
AMRR-LMV Face Identification Example

February 23, 2018

Input Database

The database has 1640 faces, which are all 50 by 50 gray- scale images with .png suffix, numbering 1 to
1640. The data consists of two parts,number 1 to 640 represents the data from Yale Face Extended B
data collection and which have been sparsely corrupted. There are 10 persons and each person has up to
64 pictures out of 640. There are also 1000 spurious pictures from a yearbook database, to augment the
database, but the pictures itself are clean.

The input data matrix XT is thus a 2500× 1640 dense matrix (We convert the grayscale images into float
between 0 and 1.). y is a 2500 dimension row vector, k represents numbers of corrupted elements in the data
and s∗ is the sparsity constraint of w.

Solution:
The overall optimization problem is:

min
w∈Rp,b∈Rn,‖b‖0≤k

‖y −XTw − b‖

where XT is the input data matrix, and y is the input image (vectorized) and b is the noise under the sparse
reconstruction. The optimal solution using the AM RR algorithm :

We denote the AM RR algorithm (without a sparsity case) as algorithm A, which implements step 3 and step
4 as above. The step 4 in AM RR is equivalent to a one step Hard Thresholding(HT). The hard thresholding
operator, in short can be defined as below:

HT (v; k) = {i ∈ [n] | σ−1
v (i) ≤ k}

where σv is a permutation such that

|vσv(1)| ≤ |vσv(2)| ≤ ... ≤ |vσv(n)|

this is equivalent to say that we only preserve the set of index whose corresponding components have lowest
k in magnitude.

Algorithm B, is implemented by applying a sparsity constraint on w, i.e. step 3 in AM RR above is changed
into the following optimization problem:

min
w∈Rp,‖w‖0≤s?

∑
i∈St

(yi − xTi w)2

1

Figure 1: AM RR algorithm

where s? is the sparsity constant that is chosen. The sample code below uses a Backtracking Iterative Hard
Thresholding Algorithm (BIHT) to solve the minimization problem with a sparsity constraint on signal w.
The codes of the two algorithms are listed below.

The IHT aims at solving a least square problem with sparsity constraint on the signal (w in our notation).
The iteration step is:

wt+1 = HT (wt + µXT
S (y −XSwt)), w0 = 0

if we rewrite step 3 in this matrix form manner:

min
w∈Rp,‖w‖0≤s?

‖y −XT
S w‖

IHT is proved to be convergent if ‖XS‖2 ≤ 1.

Results and Analysis

The recovery results are shown in following, we have three test images and the result of two different
implementations, i.e. Algorithm A and Algorithm B. We manually fix s? = 20 for all three tests.

The result shows that, visually, Algorithm A does not recover the target image, while recovery does occur
when applying algorithm B.

Implementation Details

2

(a) input (b) ground truth (c) Result of Algorithm A (d) Result of Algorithm B

Figure 2: 40% corruption recovery. (a) is input image and (b) is ground truth. (c) (RMSD = 0.2782)
refers to the result of Algorithm A (d) (RMSD = 0.0686) refers to the result of Algorithm B.

(a) input (b) ground truth (c) Result of Algorithm A (d) Result of Algorithm B

Figure 3: 40% corruption recovery. (a) is input image and (b) is ground truth. (c) (RMSD = 0.1126)
refers to the result of Algorithm A (d) (RMSD = 0.0125) refers to the result of Algorithm B.

1 f unc t i on [w, complete] = AM RR OLS(X, y , k , t o l)
2 % AM RR OLS So lve s Robust Recovery problem with given data matrix
3 % Input :
4 % X − Data matrix (n ∗ p in t h i s case , a l r eady transposed)
5 % y − Input vec to r
6 % k − Number o f corrupted components
7 % t o l − Error to l e rance , used to determining i t e r a t i o n s t ep s
8 % Output :
9 % w − Recovered s i g n a l (y = X∗w)

10 % complete − Recovered vector , i . e . X∗w
11 % See a l s o AM RR,BIHT
12

13 [n , p] = s i z e (X) ;
14

15 % I n i t i a l i z a t i o n
16 w = ze ro s (p , 1) ;
17 S = 1 : 1 : n ;
18 i t e r a t i o n s t e p = max(10 , c e i l (1/ t o l)) ; % Set up the i t e r a t i o n step .
19 s i z e (X)
20 f o r t =1: i t e r a t i o n s t e p
21 % Solve out the opt imiza t i on problem us ing ord inary l e a s t square
22 w = pinv (X(S , :)) ∗y (S) ;

3

(a) input (b) ground truth (c) Result of Algorithm A (d) Result of Algorithm B

Figure 4: 40% corruption recovery. (a) is input image and (b) is ground truth. (c) (RMSD = 0.1870)
refers to the result of Algorithm A (d) (RMSD = 0.0726) refers to the result of Algorithm B.

23 % Calcu la te the r e s i d u a l
24 r = abs (y − X∗w) ;
25 % Hard Threshold ing operat ion
26 % Pick f i r s t n−k element as uncorrupted recovery
27 [˜ , I] = s o r t (r) ;
28 S = s o r t (I (1 : n−k)) ;
29 end
30

31 complete = X∗w;
32

33 end

Listing 1: matlab code for the AM RR algorithm A, without sparsity constraint on w

4

1 f unc t i on [w, complete] = AM RR(X, y , k , to l , s0)
2 % AM RR Solves Robust Recovery problem f o r a g iven data matrix
3 % Input :
4 % X − Data matrix (n ∗ p in t h i s case)
5 % y − Input vec to r
6 % k − Number o f corrupted components
7 % t o l − Error to l e rance , used to determining i t e r a t i o n s t ep s
8 % s0 − Spar s i t y constant w. r . t . w
9 % Output :

10 % w − Recovered s i g n a l (y = X∗w)
11 % complete − Recovered vector , i . e . X∗w
12 % See a l s o AM RR,BIHT
13 [n , p]= s i z e (X) ;
14

15 % I n i t i a l i z a t i o n
16 w=ze ro s (p , 1) ;
17 S = 1 : 1 : n ;
18 i t e r a t i o n s t e p = max(10 , c e i l (1/ t o l)) ; % Set i t e r a t i o n s t e p
19

20 f o r t =1: i t e r a t i o n s t e p
21 % Using BIHT algor i thm to f i n d s o l u t i o n with s p a r s i t y c o n s t r a i n t s
22 w = BIHT(X(S , :) , s0 , y (S) , 0 . 0 1) ;
23 % Calcu la te the r e s i d u a l
24 r= abs (y − X∗w) ;
25 % Hard Threshold ing operat ion
26 % Pick f i r s t n−k element as uncorrupted recovery
27 [˜ , I]= s o r t (r) ;
28 S= s o r t (I (1 : n−k)) ;
29 end
30

31 % This i s the l i n e a r i n t e r p o l a t i o n we have c a l c u l a t e d
32 % which should g ive you the recovered t a r g e t image
33 complete = X∗w;
34

35 end

Listing 2: matlab code for the AM RR algorithm B, with a sparsity constraint on w applied

1 f unc t i on s o l = BIHT(A,K, y ,mu)
2 %%%
3 %%Author Zhang Cheng , Yang Hairong
4 %%Modif ied time 2010/07/23
5 %%func t i on Code f o r Backtracking I t e r a t i v e Hard Threshold ing
6 %% A − Measurement matrix
7 %% K − s p a r s i t y l e v e l
8 %% y − measurement vec to r
9 %% mu − parameter as in IHT

10 %%%
11

12 [M,N] = s i z e (A) ;
13 s = ze ro s (N, 1) ;
14 Ps = ze ro s (M, 1) ;

5

15 Res idual = y ;
16 MAXITER=200;
17 Phi=A;
18

19 done=0;
20 i t e r =1;
21

22

23 whi le ˜done
24 theta = s+mu∗Phi ’ ∗ (y−Phi∗ s) ;
25 [s s o r t s o r t i n d] = s o r t (abs (theta) , ’ descend ’) ;
26 theta (s o r t i n d (K+1:end)) = 0 ;
27

28 Index S=f i n d (s ˜=0) ;
29 Index theta=f i n d (theta ˜=0) ;
30 a c t i v e s e t=union (Index S , Index theta) ;
31

32 Phi x = Phi (: , a c t i v e s e t) ;
33 beta=inv (Phi x ’∗ Phi x) ∗Phi x ’∗ y ;
34

35 [b so r t bso r t ind] = s o r t (abs (beta) , ’ descend ’) ;
36 beta (bso r t ind (K+1:end)) = 0 ;
37

38 s (a c t i v e s e t) = beta ;
39

40 i t e r=i t e r +1;
41 r e s=y−Phi x∗beta ;
42 e r r=norm(r e s) ;
43

44 i f i t e r >= MAXITER
45 d i s p l a y (’ Stopping . Maximum number o f i t e r a t i o n s reached ! ’)
46 done = 1 ;
47 end
48

49 i f e r r < 1e−6
50 d i s p l a y (’ Success ! ’)
51 done = 1 ;
52 end
53 end
54

55 s o l = ze ro s (N, 1) ;
56 s o l (a c t i v e s e t) = beta ;

Listing 3: matlab code for Backward Iterative Hard Thresholding(BIHT) algorithm

• Why does Algorithm A show only a little improvement for recovery?

• Why can we recover the target image via Algorithm B, just by adding a sparsity constraint on w?

• What about the error norm ‖w? − w‖2?

To answer these questions, we need to first define SSC and SSS properties.
Definition 1. (SSC and SSS Properties) A matrix X ∈ Rn×p satisfies the Subset Strong Convexity Property
(resp. Subset Strong Smoothness Property) at level γ with strong convexity constant λγ (resp. strong

6

smoothness constant Λγ) if the following holds:

λγ 6 min
S∈Sγ

λmin(XT
SXS) 6 max

S∈Sγ
λmax(XT

SXS) 6 Λγ

where Sγ = {S ⊂ [n] | |S| = γ × n}, and XS represents the corresponding blocks of the data matrix X.

In theorem 3 of [Bhatia, 2015], they claimed if X̃ = Σ
−1/2
0 X (here Σ0 is an invertible matrix, it is used to

explain the behavior of normalization of Gaussian variables in the paper) satisfies SSC and SSS properties

at level γ with constant λγ and Λγ respectively, and if
(1+
√

2)Λβ·n
λ(1−β)·n

< 1, then AM RR algorithm converges.

Obviously, as |S| increases (i.e. β increases), the constant
Λβ·n

λ(1−β)·n
is increasing. In the paper they indicate:

if the data matrix is generated by i.i.d. multivariate Gaussian and β < 1
65 , then the recovery converges with

high probability.

Although we cannot directly compute Σ0 or λγ ,Λγ numerically, we can still analyze the matrix XTX. Let
us calculate the SVD decomposition of XTX, and we have:

λmax(XTX) = 1132592 λmin(XTX) = 0.0035

This means the condition number is over 108, which is a numerically unstable matrix. We do not expect it
to meet the convergence rate if we pick β = 0.10, 0.15 or 0.40. If you directly apply linear regression , as
proposed in Algorithm A, then what you get is a linear combination of all possible 1640 images, and these
pictures are not even for the same person! You can try, however, if you only contaminate around 1% pixels
in a image, it should somehow give you a good recovery result.

To alleviate this problem, in theorem 9 of [Bhatia, 2015], they proposed that, in high dimensional case, by
adding sparsity constraint on w, by rewriting the condition as

s ≥ 32
λ(1−β,2s+s?)

Λ(1−β,2s+s?)

and
λ(1−β,s+s?)

Λ(1−β,s+s?)
<

1

4

one can ensure the convergence. It is better than the guarantee in theorem 3 since we now only consider the
SSS and SSC property with sparse vector w, this is equivalent to say to consider the singular value on each
sparse subset of each block matrix XT

SXS , which will give you a smaller condition number in practice.

Lastly, to show that the robust recovery with sparsity constraints indeed converges (although not rigorously
proved) , we plot the error norm between w in each iteration and ground truth w?. In this empirical test,
the ground truth w? satisfies: ‖w?‖0 = 1, ‖w?‖1 = 1, i.e. only one component shall be equal to 1.

7

https://www.cse.iitk.ac.in/users/purushot/papers/rr-torrent.pdf
https://www.cse.iitk.ac.in/users/purushot/papers/rr-torrent.pdf

(a) Error norm plot for Algorithm A on Figure 3 (c) (b) Error norm plot for Algorithm B on Figure 3 (d)

Figure 5: Error norm plot, the horizontal axis represents the number of iteration steps while the vertical
axis represents ‖w? − w‖2.

(a) Error norm plot for Algorithm A on Figure 4 (c) (b) Error norm plot for Algorithm B on Figure 4 (d)

Figure 6: Error norm plot, the horizontal axis represents the number of iteration steps while the vertical
axis represents ‖w? − w‖2.

8

