)

i=1

QV(m,n L*) := inf sup
{widt A9 | TeTn(12)

using quadrature formulas, to reconstruct the /th harmonic of all polynomials from 7,(L?) with a
small error, if measurements of point values are available at “too few” nodes. In contrast to the case
of [ = 0, such a generalization of (27) does not seem to be directly deductable from Kashin’s result

(26).
The extreme case [ = m corresponds to N'RA of harmonic functions in the open disc IB?:
o*f  0*f
A =—=4+=—==0 1.
)= G+ G =0, I <

It is not hard to see that in this case the polynomial Fourier coefficients a,,(f,&) in (11) are mono-
mials, an,(f,€) = an(f) cosm(€-&,). In polar coordinates & = ey = (cos ¥,sin ) one has

An(f,0) = an(f,es) = an(f) cosm(V — 10,,),
where a,,(f) are determined by Fourier coefficients of the boundary value f(&€), € € S' of f(x):

an(f) = %, where  f(ey) := F (V) ~ i_o: pr(f)cosn(¥ —9,).

5 Appendix. More on quadrature formulas

Let us provide an alternative proof of a variant of the estimate (27), not referring to (26):

Q(m,n)(L%) > % (1 _

n4+1

m

), n < m. (33)

19



The idea is quite transparent: the sum of small number, say, n < (1 —&)m of shifted Dirichlet kernels
D (¥ —9;) in (29) is a “fast” oscillating function, and thus cannot approximate f(¢) := 1 even in
measure. We have

Z w_ (U —10;) = F(9) cosmid) + G() sin md = H (D) cos (md) — (1)), (34)
o
where
F9) = —% Z w; (sinmﬂj cot v, + cos mﬂj) ,
7=1
1 & ¥ — 0,
GW) = 5 Z w; (cos md; cot . sinmﬁj) ,
7=1
and H (Y \/F2 )+ G2(V), ®(V) := arctan E ; The result will follow, if we prove that
n-+1
meas€_ > 7 ( ) , where &_:={¥: cos(mi —®(W)) <0, v €[0,27)}, (35)
m
because

27
/ |1—H(19)cos(m19—<1)(19))|2d19Z/ 1-d) = meas&_
0 £

Although the functions F'(¢) and G(¥¥) can take on rather big values, they are piecewise monotonic.
In the representation (34) the phase ®(v) is bounded, |®(dJ)| < 7, and what is essential, the total
variation of this function satisfies the estimate

var {®(?),[0,27)} < wn. (36)

Indeed, for a fixed ¢ € [—%, 5] denote N(t) the number of solutions ¥ € [0,27) of the equation
®(J) = t. Thus N(t) coincides with the number of solutions ¥ € [0,27) of G(¥) = (tant)H(V),
which equals the the number of solutions of G(29) = (tant)H(2¢) in ¥ € [0, 7). Since G(2V + 7) =
G(20), H(20 + 7) = H(20) we see that 2N () = M(t), where M(t) is the number of solutions
of the equation G(20) = (tant)H(29) on [0,27). After multiplication of both sides by w(¥) :=
[T sin (19 — —) the latter equation transfers into T'(J) = (tant)S(¥) where T, S are trigonometric

polynomials of degree n. Thus, by Fundamental Theorem of Algebra, we have M(t) < 2n, or
N(t) < n, and (36) follows.
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Further, let

Eri={V: cos(md —®(J)) >0, €[0,27)}, Fy:={p: o=mid—&(), J €&},
G_:={p: cosp <0, ¢ €1[0,2xrm)}.

Obviously,

meas§G_ = wm, g_ﬂﬂ =0, G- Uf+ C (—g, 2rm + g) , measG_ + measF, < 27m + 7,

so that meas F; < mm+m. On the other hand, meas 7y > mmeas &, —var ® > mmeas &L —wn, and
consequently meas &, <7 (”mll + 1). This implies (35), because by the definitions £, J&E_ = [0, 2x).
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