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The 21st Century

Various technological advances in the 21st century are only possible through
integrated mathematical modeling, simulation, and optimization.

Further Examples:

Turbines
 Adjoint based jet-noise minimization

Atomistic molecular dynamics
 Simulations with ultralong timescales

Star formation
 Understanding of turbulent accretion of matter

There is a pressing need to go beyond
pure modeling, simulation, and optimization approaches!
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The Data Science Side: Impact of Deep Learning

Health Care

SurveillanceSelf-Driving Cars

Legal Issues

Very few theoretical results explaining their success!
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From Data-Driven to Model-Based Approaches

Problems, Viewpoints and Solution Strategies:

Pure data-driven approaches.
Detect structural components in data sets!

Machine learning with physical constraints.
Insert physical information in machine learning algorithm!

Parametric differential equations.
Learn parameters from given data sets!

Data assimilation.
Combine sparse data with physical model to generate a general model!

Data analysis on simulation data.
Study simulation generated data in search of underlying laws!

Data Science
Modeling,

Simulation,
Optimization

Optimal balancing of
data-driven and model-based approaches!
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Outline

1 Inverse Problems
Examples from Imaging Sciences
Sparse Regularization via Shearlets

2 Solving Inverse Problems with Deep Neural Networks
A Bit of History

3 Limited-Angle Computer Tomography
Learning (only) the Invisible: A Hybrid Approach
Numerical Experiments

4 Conclusions
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Modern Imaging Science
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Tikhonov Regularization

Standard Tikhonov Regularization:
Given an ill-posed inverse problem Kx = y , where K : X → Y , an
approximate solution xα ∈ X , α > 0, can be determined by minimizing

Jα(x) := ‖Kx − y‖2 + α‖x‖2, x ∈ X .

Generalization:

J̃α(x) := ‖Kx − y‖2 + αP(x), x ∈ X .

The penalty term P
ensures continuous dependence on the data,

incorporates properties of the solution.

Some Examples for P:

‖x‖TV , ‖x‖Hs , ‖(〈x , ψλ〉)λ‖1, ...
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The World is Compressible!

Wavelet Transform (JPEG2000):

f 7→ (〈f , ψj ,m〉)j ,m.

Definition: For a wavelet ψ ∈ L2(R2), a wavelet system is defined by

{ψj,m : j ∈ Z,m ∈ Z2}, where ψj,m(x) := 2jψ(2jx −m).
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Sparsity

Novel Paradigm:

For each class of data, there exists a sparsifying system!

Two Viewpoints of ‘Sparsifying System’:
Let C ⊆ H and (ψλ)λ ⊆ H.

Decay of Coefficients. Consider the decay for n→∞ of the sorted
sequence of coefficients

(|〈x , ψλn〉|)n for all x ∈ C.

Approximation Properties. Consider the decay for N →∞ of the error
of best N-term approximation, i.e.,

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ for all x ∈ C.
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Sparsity-Based Approaches to Inverse Problems

Compressed Sensing (Candès, Romberg, Tao and Donoho; 2006) :

Goal: Solve an underdetermined linear problem

y = Ax , A an n × N-matrix with n� N,

for a solution x ∈ RN admitting a sparsifying system (ψλ)λ.

Approach: Recover x by the `1-analysis minimization problem

min
x̃
‖(〈x̃ , ψλ〉)λ‖1 subject to y = Ax̃

Some Earlier Footprints in Inverse Problems:

Donoho (1995): Wavelet-Vaguelette decomposition.

Chambolle, DeVore, Lee, Lucier (1998): Penalty on the Besov norm.

Daubechies, Defries, De Mol (2004): General sparsity constraints.

...
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Regularization by Sparsity

Functional with `1-Penalty Term:

Jα(x) := ‖Kx − y‖2 + α‖(〈x , ψλ〉)λ‖1, x ∈ X .

Applied Harmonic Analysis Approach:
Wavelets, Ridgelets, Curvelets, Shearlets,...

Desiderata:

Multiscale representation system.

Partition of Fourier domain.

Fast algorithms: x 7→ (〈x , ψλ〉)λ  x .

Optimality for the considered class.
 Here: Functions governed by anisotropic features.
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Shearlets come into Play
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Mathematical Model for Images

Key Observation:

Images are governed by edge-like
structures!

Definition (Donoho; 2001):
Let ν > 0. We then define the class of cartoon-like functions by

E2(R2) = {f ∈ L2(R2) : f = f1 + χB f2},

where B ⊂ [0, 1]2 with ∂B ∈ C 2, and the functions f1 and f2 satisfy
f1, f2 ∈ C 2

0 ([0, 1]2), ‖f1‖C2 , ‖f2‖C2 , ‖∂B‖C2 < ν.
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Key Ideas of the Shearlet Construction

Wavelet versus Shearlet Approximation:

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Advantage:

Shearing leaves the digital grid Z2 invariant.

Uniform theory for the continuum and digital situation.
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(Cone-adapted) Discrete Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(c ;φ, ψ, ψ̃), c > 0,
generated by φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(φ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

‖f − fN‖2
2 . N−2(logN)3 and |〈f , σηn〉| . n−

3
2 (log n)

3
2 .
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Applications

Inpainting:

(Source: K, Lim; 2012)

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

Matlab (K, Lim, Reisenhofer; 2013)

Julia (Loarca; 2017)

Python (Look; 2018)

Tensorflow (Loarca; 2019)
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Mathematical Modeling Reaches a Barrier

Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 15 / 44



Computed Tomography (CT)

Problem with Limited-Angle Tomography:

The data is too complex for mathematical modeling!
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Limited Angle-(Computed) Tomography

A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
,

φ ∈ [−π/2, π/2), and s ∈ R.

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

Challenging inverse problem if Rf (·, s) is only
sampled on [−φ, φ] ⊂ [−π/2, π/2).

Applications: Dental CT, breast tomosynthesis,
electron tomography,...
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Model-Based Approaches Fail

Sparse Regularization:

argminf

[
‖Rf − g‖2︸ ︷︷ ︸

Data fidelity term

+ α · ‖(〈f , ψj ,k,m〉)j ,k,m‖1︸ ︷︷ ︸
Penalty term

]
.

Clinical Data:

Original Image

Filtered BackprojectionSparse Regularization with Shearlets
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Let’s bring Deep Learning into the Game
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Neural Networks from a Mathematical Perspective

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

σ : R→ R: (Non-linear) function called rectifier.

W` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps (x 7→ Ax + b)

Then Φ : Rd → RNL given by

Φ(x) = WLσ(WL−1σ(. . . σ(W1(x))), x ∈ Rd ,

is called a (deep) neural network (DNN). A DNN with only few non-zero
weights is called sparsely connected.
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Training of Deep Neural Networks

High-Level Set Up:

Samples (xi , f (xi ))mi=1 of a function
such as f :M→ {1, 2, . . . ,K}.

Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and σ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (W`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
A`,b`

m∑
i=1

L(ΦA`,b`(xi ), f (xi )) + λR(A`, b`)

yielding the network ΦA`,b` : Rd → RNL ,

ΦA`,b`(x) = WLσ(WL−1σ(. . . σ(W1(x))).

This is often done by stochastic gradient descent.

Goal: ΦA`,b` ≈ f
Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 20 / 44



Deep Neural Networks and Inverse Problems
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Solving Inverse Problems by Deep Learning

Setup:
Given N training samples (fi , gi )

N
i=1 following the forward model

gi = Kfi + η.

Goal:

Determine a reconstruction operator Tθ such that

g = Kf + η =⇒ Tθ(g) ≈ f .

Tθ is parametrized by θ ∈ Rp and learned from training data.

Evaluation:
Evaluate the quality of Tθ by testing on the test data (fi , gi )

K
i=N+1 following

the forward model.
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Typical Deep Learning Approaches to Inverse Problems

Denoising Direct Inversion [Ye et al.,2016] [Unser et. al.,2017], ...:

Idea: Direct inversion with filtered backprojection, train CNN to
remove noise.

Illustration:

y fFBP

FBP

frec

NNθ

Inversion & denoising  Simple, ad-hoc approach to inverse problems

Intuition:
I CNN learns structured noise/artifacts.
I Rationale: Without taking FBP, CNN needs to learn physics of CT.
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Denoising Direct Inversions - The CNN Architecture

U-Net architecture, originally used for segmentation [Ronneberger et al.,2015]

Based on fully-convolutional networks [Long et al.,2014]

Encoder-Decoder CNN with skip-connections

[Unser et al.,2017]Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 23 / 44



Solvers for Generalized Tikhonov Regularization

Generalized Tikhonov Regularization:

argminf

[
‖Kf − g‖2 + α · P(f )

]
Douglas-Rachford (or ADMM or . . . ) results in the iterations:

(1) fk+1 := proxγαP(hk);

(2) hk+1 := hk + proxγJ(2fk+1 − hk)− fk+1;

where γ > 0, J := ‖K · −g‖2, and proxJ(h) := argminuJ(u) + 1
2‖u − h‖2

2.

Observations:

For P = ‖ · ‖1, (1) in soft-thresholding  denoising;

(2) amounts in solving a linear system  Tikhonov-regularization;
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Other Deep Learning Approaches to Inverse Problems

Plug-and-play with CNN-denoising [Bouman et al.,2013], [Elad et al.,2016], . . .

Iterative solvers such as Douglas-Rachford or ADMM contain a
denoising step.

Replace this step by a trained CNN.

Learned Iterative Schemes [Pock et. al.,2017], [Adler et al.,2017], . . .

Iterative solvers such as ADMM or Primal-Dual contain proximal steps.

Replace these steps by parameterized operators (not necessarily prox),
where the parameters are learned.
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The “Best” Deep Learning Approach to Limited-Angle CT

Image source: [Gu & Ye, 2017]:
Image source: [Gu & Ye, 2017]:

Missing theory, unclear what the neural network really does:

I Entire image is processed!
I Which features are modified?
I Lack of a clear interpretation!

The neural network needs to learn a lot of streaking artifacts (+noise)
[J. Gu and J. C. Ye. Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. In: Procs Fully3D
(2017), pp. 443447.]

Gitta Kutyniok (TU Berlin) Theory of Deep Learning Spring School@DASIV 2019 26 / 44



A True Hybrid Approach
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Zooming in on the Recovery Problem

φ = 15◦, filtered backprojection (FBP)

φ = 30◦, filtered backprojection (FBP)φ = 45◦, filtered backprojection (FBP)φ = 60◦, filtered backprojection (FBP)φ = 75◦, filtered backprojection (FBP)φ = 90◦, filtered backprojection (FBP)

Some Observations:

Only certain boundaries/features seem to be “visible”!

Missing wedge creates artifacts!

Highly ill-posed inverse problem!
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Fundamental Understanding of the Problem

This Phenomenon is well understood and mathematically analyzed via the concept
of microlocal analysis, in particular, wavefront sets.

x1

x2

f = ID for a set D ⊆ R2 with
smooth boundary

x1

x2

φ

Visualization in phase space

Definition: The wavefront set of a distribution f is the completement of
all such location/direction pairs (t, s), where for a local window φ the

function φ̂f decays rapidly in direction s.
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Visibility in CT

Theorem ([Quinto, 1993]): Let L0 = L(φ0, s0) be a
line in the plane. Let (x0, ξ0) ∈ WF(f ) such that
x0 ∈ L0 and ξ0 is a normal vector to L0.

The singularity of f at (x0, ξ0) causes a
unique singularity in R f at (φ0, s0).

Singularities of f not tangent to L(φ0, s0) do
not cause singularities in R f at (φ0, s0).

f (x1, x2)

x1

x2

s

φ

L(φ, s)

(cosφ, sinφ)

“visible”: singularities tangent “invisible”: singularities not tangent
to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

Theorem (K, Labate, 2006): “Shearlets can identify the wavefront set at fine
scales.”

More Precisely:

Continuous Shearlet Transform:

L2(R2) 3 f 7→ SHψf (a, s, t) = 〈f , ψa,s,t〉, (a, s, t) ∈ R+ × R× R2.

Resolution of Wavefront Sets (simplified from [K & Labate, 2006], [Grohs, 2011])

WF(f )c =
{

(t0, s0) ∈ R2 × [−1, 1] : for (t, s) in neighborhood U of (t0, s0):

|SHψf (a, s, t)| = O(ak) as a −→ 0, ∀k ∈ N, unif. over U
}
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Shearlets can Separate the Visible and Invisible Part

ξ1

ξ2

Wφ

Invisible

Semi-visible

Visible

Visible Wedge
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The High-level Idea

Avenue of Research

Shearlets are proven to resolve the wavefront set.

Use them in sparse/limited angle tomography for filling in missing parts of the
wavefront set.

Practical Questions:

How can we access the visible parts with shearlets?
 Sparse Regularization!

How can we inpaint the missing parts?
 Deep Learning!
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Our Approach “Learn the Invisible (LtI)”
(Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018)

Step 1: Reconstruct the visible

f ∗ := argminf≥0‖Rφ f − g‖2
2 + ‖ SHψ(f )‖1,w

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets:

I For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
I For (j , k, l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f ∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)
Step 3: Combine

fLtI = SHT
ψ (SHψ(f ∗)Ivis + F )
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Numerical Simulation

Verify the concept of (in-)visibility

with the help of an oracle:

fgt

FBP`1-analysis shearlet solution f ∗SHT
ψ

(
SHψ(f ∗)Ivis + SHψ(fgt)Iinv

)
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Our Approach – Step 2: PhantomNet

U-Net-like CNN architecture NN θ (40 layers) that is trained by minimizing:

min
θ

1

N

N∑
j=1

‖NN θ(SH(f ∗j ))− SH(f gtj )Iinv‖2
w ,2.
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Learning the Invisible

Model Based & Data Driven: Only learn what needs to be learned!

Advantages over Pure Data Based Approach:

Interpretation of what the CNN does ( 3D inpainting)

Reliability by learning only what is not visible in the data

Better performance due to better input

The neural network does not process entire image, leading to...

I ...less blurring by U-net
I ...fewer unwanted artifacts

Better generalization

Disadvantage:

Speed: dominated by `1-minimization
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Setup

Experimental Scenarios:

Mayo Clinic1: human abdomen scans provided by the Mayo Clinic for the
AAPM Low-Dose CT Grand Challenge.

I 10 patients (2378 slices of size 512× 512 with thickness 3mm)
I 9 patients for training (2134 slices) and 1 patient for testing (244 slices)
I simulated noisy fanbeam measurements for 60◦ missing wedge

Lotus Root: real data measured with the µCT in Helsinki

I generalization test of our method (training is on Mayo data!)
I 30◦ missing wedge

. . .

1We would like to thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine
(AAPM), and grant EB01705 and EB01785 from the National Institute of Biomedical Imaging and Bioengineering for
providing the Low-Dose CT Grand Challenge data set.
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Evaluation on Test Patient

fgt

fFBP: RE = 0.50, HaarPSI=0.35fTV: RE = 0.21, HaarPSI=0.41f ∗: RE = 0.19, HaarPSI=0.43f[Gu & Ye, 2017]: RE = 0.22, HaarPSI=0.40fLtI: RE = 0.09, HaarPSI=0.76
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Average over Test Patient

Method RE PSNR SSIM HaarPSI
fFBP 0.47 17.16 0.40 0.32
fTV 0.18 25.88 0.85 0.37
f ∗ 0.17 26.34 0.85 0.40

f[Gu & Ye, 2017] 0.25 23.06 0.61 0.34
NN θ(fFBP) 0.15 27.40 0.78 0.52

NN θ(SH(fFBP)) 0.16 26.80 0.74 0.52
fLtI 0.08 32.77 0.93 0.73

HaarPSI (Reisenhofer, Bosse, K, and Wiegand; 2018)

Advantages over (MS-)SSIM, FSIM, PSNR, GSM, VIF, etc.:

Achieves higher correlations with human opinion scores.

Can be computed very efficiently and significantly faster.

www.haarpsi.org
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Generalization to Lotus Root

fgt

fFBP: RE = 0.31, HaarPSI=0.61fTV: RE = 0.12, HaarPSI=0.74f ∗: RE = 0.11, HaarPSI=0.75f[Gu & Ye, 2017]: RE = 0.25, HaarPSI=0.62fLtI: RE = 0.11, HaarPSI=0.83
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Conclusions
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What to take Home...?

Model-Based Side:

Inverse problems can be solved by sparse regularization.

Shearlets are optimal for imaging science problems.

Methods based on mathematical models today often reach a barrier.

Data-Based Side:

Deep neural networks are nowadays often used for inverse problems.

A theoretical foundation is still largely missing.

Data Science
Modeling,

Simulation,
OptimizationCombining Both Sides (Limited-Angle Tomography):

Access and reconstruct the visible part using shearlets.

Learn only the invisible parts with a deep neural network.

 Learning the Invisible (LtI)!
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First BMS Summer School of the new Research Center MATH+:

Mathematics of Deep Learning (August 19–30, 2019)

Speakers:

Taco Cohen (Qualcomm)

Francois Fleuret (IDIAP/EPFL)

Eldad Haber (University of British
Columbia)

Robert Jenssen (Tromso)

Andreas Krause (ETH Zurich)

Gitta Kutyniok (TU Berlin)

Ben Leimkuhler (University of
Edinburgh)

Klaus-Robert Müller (TU Berlin)

Frank Noé (FU Berlin)

Christof Schütte (FU Berlin/ZIB)

Vladimir Spokoiny (HU Berlin/WIAS)

Rene Vidal (Johns Hopkins Univ.)

Goal of this BMS Summer School at the Zuse Institute Berlin:
This summer school will offer lectures on the theory of deep neural networks, on related
questions such as generalization, expressivity, or explainability, as well as on applications
of deep neural networks (e.g. to PDEs, inverse problems, or specific real-world problems).

Webpage and Application (Deadline: April 8, 2019):
http://www.mathplus.de/summer-school-2019/index.html
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Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:
www.math.tu-berlin.de/∼kutyniok

Code available at:
www.ShearLab.org

Related Books:

G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.

P. Grohs and G. Kutyniok
Theory of Deep Learning
Cambridge University Press (in preparation)
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