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Abstract.Adaptive Finite Element Methods (AFEM) are numerical proce-
dures that approximate the solution to a partial differential equation (PDE)
by piecewise polynomials on adaptively generated triangulations. Only re-
cently has any analysis of the convergence of these methods [10, 13] or their
rates of convergence [2] become available. In the latter paper it is shown
that a certain AFEM for solving Laplace’s equation on a polygonal domain
Ω ⊂ R

2 based on newest vertex bisection has an optimal rate of convergence
in the following sense. If, for some s > 0 and for each n = 1, 2, . . ., the solu-
tion u can be approximated in the energy norm to order O(n−s) by piecewise
linear functions on a partition P obtained from n newest vertex bisections,
then the adaptively generated solution will also use O(n) subdivisions (and
floating point computations) and have the same rate of convergence. The
question arises whether the class of functions As with this approximation
rate can be described by classical measures of smoothness. The purpose of
the present paper is to describe such approximation classes As by Besov
smoothness.
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1. Introduction. Adaptive finite element methods (AFEM) are used
to numerically approximate the solution to a PDE. These methods have been
experimentally shown to outperform standard finite element methods for many
problems. However, there is only now emerging a rigorous analysis which estab-
lishes the increased performance of these methods. For example, the papers of
Dörfler [10] and Morin, Nochetto, and Siebert [13] prove the convergence of cer-
tain AFEMs which use piecewise linear approximation on partitions adaptively
generated using newest vertex bisection (see §2 for a discussion of newest vertex
bisection). Even here the results have only been established for Laplace’s equa-
tion on polygonal domains in R

2 although certain principles carry over to more
general settings. Building on these results, an AFEM was introduced by Binev,
Dahmen, and DeVore [2] and shown to have an optimal rate of convergence in
the following sense. If, for some s > 0 and for each n = 1, 2, . . ., the solution
u can be approximated in the energy norm to order O (n−s) by piecewise linear
functions on a partition P obtained from n newest vertex bisections, then the
adaptively generated solution will also use O (n) subdivisions and have the same
rate of convergence. The question arises whether the class of functions As with
this approximation rate can be described by classical measures of smoothness.
The purpose of the present paper is to prove theorems that help describe the
approximation classes As by using Besov smoothness.

The analysis of AFEMs is somewhat complicated by the issue of so called
‘hanging nodes’. If a partition of Ω into triangular cells has hanging nodes then
these are removed by a completion process which consists of refining additional
triangles. This allows one to retain standard data structures. To prove optimal or
near optimal theorems concerning the approximation rates for a specific AFEM,
it is necessary to control the number of new triangles added in the completion
process. Such an analysis of completion was done in the case of the refinement
rule called ‘newest vertex bisection’(see § 2 in [2]). We also know that it is possible
to complete certain other subdivision rules (for example the rule which subdivides
each triangle into four triangles by bisecting each edge). However, the completion
in these other cases is of a different generic type from the original subdivision
rule. That is, there is one rule for subdividing in the adaptive refinement and
a different rule for subdividing in the completion. This adds a new layer of
complexity in the analysis - at least in the notation. We want to avoid this and
therefore, we shall in principle only discuss newest vertex bisection.

Although our analysis could be extended in a straightforward manner to
higher order conforming Lagrange finite elements, it will be carried out in detail
only in the case of piecewise linear trial spaces on polygonal domains in R

2 to
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keep the exposition as simple as possible. Despite these restrictions, the results
we obtain in this paper should be viewed as a guide on how to obtain similar
results in more general settings whenever the necessary results about complexity
of removing hanging nodes and existence of locally supported bases are in hand.

The results are similar in spirit to the developments in [14]. There are,
however, two main distinctions. Whereas we discuss here approximations from
spaces on admissible partitions which necessitates the above mentioned comple-
tion processes, in [14, 15] the rate of best N–term approximation for multilevel
nodal finite element bases is related to Besov smoothness without such mesh con-
straints. Moreover, we shall consider here approximation errors that are not only
measured in Lp norms but also in Besov norms.

This paper is organized as follows. In § 2, we introduce the concept of
an adaptive triangulation and related issues such as completion for the newest
vertex bisection subdivision rule. In § 3 we study the properties of piecewise lin-
ear functions on a partition P . In § 4.2 we introduce quasi-interpolant operators
which project onto these spaces. In § 4, we introduce the Besov spaces and give
some of their properties including embedding theorems. In § 4.4, we introduce
certain multiscale decompositions based on Courant elements. These decompo-
sitions are very similar to wavelet decompositions except that the collection of
Courant elements is redundant. Using these multiscale decompositions, we will
establish the equivalence of certain sequence norms with the Besov norms. These
sequence norms are then used as a tool in proving our approximation results.
The main results of this paper appear in the last two sections. In § 5, we prove
an embedding of Besov spaces into As. For example, we show that whenever
1/τ < s/2 + 1/p, then any f ∈ Bs

q (Lτ (Ω)) is in As/2(Lp). That is, f can be ap-

proximated to accuracy O(n−s/2) in the Lp (Ω)-norm by piecewise linear functions
on partitions generated by n newest vertex bisections. Similar results are also
proved when the approximation takes place in a Besov space B0 := Bα

p (Lp(Ω))
rather than Lp (Ω). In the final section we prove certain inverse results.Namely,

we show that whenever a function is in A
s/2
τ (B0) then it is automatically in the

Besov space Bs+α
τ (Lτ (Ω)) with 1/τ = s/2+1/p. In both of these theorems there

are restrictions on s which come from the fact that we are using piecewise linear
functions in the approximation.

2. Adaptive refinement and completion. In this section, we
shall introduce the subdivision rule known as newest vertex bisection. A complete
discussion of this rule can be found in [2]. Let Ω be a polygonal domain in R

2.
We shall use P to denote a partition of Ω into triangular cells ∆. This means
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that Ω =
⋃

∆∈P
∆ and any two ∆, ∆′ ∈ P satisfy |∆∩∆′| = 0 where here and later

in this paper |G| denotes the Lebesgue measure of G ⊂ R
2. We denote by EP the

set of edges of P and by ĖP the set of interior edges. Thus, E ∈ ĖP means that
E is an edge of some ∆ ∈ P and that the interior of E is in the interior of Ω.
All other edges are called boundary edges. We also denote by VP the set of all
vertices v of P and by V̇P the set of interior vertices. Thus, v ∈ V̇P means that
v is a vertex of one of the ∆ ∈ P and v is in the interior of Ω. All other vertices
are called boundary vertices.

A typical AFEM generates a sequence of partitions P0, P1, . . . , Pn by using
rules for subdividing triangles. Given the partition Pk, the algorithm marks a
certain collection Mk of the triangular cells ∆ ∈ Pk for subdivision. These
marked cells are subdivided using the specified subdivision rule. This process
may create hanging nodes. We say that v ∈ VP is a hanging node for ∆ ∈ P if v
appears in the interior of one of the sides of ∆. Hanging nodes are an impediment
to both the numerical computation in AFEMs and also their analysis. We shall
say a partition is admissible if it has no hanging nodes. Hanging nodes are
eliminated by subdividing an additional collection M′

k of cells from Pk. This
part of the algorithm is called completion. The result after both of these sets of
subdivisions have been made is the partition Pk+1 which has no hanging nodes.
The adaptive procedure is then repeated.

To execute the analysis we put forward in this paper, we need to know
that the completion process does not seriously inflate the number of triangular
cells that have been added. We would also like (mostly for notational conve-
nience) that the completion process uses the same subdivision rules as the original
process. These properties have been established in the case of a certain method
of subdivision known as newest vertex bisection for triangular partitions on R

2 in
[2]. We shall restrict our presentation in this paper to this setting. The analysis
we put forward could be implemented for other subdivision rules for triangular
partitions in R

d provided the corresponding properties are established.

We next describe newest vertex bisection in the form we shall use it. Let
Ω be a polygonal domain in R

2 and let P0 be any admissible partition of Ω into
triangular cells ∆. To each edge E of a triangular cell ∆ ∈ P0, we assign a label of
0 or 1 in such a way that for any ∆ ∈ P0, exactly one of its edges E (∆) has been
labelled by 0 and the other two are labelled with 1. The vertex v (∆) opposite
the side E (∆) is call the newest vertex for that cell. One can show that such a
labelling exists for any initial triangulation P0 (see [2]).

This gives the labelling of newest vertices for the cells ∆ in the initial
partition P0. Each triangular cell that arises in the adaptive process will also
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have exactly one of its vertices designated as a newest vertex. If this cell is to be
subdivided then the subdivision is a simple bisection of the newest vertex and the
side E (∆) opposite. Thus the cell produces two new cells and their newest vertex
(assigned to each new triangular cell) is by definition the midpoint of E (∆).

We now give a rule to label any edges that arise from the subdivision-
completion process. There will be two main properties of this labelling. The
first is that each triangular cell will have sides with labels (i, i, i − 1) for some
positive integer i. The second is that the newest vertex for this cell will be the
vertex opposite the side with lowest label. Certainly the edges in P0 have such a
labelling as we have just shown.

Suppose that we have such a labelling for the edges in Pk and let us
describe how to label the edges in Pk+1. Suppose that a triangular cell ∆ ∈ Pk

has sides which have been labelled (i, i, i − 1) and the newest vertex for this cell
is the one opposite the side labelled i − 1. When this cell is subdivided (using
newest vertex bisection) the side labelled i − 1 is bisected and we label each of
the two new sides i + 1. We also label the bisector by i + 1, i.e., the new edge
connecting the newest vertex of ∆ with the midpoint of the edge E (∆) labelled
by i − 1. Thus each new triangle now has sides labelled (i, i + 1, i + 1) with the
newest vertex opposite the side with the lowest label. We note the important
fact that if a cell has label (i + 1, i + 1, i) then it is of generation i (i.e., it has
been obtained from a cell in P0 by i subdivisions). Therefore, specifying that the
generation of the cell is i is the same as specifying that its label is (i + 1, i + 1, i).

The partitions which arise when using newest vertex bisection satisfy a
uniform minimal angle condition, i.e. the minimal angle in any triangle that
belongs to a partition P generated by any sequence of newest vertex bisections
is bounded from below by some positive constant β > 0 depending only on the
initial partition P0. This is established by showing that all triangles that arise in
newest vertex bisection can be classified into a set of similarity classes depending
only on the initial partition P0 (see Mitchell [12]). Also note that if a partition
P is created by a sequence of newest vertex bisections and if P has no hanging
nodes, then any two neighboring cells have comparable size.

We can represent newest vertex bisection subdivision by an infinite bi-
nary tree T∗ (which we call the master tree). The master tree T∗ consists of all
triangular cells which can be obtained by a sequence of subdivisions. The roots
of the master tree are the triangular cells in P0. When a cell ∆ is subdivided, it
produces two new cells which are called the children of ∆ and ∆ is their parent.
It is very important to note that, no matter how a cell arises in a subdivision
process, its associated newest vertex is unique and only depends on the initial as-
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signment of newest vertices in P0. This means that the children of ∆ are uniquely
determined and do not depend on how ∆ arose in the subdivision process, i.e.,
it does not depend on the preceding sequence of subdivisions. The reason for
this is that any subdivision only assigns newest vertices for the new triangular
cells produced by the subdivision and does not alter any previous assignment. It
follows that T∗ is unique and does not depend at all on the order of subdivisions.

The generation of a triangular cell ∆ is the number g (∆) of ancestors it
has in the master tree. Thus cells in P0 have generation 0, their children have
generation 1 and so on. The generation of a cell is also the number of subdivisions
necessary to create this cell from its corresponding root cell in P0.

A subtree T ⊂ T∗ is a collection of triangular cells ∆ ∈ T∗ with the
following two properties: (i) whenever ∆ ∈ T then its sibling is also in the tree;
(ii) when ∆ ⊂ ∆′ are both in the tree then each triangular cell ∆ ∈ T∗ with
∆ ⊂ ∆ ⊂ ∆′ is also in T . The roots of T are all the cells ∆ ∈ T whose parents
are not in T . We say that T is proper if it has the same roots as T∗, i.e., it
contains all ∆ ∈ P0.

If T ⊂ T∗ is a finite subtree, we say ∆ ∈ T is a leaf of T if T contains
none of the children of ∆. The set of leaves of a tree T forms a partition of Ω
into triangular cells which we will call P (T ).

For a proper subtree T , we define N (T ) to be the number of subdivisions
made to produce T .

Any partition P = Pn which is obtained by the application of an adaptive
procedure based on newest vertex bisection (such as the algorithms we consider
in this paper) can be associated to a proper subtree T = T (P ) of T∗ consisting
of all triangular cells that were created during the algorithm, i.e., all of the cells
in P0, . . . , Pn. The set of leaves of T form the final partition P = P (T ) = Pn.

We shall say that T = T (P ) is admissible if P is admissible. We denote
the class of all proper trees by T and all admissible trees by T a. We also let Tn

be the set of all proper trees T with N (T ) = n and by T a
n the corresponding

class of admissible trees from Tn. We denote by P the class of all partitions
P that can be generated by newest vertex bisection and by Pa the set of all
admissible partitions. Similarly, Pn and Pa

n are the subclasses of those partitions
that are obtained from P0 by using n subdivisions. There is a precise identification
between Pn and Tn. Any P ∈ Pn can be given by a tree, i.e., P = P (T ) for some
T ∈ Tn. Conversely any T ∈ Tn determines a P = P (T ) in Pn. The same can be
said about admissible partitions and trees.

As we have already mentioned, we shall need control on the number of
additional subdivisions used to remove the hanging nodes. For this we shall use
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the following result of [2]. Suppose that P0, . . . , Pn is a sequence of partitions
generated as described above. Then, there is a constant c > 0 depending only on
P0 such that

# (Pn) ≤ # (P0) + c (# (M0) + . . . + # (Mn−1)) .(2.1)

In other words, the total number of cells in Pn is bounded in terms of the original
subdivisions. This can be reformulated in another way. Suppose that P ′ is
obtained from P0 by performing N newest vertex bisections. Then P ′ can be
completed to an admissible partition P which satisfies

# (P ) ≤ c#
(
P ′
)

(2.2)

with c an absolute constant. In the remainder of this paper we shall frequently
refer to the following constants

β := min {angle (∆) : ∆ ∈ T∗} > 0, d := max {diam (∆) : ∆ ∈ T∗},(2.3)

that depend only on the initial partition P0.

3. Piecewise linear functions. In this section, we introduce spaces
of piecewise linear functions on admissible partitions and analyze some of their
properties. Given a partition P ∈ Pa, we let S (P ) denote the space of continuous
piecewise linear functions on P . A basis for this space is given by the Courant
elements φv = φv,P , defined for all vertices v ∈ VP . The function φv takes the
value 1 at v and the value 0 at all other vertices.

Suppose now that B0 is Lp (Ω) for some 0 < p ≤ ∞ or a Besov space
defined on Ω (for the definition of Besov spaces and some of their properties see
§ 4). Given a function f ∈ B0 we are interested in finding how well it can be
approximated in the norm of B0 by linear combinations of finite elements defined
on an admissible partition P of complexity n. For each n ≥ 0, we define

σn (f)B0
:= inf

P∈Pa
n

inf
S∈S(P )

‖f − S‖B0 .(3.1)

Thus, σn (f)B0
measures how well f can be approximated in the metric of B0 by

piecewise linear functions on partitions that are obtained by at most n newest
vertex bisections.

For a fixed B0 and any s > 0 let As = As (B0) denote the set of all f ∈ B0

for which σn (f)B0
decays at least like n−s. Then,

‖f‖As := ‖f‖As(B0) := sup
n∈N

nsσn (f)B0
(3.2)
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defines the norm for As. The central objective of this paper is to study the spaces
As, s > 0. More precisely, we shall show that As is closely related to some Besov
space.

There are also more general approximation classes that are useful when
we wish to make fine distinctions. Let 0 < q < ∞, then we define the space
As

q (B0) as all f ∈ B0 such that

|f |qAs
q(B0) :=

∞∑

n=0

[2nsσ2n (f)B0
]q(3.3)

is finite. We obtain the norm for this space by adding ‖f‖B0 to the above semi-
norm. For q = ∞, we define As

∞ := As and | · |As
∞

:= | · |As . We shall use
these more general approximation spaces when we discuss inverse approximation
theorems in § 6.

There are simple embeddings of the approximation spaces: if 0 < q1 ≤
q2 ≤ ∞ then*.

|f |As
q2

. |f |As
q1

.(3.4)

These embeddings follow from the corresponding embeddings for ℓq spaces.

4. Smoothness spaces. Our goal in this paper is to describe the
approximation classes As, s > 0, by means of Besov spaces. There are several
equivalent definitions of Besov spaces. We shall give several of these equivalent
definitions in this section after collecting in the following two subsections some
prerequisites.

4.1. Local polynomial approximation and moduli of smoothness.
Let Πr denote the set of all algebraic polynomials in two variables of total degree
< r. For a function f ∈ Lp (G), G ⊂ R

2, and 0 < p ≤ ∞, we denote by Er (f,G)p

the error of Lp-approximation of f from Πr on G, i.e.,

Er (f,G)p := inf
π∈Πr

‖f − π‖Lp(G).(4.1)

An important characterization of this error functional is based on the r-th mod-
ulus of smoothness of f in Lp (G) which is defined by

ωr (f, t)p = ωr (f, t,G)p := sup
|h|≤t

‖∆r
h (f, ·) ‖Lp(G), t > 0,(4.2)

*Throughout the paper we use the notation A . B to mean that A ≤ CB with a constant
C that does not depend on the variables of A and B. If apropriate, we shall indicate on which
quantities the constants C depend. We also use A ≃ B for A . B . A
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where

∆r
h (f, x) = ∆r

h (f, x,G) :=






r∑
j=0

(−1)r+j

(
r

j

)
f (x + jh) , if [x, x + rh] ⊂ G

0, otherwise.

Also, we denote by ωr (f,G)p the r-th local modulus of smoothness of f on G:

ωr (f,G)p := sup
t>0

ωr (f, t,G)p = sup
h∈R2

‖∆r
h (f, ·) ‖Lp(G).(4.3)

Whitney’s theorem is an important tool in piecewise polynomial approx-
imation. We shall give it in the form we need it. Suppose P is an admissible
partition of Ω (with min angle (∆) ≥ β > 0 for ∆ ∈ P , see (2.3)). For ∆ ∈ P , we
denote by ∆̂ the union of all triangles from P which have a common vertex with
∆. If f ∈ Lp (G), 0 < p ≤ ∞, where G = ∆ or G = ∆̂, and r ≥ 1, then

Er (f,G)p ≤ c ωr (f,G)p ,(4.4)

where c = c (p, r) if G = ∆ and c = c (p, r, β) if G = ∆̂. Note that this estimate
holds for much more general regions G, but then the constant c = c (G) may
become hard to control. For this reason we shall restrict ourselves to using (4.4)
only on simple regions G (G = ∆ or G = ∆̂).

Another important technical tool is the averaged modulus of smoothness
which is defined by

wr (f, t)pp = wr (f, t,G)p
p :=

1

t2

∫

[0,t]2

∫

Ω
|∆r

h (f, x,G) |p dx dh.(4.5)

It is well known that wr (f, t)p is equivalent to ωr (f, t)p:

c1wr (f, t)p ≤ ωr (f, t)p ≤ c2wr (f, t)p , t > 0,(4.6)

where c1, c2 > 0 depend only on p and r (see, e.g., [6] or [16] for the proof of this
in the univariate case; the same proof applies in the multivariate case as well).

We shall often use the equivalence of different norms of polynomials. For
instance, if π ∈ Πr and G = ∆̂, then

‖π‖Lp(G) ≃ |G|1/p−1/q‖π‖Lq(G)(4.7)

with constants of equivalence depending only on p, q, r, and β.
When dealing with Besov spaces, we operate in Lp spaces with p ≥ 1

as well as 0 < p < 1. For the latter case, we need the concept of near best
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approximation (see [7]): A polynomial π ∈ Πr is said to be a near best Lp-

approximation to f from Πr on G ⊂ R
2 if

‖f − π‖Lp(G) ≤ AEr (f,G)p

with a constant A ≥ 1. Exactly as in [7], one can prove the following result:

Lemma 4.1. Suppose 0 < ρ ≤ p ≤ ∞ and π ∈ Πr is a near best Lρ-

approximation to f on G = ∆ or G = ∆̂ with a constant A. Then π is a near

best Lp-approximation to f on G with a constant cA, c = c (r, p, β, ρ).

4.2. Courant basis and quasi-interpolants. Recall that for a par-
tition P ∈ Pa of Ω, S (P) denotes the space of all continuous piecewise linear
functions on P and that a basis for this space is given by the Courant elements
φv = φv,P , defined for all v ∈ VP . We stress that φv is always normalized in L∞,
i.e. the function φv takes value 1 at v and zero at all other vertices of P . We shall
denote by θ = θv the support of φv, that is the union of all triangles from P which
share v as a vertex. It will be convenient for us (especially when dealing with
multiscale sequences of Courant bases) to use the support θ (θ = θv) to index the
corresponding Courant element φ =: φθ. We shall denote by Θ = Θ (P ) the set
of all (cells) supports of Courant elements generated by P .

Appropriate dual functionals to the Courant basis functions will serve as
an important tool. Let 〈f, g〉 :=

∫
R2 fg and denote by vθ the “central” point,

i.e. the interior vertex of θ while mθ is the valence of vθ. Defining λ̃∆,θ as the

linear polynomial which assumes values
9

mθ|∆|
at vθ and −

3

mθ|∆|
at the other

two vertices of ∆, let φ̃θ be defined by

φ̃θ :=
∑

∆∈P,∆⊂θ

1I∆ · λ̃∆,θ.

Simple calculations show that

〈φθ, φ̃θ′〉 = δθ,θ′ , θ, θ′ ∈ Θ (P ) ,

where δ is the Kronecker delta. One can use the dual basis to show that for any
∆ ∈ P ,

‖S‖Lp(∆) ≃

(
∑

θ∈Θ:∆⊂θ

‖aθφθ‖
p
p

)1/p

.(4.8)
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This in turn can be used to show that the Courant basis is a stable basis for
S (P ) in Lp, 0 < p ≤ ∞. By this we mean that for any S =

∑
θ∈Θ(P )

aθφθ one has

‖S‖Lp(Ω) ≃

(
∑

θ∈Θ

‖aθφθ‖
p
p

)1/p

(4.9)

with constants of equivalence depending only on p and β.
The well known quasi-interpolant:

Q⋄
P (f) :=

∑

θ∈Θ(P )

〈f, φ̃θ〉φθ,(4.10)

is a linear projector mapping Lp (Ω) onto S (P ) for 1 ≤ p ≤ ∞. It is local which
means that for f ∈ Lp (Ω) (1 ≤ p ≤ ∞) and ∆ ∈ P , one has

‖Q⋄
P (f) ‖Lp(∆) ≤ c‖f‖

Lp(b∆), c = c (p, β) .(4.11)

Also, if g =
∑

∆∈P
1I∆ · π∆ with π∆ ∈ Π2, then, for 0 < p ≤ ∞ and ∆ ∈ P ,

‖Q⋄
P (g) ‖Lp(∆) ≤ c‖g‖

Lp(b∆), c = c (p, β) .(4.12)

We now extend Q⋄
P in a standard way to a projector from Lp (Ω) into

S (P ) for all 0 < p ≤ ∞. Let πp,∆ : Lp (∆) → Πr be a projector (linear if
1 ≤ p ≤ ∞ and nonlinear if 0 < p < 1) such that

‖f − πp,∆‖Lp(∆) ≤ AE2 (f,∆)p , f ∈ Lp (∆) ,(4.13)

where A ≥ 1 is a uniform constant and, therefore, πp,∆ is a near best Lp (∆)-
approximation to f from Πr.

We define
πp,P (f) :=

∑

∆∈P

1I∆ · πp,∆ (f)(4.14)

and set
Qp,P (f) := Q⋄

P (πp,P (f)) .(4.15)

Evidently, Qp,P : Lp (Ω) → S (P ) is a projector (linear if 1 ≤ p ≤ ∞ and
nonlinear if 0 < p < 1). We shall need the following well known property of the
quasi-interpolant: If f ∈ Lp (Ω) and 0 < ρ ≤ p ≤ ∞, then

‖f − Qρ,P‖Lp(∆) ≤ cE2

(
f, ∆̂

)

p
, ∆ ∈ P.(4.16)
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Indeed, let πb∆ ∈ Π2 be such that ‖f −πb∆‖
Lp(b∆) = E2

(
f, ∆̂

)

p
. Using (4.12) and

(4.15), we obtain

‖f − Qρ,P‖Lp(∆) . ‖f − πb∆‖Lp(∆) + ‖Q⋄
P

(
πb∆ − πρ,P (f)

)
‖Lp(∆)

. E2

(
f, ∆̂

)

p
+ ‖πb∆ − πρ,P (f) ‖Lp(b∆)

. E2

(
f, ∆̂

)

p
+




∑

∆⊂b∆ ‖f − πρ,∆ (f)‖p

Lp(b∆)




1/p

. E2

(
f, ∆̂

)

p
,

where we also used that πρ,∆ (f) is a near best Lp (∆)-approximation to f from
Π2 (see Lemma 4.1).

4.3. Besov spaces via moduli of smoothness. We shall restrict our-
selves to the setting that Ω is a bounded polygonal domain in R

2 with admissible
initial partition P0 such that min angle (∆) ≥ β > 0 for ∆ ∈ T∗. The constants
which occur in our main estimates later on will depend on the parameters β and
|Ω|. We define n0 := #P0. Note that Ω is not necessarily connected.

The Besov space Bs
q (Lp (Ω)), s > 0, 0 < q, p ≤ ∞ is the collection of all

functions f ∈ Lp (Ω) such that

|f |Bs
q (Lp(Ω)) :=






(∫∞
0 [t−sωr (f, t)p]

q dt
t

)1/q
, if 0 < q < ∞

supt>0 t−sωr (f, t)p , if q = ∞

(4.17)

is finite, where r > s (usually r := [s] + 1).

The norm in Bs
q (Lp (Ω)) is defined by

‖f‖Bs
q (Lp(Ω)) := |f |Bs

q (Lp(Ω)) + ‖f‖Lp(Ω).(4.18)

Definition (4.17) is independent of r in the following sense. If r in (4.17) is
replaced by r′ > s, then the resulting space would be the same with equivalent
norms. The condition s < r should not be viewed as a restriction on s but rather
as the need to accommodate the value of r. However, the situation changes when
we allow to have p < 1 in that for fixed r the definition (4.17) is still meaningful
for a larger range of s. In fact, now we may have ωr (f, t)p = O

(
tr−1+1/p

)

(r−1+1/p > r) for a nontrivial function f (f /∈ Πr) so that the restriction s < r
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in definition (4.17) of Bs
q (Lp (Ω)) is no longer needed when p < 1 but should be

replaced by 0 < s < r − 1 + 1/p.
In this article, we shall only consider nonlinear approximation from piece-

wise linear functions. For this reason, we fix r = 2 and will consider the
Besov spaces Bs

p (Lp (Ω)) defined by (4.17), where r = 2, 0 < p < ∞, and
0 < s < max (2, 1 + 1/p). It is clear now that these are “classical” Besov spaces
when p ≥ 1 and “nonclassical” whenever p < 1 and s ≥ 2.

It is well known that the need for measuring smoothness in Lp for p <
1 arises naturally in nonlinear approximation. Moreover, there is no essential
difference whether the approximation itself takes place in Lp for p ≥ 1 or p < 1.
For this reason, we do not restrict our considerations in any respect to p ≥ 1.

It is often convenient to use the following equivalence

|f |Bs
p(Lp(Ω)) ≃

(
∑

m∈Z

2mspω2

(
f, 2−m

)p
p

)1/p

(4.19)

which is immediate from (4.17) using the properties of ω2 (f, t)p.
Another equivalent semi-norm in Bs

p (Lp (Ω)) can be deduced from (4.17)
by using the equivalence from (4.6). We have

|f |Bs
p(Lp(Ω)) ≃ |f |ABs

p(Lp(Ω)):=



∫

Ω

∞∫

0

∫

[0,t]2

|∆2
h (f, x,Ω) |pt−sp−3 dh dt dx




1/p

(4.20)

with constants of equivalence depending only on p. (Notice that ∆2
h (f, x,Ω) := 0

if [x, x + 2h] is not entirely contained in Ω.)

4.4. Besov spaces via multiscale decompositions. It will be use-
ful to work with several alternative characterizations of Besov spaces based on
multiscale decompositions that are defined through a hierarchy of nested trian-
gulations. To describe this, let P be an arbitrary admissible partition of Ω (that
may or may not be equal to P0, the initial partition of Ω). We inductively define
a sequence

(
P [m]

)∞
m=0

of uniform refinements of P . We set P [0] := P . Suppose

that P [0], P [1], . . . , P [m] have already been defined. Then we construct P [m+1]

by applying newest vertex bisection to each triangle in P [m] twice. Thus each
∆ ∈ P [m] is subdivided into four grandchildren. Hence each edge in P [m] is
bisected so that P [m+1] is indeed admissible.

We denote by Θm := Θ
(
P [m]

)
the set of all support cells of the Courant

elements at level P [m] and set Θ :=
∞⋃

m=0
Θm.
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For a given 0 < p < ∞, we select ρ such that 0 < ρ ≤ p and denote Qm :=
Qρ,P [m], the quasi-interpolant from (4.15). (One can use the quasi-interpolant
Q⋄

P [m] from (4.10) instead, if p ≥ 1. The purpose of such a lower bound ρ is to
employ the same projector for a whole range of p’s just bounded from below by
ρ.)

We set qm = qρ,m := Qm − Qm−1, where Q−1 := 0. For a given function
f ∈ Lp (Ω), we define (bθ (f))θ∈Θm

= (bρ,θ (f))θ∈Θm
from

qm (f) =:
∑

θ∈Θm

bθ (f)φθ.(4.21)

By (4.16), it follows that ‖f − Qm (f) ‖Lp(Ω) → 0 as m → 0, and hence

f =

∞∑

m=0

qm (f) =

∞∑

m=0

∑

θ∈Θm

bθ (f)φθ in Lp (bθ (f) := bρ,θ (f)) .(4.22)

Definition of norms in B
s

p
(Lp (Ω)) via multiscale Courant bases.

Suppose
(
P [m]

)∞
m=0

is a sequence of uniform refinements of P0, the initial partition
of Ω. We define, for 0 < p < ∞,

‖f‖Q
Bs

p(Lp(Ω)) :=

(
∑

θ∈Θ

|θ|−
sp
2 ‖bθ (f)φθ‖

p
p

)1/p

,(4.23)

where {bθ (f)} are from (4.21)–(4.22).
Note that the coefficients bθ (f) encode “difference information” since they

represent the update needed when progressing to the next higher level of resolu-
tion. There is an alternative to the above decomposition which would remove the
dependence on the quasi-interpolant operators. Namely, we can define another
equivalent norm by

‖f‖∗Bs
p(Lp(Ω)) := inf

f=
P

θ∈Θ aθφθ

(
∑

θ∈Θ

|θ|−
sp
2 ‖aθφθ‖

p
p

)1/p

,(4.24)

where the infimum is taken over all representations of f : f =
∑
θ∈Θ

aθφθ in Lp.

Theorem 4.2. The Besov norms ‖ · ‖Bs
p(Lp(Ω)) from (4.18), ‖ · ‖Q

Bs
p(Lp(Ω))

from (4.23), and ‖ · ‖∗Bs
p(Lp(Ω)) from (4.24), are equivalent with constants of equiv-

alence depending only on p, s, β, and |Ω|.
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For the proof of this theorem, see [14, 15], and also the proof of Lemma 4.3
in Section 4.6 below.

4.5. Embedding results. There are various embedding theorems for
Besov spaces. It is important to note that these embedding results involve con-
stants which depend in an essential way on the shape of the domain which they
refer to. To keep the constants under control we shall use such embedding the-
orems only on regions G = ∆ or G = ∆̂. In the present context the following
variants are relevant.

Suppose 0 < p < ∞, 0 < α < 1 + 1/p, s > 0, 1/τ ≤ s/2 + 1/p, α + s <
max (1 + 1/τ, 2), and δ := s/2 + 1/p − 1/τ . Then

|f |Bα
p (Lp(G)) ≤ c|G|δ |f |Bα+s

τ (Lτ (G)),(4.25)

where c depends only on the above parameters and β.

The case α = 0 is represented by the following estimate for local poly-
nomial approximation. Let 0 < p < ∞, s > 0, 1/τ ≤ s/2 + 1/p, and δ :=
s/2 + 1/p − 1/τ , then for s ≤ max (1 + 1/τ, 2) one has

E2 (f,G)p ≤ c|G|δ |f |Bs
τ (Lτ (G))(4.26)

with c depending only on the above parameters and β, see e.g. [9].

4.6. Two auxiliary results. For the proof of our direct estimates,
we shall need the following localization of the error of good piecewise linear
approximations with respect to Besov norms.

Lemma 4.3. Let f ∈ Bs
p (Lp (Ω)), where 0 < p < ∞ and 0 < s < 1+1/p.

Suppose 0 < ρ ≤ p and QP := Qρ,P is the quasi-interpolant from (4.15) (or
QP := Q⋄

P from (4.10), if p ≥ 1). Then for any admissible partition P of Ω, we

have

|f − QP (f) |pBs
p(Lp(Ω)) ≤ c

∑

∆∈P

|f |p
Bs

p(Lp(b∆))
,(4.27)

where c = c (p, ρ, s, β), and

‖f − QP (f) ‖p
Lp(Ω) ≤ c

∑

∆∈P

|f |p
Bs

p(Lp(b∆))
,(4.28)

where c = c (p, ρ, s, β, d), see (2.3).

P r o o f. Suppose
(
P [m]

)∞
m=0

is a sequence of uniform refinements of P as
described in the beginning of § 4.4. We also adhere to all other notation from
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§ 4.4. Thus Θm := Θ
(
P [m]

)
will be the set of all support cells θ at level P [m] and

Θ :=
∞⋃

m=0
Θm. Further, we define Θ′ :=

∞⋃
m=1

Θm. We have

f − QP (f) =

∞∑

m=1

qm (f) =

∞∑

m=1

∑

θ∈Θm

bθ (f)φθ in Lp,(4.29)

where qm := Qm − Qm−1 and (bθ (f))θ∈Θm
are defined as in (4.21)–(4.22).

To prove (4.27), we shall use the equivalence from (4.19). We define
Xj := {θ ∈ Θ : 2−j−1 < |θ|1/2 ≤ 2−j} and gj :=

∑
θ∈Xj

bθφθ, where bθ := bθ (f).

Since there exists some fixed constant c (β), depending only on the minimal angle,
such that at most c (β) cells θ ∈ Xj may overlap, one has

ω2 (gj , t)
p
p . ‖gj‖

p
p .

∑

θ∈Xj

‖bθφθ‖
p
p, t > 0,(4.30)

see (4.9).
Using that ‖φθ‖∞ = 1, simple calculations show that

ω2 (φθ, t)
p
p ≃

{
|θ|(1−p)/2t1+p, if 0 < t < |θ|1/2,

|θ|, if t ≥ |θ|1/2.
(4.31)

If j < m, then by (4.31) and using again that at most c (β) cells θ ∈ Xj may
overlap, we obtain

ω2

(
gj, 2

−m
)p
p

.
∑

θ∈Xj

ω2

(
bθφθ, 2

−m
)p
p

. 2−m(1+p) · 2−j(1−p)
∑

θ∈Xj

|bθ|
p(4.32)

≃ 2−(m−j)(1+p)
∑

θ∈Xj

‖bθφθ‖
p
p,

where we used that ‖φθ‖p ≃ |θ|1/p.
Now set p∗ := min{p, 1}. By (4.30) and (4.32), we deduce that

ω2

(
f − QP (f) , 2−m

)p∗
p

≤
∑

j∈Z

ω2

(
gj , 2

−m
)p∗
p

.

∞∑

j=m+1




∑

θ∈Xj

‖bθφθ‖
p
p




p∗/p

+
m∑

j=−∞

2−(m−j)(1+p)p∗/p




∑

θ∈Xj

‖bθφθ‖
p
p




p∗/p
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≃
∞∑

j=m+1

2−jsp∗




∑

θ∈Xj

|θ|−sp/2‖bθφθ‖
p
p




p∗/p

+

m∑

j=−∞

2−(m−j)(1+p)p∗/p2−jsp∗




∑

θ∈Xj

|θ|−sp/2‖bθφθ‖
p
p




p∗/p

.

We put Aθ := |θ|−sp/2‖bθφθ‖
p
p and substitute the above estimate in (4.19) to

obtain

|f − QP (f) |pBs
p(Lp(Ω)) .

∑

m∈Z

2msp




∞∑

j=m+1

2−jsp∗




∑

θ∈Xj

Aθ




p∗/p




p/p∗

+
∑

m∈Z

2msp




m∑

j=−∞

2−(m−j)(1+p)p∗/p2−jsp∗




∑

θ∈Xj

Aθ




p∗/p




p/p∗

.
∑

m∈Z




∞∑

j=m+1

2−(j−m)sp∗




∑

θ∈Xj

Aθ




p∗/p




p/p∗

+
∑

m∈Z




m∑

j=−∞

2−(m−j)[1+p−sp]p∗/p




∑

θ∈Xj

Aθ




p∗/p




p/p∗

.

We now use that 1 + p − sp > 0 because s < 1 + 1/p. Therefore, using the well
known Hardy’s inequalities (see, e.g., Lemma 3.4 in [6] and Lemma 3.10 in [16])
we obtain

|f − QP (f) |pBs
p(Lp(Ω)) .

∑

j∈Z

∑

θ∈Xj

Aθ .
∑

θ∈Θ′

|θ|−sp/2‖bθφθ‖
p
p.(4.33)

In going further, suppose that θ ∈ Θm (m ≥ 1) and let ∆ ∈ P [m] be a
triangle such that ∆ ⊂ θ. We denote by ∆′ the grandparent of ∆ in P [m−1], i.e.,
the unique triangle ∆′ ∈ P [m−1] with the property ∆ ⊂ ∆′. We now use (4.8),
(4.16), and that qm := Qm − Qm−1 to obtain

‖bθφθ‖p . ‖qm (f) ‖Lp(∆) . ‖f − Qm (f) ‖Lp(∆) + ‖f − Qm−1 (f)‖Lp(∆′)

. E2

(
f, ∆̂

)

p
+ E2

(
f, ∆̂′

)

p
.
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Inserting this estimate in (4.33) and taking into account that |θ| ≃ |∆| ≃ |∆′|,
we find

|f − QP (f) |pBs
p(Lp(Ω)) .

∑

∆∈P

|∆|−sp/2E2

(
f, ∆̂

)p

p
,(4.34)

where P :=
∞⋃

m=0
P [m]. Clearly, for each ∆ ∈ P there is at least one triangle

∆⋄ ∈ P [0] = P such that ∆̂ ⊂ ∆̂⋄. Therefore, we can split the terms in the right
sum of (4.34) and deduce

|f − QP (f) |pBs
p(Lp(Ω)) .

∑

∆⋄∈P

∑

∆∈P: b∆⊂
∆⋄

|∆|−sp/2E2

(
f, ∆̂

)p

p

.
∑

∆⋄∈P

∑

∆∈P: b∆⊂
∆⋄

|∆|−sp/2ω2

(
f, ∆̂

)p

p
.(4.35)

Fix ∆⋄ ∈ P and denote

Zj := {∆ ∈ P : ∆̂ ⊂ ∆̂⋄, 2−j−1 < |∆| ≤ 2−j}.

We use (4.6) to obtain

∑

∆∈Zj

|∆|−sp/2ω2

(
f, ∆̂

)p

p
. 2sjp

∑

∆∈Zj

w2

(
f, 2−j, ∆̂

)p

p
. 2sjpω2

(
f, 2−j , ∆̂⋄

)p

p
,

where we used that only ≤ c (β) triangles from Zj may overlap at a time. This
implies

∑

∆∈P: b∆⊂
∆⋄

|∆|−sp/2ω2

(
f, ∆̂

)p

p
.
∑

j∈Z

2sjpω2

(
f, 2−j, ∆̂⋄

)p

p
. |f |p

Bs
p(Lp(
∆⋄))

,

which combined with (4.35) and Lemma 4.4 completes the proof of (4.27).

The proof of estimate (4.28) is much easier and can be carried out along
the following lines. In view of (4.16) and (4.26), we have

‖f − QP (f) ‖p
p ≤ c

∑

∆∈P

E2

(
f, ∆̂

)p

p
≤ c

∑

∆∈P

|∆̂|ps/2|f |p
Bs

p(Lp(b∆))
,

which confirms (4.28) with a constant c that depends now on the maximal diam-
eter d from (2.3). �
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Lemma 4.4. Let f ∈ Bs
p (Lp (Ω)), where 0 < p < ∞. Then for any

admissible partition P of Ω, we have

∑

∆∈P

|f |p
Bs

p(Lp(b∆))
≤ c|f |pBs

p(Lp(Ω)),(4.36)

where c = c (p, s, β).

P r o o f. Estimate (4.36) follows immediately by using the Besov semi-
norm | · |ABs

p(Lp(G)) from (4.20) taking into account that at most c (β) rings ∆̂ may

overlap at a time when ∆ ∈ P . �

5. Direct theorems. In this section, we shall derive embeddings of
Besov classes into the approximation classes As introduced earlier in § 3. As we
have throughout the paper, we fix a polygonal domain Ω and the space B0 =
Lp (Ω) or B0 = Bα

p (Lp (Ω)) in which we are going to measure the approximation
error. We also fix the subdivision method for generating adaptive partitions to
be newest vertex bisection as discussed in § 2.

We recall from § 4 that a Besov space B = Bα+s
τ (Lτ (Ω)) is compactly

embedded in B0 if and only if

δ :=
s

2
+

1

p
−

1

τ
> 0,(5.1)

and δ is called the discrepancy for B relative to B0.

Theorem 5.1. Let B0 := Bα
p (Lp (Ω)), 0 < p < ∞, 0 ≤ α < 1 + 1/p or

B0 = Lp (Ω) if α = 0. If f ∈ B := Bs+α
τ (Lτ (Ω)) with 1/τ < s/2 + 1/p, s > 0,

and α + s ≤ max (1 + 1/τ, 2), then

σn (f)B0
≤ cn−s/2|f |B , n ≥ 1,(5.2)

where c = c (p, α, s, τ, β, d) |Ω|δ. Therefore, f ∈ B implies that f ∈ As/2.

P r o o f. We shall prove this theorem only for α > 0, since the proof for
α = 0 is essentially the same yet simpler because the Lp norm localizes trivially.

The proof of (5.2) is based on the following observation.

Proposition 5.2. For every ε > 0 there exists an admissible partition

P ∈ Pa
n, obtained from P0 by n newest vertex bisections, such that

‖f − QP (f)‖B0 ≤ c (n + n0)
1/p ε(5.3)
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and

n ≤ c
(
ε−1|Ω|δ|f |B

)τ/(1+δτ)
,(5.4)

where QP := Qp,P is the quasi-interpolant from (4.15) and c = c (p, s, τ, δ, β, d).

To see that Theorem 5.1 follows from Proposition 5.2, for any fixed n ≥
n0, we define

ε := |Ω|δ|f |Bn−(1+δτ)/τ ,

provided |f |B > 0 (the case |f |B = 0 is trivial). Then by (5.3)–(5.4), we obtain

σn (f)B0
≤ ‖f − QP (f) ‖B0 ≤ c (n + n0)

1/p ε ≤ cn−s/2|f |B

where we used that n ≥ n0. Also, by (4.25) and (4.27), we have σ0 (f)B0
.

‖f − QP0 (f) ‖B0 . |f |B and these two estimates imply (5.2).
To prove Proposition 5.2 we shall use a local error indicator which is

defined for any ∆ in an admissible partition P by

e (∆, P ) := |∆|δ |f |B(b∆),(5.5)

where |f |
B(b∆) is the B-norm of f on ∆̂ and, as before, ∆̂ = ∆̂ (P ) is the ring of ∆

in the partition P . Recall that by the remarks in § 2, we still have that |∆̂|/|∆|
remains bounded by a constant depending only on the minimal angle β in P0.

To construct the desired partition we fix any target accuracy ε > 0 and
adaptively generate a tree T = Tε as follows. We start with the root nodes in
T0. We let M0 be the set of those nodes ∆ for which e (∆, P0) > ε. We let T ′

1

denote the tree obtained from T0 by subdividing the nodes in M0 and leaving
all other nodes in T0 untouched and let T1 denote the completion of T ′

1 (see §
2). Now, we repeat this adaptive subdivision process on T1. In other words
we subdivide the nodes ∆ ∈ M1, where M1 is the set of all leaves ∆ of T1 for
which e (∆, P (T1)) > ε. We continue in this way and terminate the process when
Mk = ∅. The process terminates because |f |

B(b∆) ≤ |f |B . We set T ′ = Tk, form

the completion T of T ′, and set P := P (T ).
Let us first check that (5.3) holds. When the algorithm terminates, each

cell ∆ in T satisfies e (∆) = e (∆, T ) ≤ ǫ. Thus we can invoke (4.25) and (5.5) to
conclude that

|f |B0(b∆) . |∆|δ|f |B(b∆) . ε.(5.6)

Using this and Lemma 4.3, we obtain

‖f − QP (f) ‖p
B0

.
∑

∆∈P

|f |p
B0(b∆)

.
∑

∆∈P

|∆|pδ|f |p
B(b∆)

. (#P ) εp,(5.7)
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where the involved constants have the asserted dependence on the parameters
p, s, β, d. This establishes (5.3).

We want to count next the number of cells that were marked during the
subdivision process. Let M := M0 ∪ · · · ∪Mk and for each j ∈ Z, let Λj be the
collection of all ∆ ∈ M which satisfy

2−j−1 ≤ |∆| < 2−j.(5.8)

We want to estimate the cardinality mj of Λj . First we have the trivial estimate

mj ≤ 2j+1|Ω|.(5.9)

This follows from the fact that the cells in Λj are disjoint: if two cells of T∗

intersect then one is contained in the other and the smaller cell has measure at
most half of the larger.

To obtain our second estimate for mj, we start with the fact that for each
∆ ∈ Λj , we have

ε < |∆|δ|f |B(b∆) ≤ 2−jδ|f |B(b∆)(5.10)

because this cell was subdivided. Recall that |∆̂| ≤ c|∆|. Hence, using again that
the ∆ ∈ Λj are pairwise disjoint, we have that a point x ∈ Ω appears in at most

c of the cells ∆̂ with ∆ ∈ Λj . Thus, returning to (5.10), we deduce

mjε
τ ≤ 2−jδτ

∑

∆∈Λj

|f |τ
B(b∆)

≤ c2−jδτ |f |τB ,(5.11)

where the last inequality uses Lemma 4.4.
Let j0 be the smallest integer such that 2j0 > |Ω|. Then

# (M) ≤
∞∑

j=−j0

mj ≤ c

∞∑

j=−j0

min
(
2j |Ω|, ε−τ2−jδτ |f |τB

)

≤ c
(
ε−1|Ω|δ|f |B

)τ/(1+δτ)
.

(5.12)

Here, the last inequality is established by breaking the sum into two sums deter-
mined by where the minimum turns from 2j |Ω| to ε−τ2−jδτ |f |τB.

From (2.1), we obtain that the number n of subdivisions needed to pro-
duce P = P (T ) satisfies

n ≤ c
(
ε−1|Ω|δ|f |B

)τ/(1+δτ)
(5.13)
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which is (5.4).

6. Inverse Theorems. In this section, we want to prove inverse
estimates to the results of § 5. We begin by proving the following Bernstein
inequality for n-term adaptive approximation.

Theorem 6.1. (a) Let 0 < p < ∞, 0 < α < 1 + 1/p, s > 0, 1/τ =
s/2 + 1/p, and α + s < 1 + 1/τ . If S ∈ S (P ) for some partition P ∈ Pa with

# (P ) ≤ n, then

‖S‖Bs+α
τ (Lτ (Ω)) ≤ cns/2‖S‖Bα

p (Lp(Ω)),(6.1)

where c depends only on p, α, s, β, and |Ω|.
(b) Let 0 < p < ∞, s > 0, 1/τ = s/2+1/p, and s < 1+1/τ . If S ∈ S (P )

for some partition P ∈ Pa with # (P ) ≤ n, then

|S|Bs
τ (Lτ (Ω)) ≤ cns/2‖S‖Lp(Ω),(6.2)

where c depends only on p, s, and β.

Moreover, the above two estimates hold under the same conditions if S is

replaced by S1 − S2, where S1, S2 ∈ S (P ) with # (P ) ≤ n as above.

P r o o f. We shall prove only part (a) of the theorem. The proof of part
(b) is easier and can be found in [3]. We shall use the multiscale representation
(4.22) starting from the initial partition P0 for f = S, i.e.,

S =
∑

m≥0

∑

θ∈Θm

bθ (S)φθ =
∑

θ∈M

bθ (S) φθ,(6.3)

where bθ (S) = bρ,θ (S) with ρ := τ < p and M ⊂ Θ is the set of all nonzero
coefficients. With this selection of ρ, we can use representation (6.3) to describe
both ‖S‖Bα

p (Lp(Ω)) and ‖S‖Bα+s
τ (Lτ (Ω)) by using the norm from (4.23).

It is important to know how many coefficients bθ in (6.3) are different from
zero. To count them we shall consider the tree T = T (P ) that corresponds to the
triangulation P on which S is defined. Let N (P ) be the number of subdivisions
used to produce P starting from P0. The definition (4.21) gives that bθ 6= 0 is

possible for θ ∈ Θk = Θ
(
P

[k]
0

)
only if (Qk−1 (S)) (v) 6= (Qk (S)) (v), where v is

the central vertex for θ. In the case v ∈ V
P

[k−1]
0

, this can happen only if the

element θ′ ∈ Θk−1, centered at v, includes a triangle ∆ that is subdivided in P ,
i.e. ∆ corresponds to an internal node of the tree T . The case v /∈ V

P
[k−1]
0

means

that v is a midpoint of an edge connecting two vertices v′, v′′ ∈ V
P

[k−1]
0

and one of
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them has to be a vertex of a triangle from P
[k−1]
0 that corresponds to an internal

node of the tree T . Adding to this count all the elements from Θ0 whose number
does not exceed 3# (P0), we receive

# (M) ≤ 3N (P ) + 3m0N (P ) + 3# (P0) . n ,(6.4)

where m0 is the maximal valence of the vertices in the triangulations from P.

We now use the norm from (4.23) (see Theorem 4.2) and Hölder’s inequal-
ity to obtain

‖S‖Bα+s
τ (Lτ (Ω)) ≃

(
∑

θ∈M

|θ|−(α+s)τ/2‖bθ (S)φθ‖
τ
τ

)1/τ

≃

(
∑

θ∈M

(
|θ|−α/2‖bθ (S)φθ‖p

)τ
)1/τ

. (#M)(1−τ/p)/τ

(
∑

θ∈M

(
|θ|−α/2‖bθ (S)φθ‖p

)p
)1/p

. ns/2‖S‖Bα
p (Lp(Ω)),

where we have used that ‖φθ‖τ ≃ |θ|1/τ−1/p‖φθ‖p and (6.4). �

It is well known how to derive inverse theorems once Bernstein inequalities
have been established. In our case, the setting is the same as the inverse theorems
for free knot spline approximation given in Chapter 12 of [6]. For this reason we
shall be brief in our exposition.

In what follows, we assume that we have one of the following two settings:

(a) B0 := Bα
p (Lp (Ω)), 0 < p < ∞, 0 < α < 1 + 1/p, and B :=

Bs+α
τ (Lτ (Ω)), where s > 0, 1/τ = s/2 + 1/p, and α + s < 1 + 1/τ .

(b) B0 := Lp (Ω) with 0 < p < ∞ and B := Bs
τ (Lτ (Ω)) with s > 0,

1/τ = s/2 + 1/p, and s < 1 + 1/τ .

The K-functional for the pair (B0, B) is defined by

K (f, t;B0, B) := inf
g∈B

‖f − g‖B0 + t‖g‖B .(6.5)

The following theorem relates K (f, t;B0, B) and σn (f)B0
.
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Theorem 6.2. We have, for f ∈ B0,

K
(
f, 2−sn/2;B0, B

)
≤ c2−sn/2




(

n∑

m=0

(
2sm/2σ2m (f)B0

)τ∗

)1/τ∗

+ ‖f‖B0



 ,(6.6)

where τ∗ := min{τ, 1} and c depends on the corresponding parameters.

P r o o f. The proof of this theorem is standard: one writes f as a tele-
scoping sum of best approximations to f which realize σ2k (f) and then employ
the Bernstein estimates from Theorem 6.1 on each of the terms. �

The following inverse theorem is our main result in this section.

Theorem 6.3. Let 0 < p < ∞, 0 < α < 1+1/p, s > 0, 1/τ := s/2+1/p,

and α + s < 1 + 1/τ . If f ∈ A
s/2
τ (B0), then f ∈ Bs+α

τ (Lτ (Ω)).

P r o o f. We choose the pair (s1, τ1) with s1 > s, τ1 < τ , 1/τ1 = s1/2+1/p,
and such that 0 < s1 + α < 1 + 1/τ with the additional requirement that τ1 ≥ 1
if τ > 1.

It is well known (see [1]) that B := Bs+α
τ (Lτ (Ω)) is equal (with equivalent

norms) to the interpolation space [B0, B1] s
s1

,τ between B0 = Bα
τ (Lp (Ω)) and

B1 := Bs1+α
τ1

(
Lτ1(Ω)

)
. Its norm satisfies

‖f‖[B0,B1]s/s1,τ
≃

(
∞∑

k=0

[2ks/2K
(
f, 2−ks1/2;B0, B1

)
]τ

)1/τ

.(6.7)

Next, we use Theorem 6.2 in the form

K
(
f, 2−ks1/2;B0, B1

)
. 2−ks1/2

(
k∑

m=0

(
2ms1/2σ2m (f)

)τ∗

1

)1/τ∗

1

+ 2−ks1/2‖f‖B0 ,

(6.8)

where as usual τ∗
1 := min{τ1, 1}. Since ‖f‖B . ‖f‖(B0,B1)s/s1,τ

, we have

‖f‖τ
B .

∞∑

k=0

2kτ(s−s1)/2

(
k∑

m=0

(
2ms1/2σ2m (f)

)τ∗

1

)τ/τ∗

1

+

∞∑

k=0

(
2k(s−s1)/2‖f‖B0

)τ
.

(6.9)
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An application of Hardy’s inequality gives that the first sum is dominated by
constant times the semi-norm |f |τ

A
s/2
τ

given by (3.3). The second sum is bounded

by c‖f‖τ
B0

and therefore ‖f‖B . ‖f‖
A

s/2
τ

. This proves the embedding A
s/2
τ ⊂ B

and the theorem. �
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[1] J. Bergh, Löfström. Interpolation Spaces, An Introduction. Springer,
1976.

[2] P. Binev, W. Dahmen, R. DeVore. Adaptive finite element methods
with convergence rates. IGPM Report # 219, RWTH Aachen, June 2002.

[3] W. Dahmen, I. Graham, B. Faehrmann, W. Hackbusch, S. Sauter.

Inverse Inequalities on Non-Quasiuniform Meshes and Application to the
Mortar Element Method. IGPM Report #201, RWTH Aachen, April 2001.

[4] O. Davydov, P. Petrushev. Nonlinear approximation from differentiable
piecewise polynomials. IMI Preprint Series 2002:12, University of South Car-
olina, 2002.

[5] R. DeVore, B. Jawerth, V. Popov. Compression of wavelet decompo-
sitions. Amer. J. Math. 114 (1992), 737–785.

[6] R. DeVore, G. G. Lorentz. Constructive Approximation. Springer, New
York, 1993.

[7] R. DeVore, V. Popov. Interpolation of Besov spaces. Trans. Amer. Math.

Soc. 305 (1998), 297–314.

[8] R. DeVore, R. Sharpley. Besov spaces on domains in R
d. Trans. Amer.

Math. Soc. 335 (1993), 843–864.

[9] R. DeVore, R. Sharpley. Maximal functions measuring smoothness.
Memoirs of the American Mathematical Society, 47 (No 293), 1984.

[10] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation.
SIAM J. Numer. Anal. 33 (1996), 1106–1124.



416 Peter Binev, Wolfgang Dahmen, Ronald DeVore, Pencho Petrushev

[11] B. Karaivanov, P. Petrushev. Nonlinear piecewise polynomial approx-
imation beyond Besov spaces. IMI Preprint Series 2001:13, University of
South Carolina, 2001.

[12] W. F. Mitchell. A comparison of adaptive refinement techniques for el-
liptic problems. ACM Transaction on Math. Software 15 (1989), 326–347.

[13] P. Morin, R. Nochetto, K. Siebert. Data Oscillation and Convergence
of Adaptive FEM. SIAM J. Numer. Anal. 38 (2000), 466–488.

[14] P. Oswald. On the degree of nonlinear spline approximation in Besov-
Sobolev spaces. J. Approx. Theory 61 (1990), 131–157.

[15] P. Oswald. Multilevel Finite Element Approximation. Teubner, Stuttgart,
1994.

[16] P. Petrushev, V. Popov. Rational Approximation of Real Functions.
Cambridge University Press, 1987.

Peter Binev

Department of Mathematics

University of South Carolina

Columbia, SC 29208

U.S.A.

e-mail: binev@math.sc.edu

Wolfgang Dahmen

Institut für Geometrie

und Praktische Mathematik

RWTH Aachen

Templergraben 55

52056 Aachen

Germany

e-mail: dahmen@igpm.rwth-aachen.de

Ronald DeVore

Department of Mathematics

University of South Carolina

Columbia, SC 29208

U.S.A.

e-mail: devore@math.sc.edu

Pencho Petrushev

Department of Mathematics

University of South Carolina

Columbia, SC 29208

U.S.A.

e-mail: pencho@math.sc.edu

Received November 4, 2002

View publication stats

https://www.researchgate.net/publication/239421414

