Qualifying Exam in Algebra, August 2014

1. Let p be a prime number and G a finite group.
a. State the definition of a p-Sylow subgroup of G.
b. Let P be a p-Sylow subgroup of G, and let H be a subgroup of G that contains P. Assume that P is normal in H, and H is normal in G. Prove that P is normal in G.
2. Let G be a group. Let $\operatorname{Aut}(G):=\{f: G \rightarrow G \mid f$ is a group isomorphism $\}$ and let $\operatorname{Inn}(G):=\left\{\phi_{g}: G \rightarrow G \mid \phi_{g}(x)=g x g^{-1}, g \in G\right\}$. It is known (you don't have to prove) that $\operatorname{Aut}(G)$ is a group with operation given by composition of functions.
a. Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
b. Let $G=S_{3}$ (the group of permutations of three letters). Prove that $\left|\operatorname{Inn}\left(S_{3}\right)\right|=6$.
3. Let G be a finite group and let $H \subset G$ be a proper subgroup $(H \neq G)$.
a. It is known that for all $g \in G$, the set $g H g^{-1}:=\left\{g h g^{-1} \mid h \in H\right\}$ is a subgroup of G. Prove that for all $g \in G, g g^{-1}$ is isomorphic to H.
b. Prove that the number of distinct sets of the form $g \mathrm{Hg}^{-1}$ when g ranges through the elements of G is less than or equal to the index of H in G.
c. Prove that $G \neq \bigcup_{g \in G} g H g^{-1}$.
4. Let $p \geq 3$ be a prime number, and let S_{p} be the group of permutations of p letters. Prove that S_{p} does not have any Abelian subgroups of order $p(p-1)$. (Hint: use the structure theorem of finite Abelian groups).
5. Let S be a commutative ring, and let R be a PID (principal ideal domain). Assume that $f: R \rightarrow S$ is a surjective ring homomorphism. Prove that any ideal in S is a principal ideal.
6. Let R be a commutative ring.
a. State the definition of a prime ideal of R.
b. Let I be an ideal of R. Prove that I is a prime ideal if and only if R / I is a domain.
c. Let $P, Q \subset R$ be prime ideals. Prove that

$$
\operatorname{Hom}_{R}(R / P, R / Q) \neq 0 \Leftrightarrow P \subseteq Q
$$

7. Let R denote the subring of \mathbf{Q} that consists of fractions a / b with b not divisible by 3 (this is a subring of \mathbf{Q}, you are not required to check this fact).
8. For each of the following subsets of R, decide whether the subset is an ideal of R or not. Give a brief justification for each answer.
a. $\left\{\left.\frac{3 a}{b} \right\rvert\, b\right.$ relatively prime to 3$\}$
b. $\left\{\ldots,-3^{3},-3^{2},-3,1,3,3^{2}, 3^{3}, 3^{4}, \ldots\right\}$
c. $\left\{\left.\frac{5 a}{b} \right\rvert\, a, b \in \mathbf{Z}, b\right.$ relatively prime to 3$\}$.
d. $\left\{\left.\frac{9 a}{b} \right\rvert\, a, b \in \mathbf{Z}, b\right.$ relatively prime to 3$\}$.
e. $\left\{\left.\frac{3 a}{b} \right\rvert\, a, b \in \mathbf{Z}, b\right.$ relatively prime to 15$\}$.
9. Describe the units of R.
10. Which of the ideals from part 1. are prime ideals? Justify your answers.
11. Is R a unique factorization domain? Justify.
12. Find the minimal polynomial of $\sqrt{2}+\sqrt{5}$ over \mathbf{Q} (and prove that it is indeed the minimal polynomial).
13. Let $\psi=e^{\frac{2 \pi i}{8}} \in \mathbf{C}$ be a primitive 8 -th root of unity.
a. State the definition of a normal extension, a separable extension, and a Galois extension of fields.
b. Prove that $L=\mathbf{Q}(\psi)$ is a Galois extension of $K:=\mathbf{Q}$.
c. State the definition of the Galois group $\operatorname{Gal}(L / K)$ of a Galois extension of fields L / K.
d. Compute the Galois group $\operatorname{Gal}(L / K)$ for $L=\mathbf{Q}(\psi)$ and $K=\mathbf{Q}$.
e. For the field extension in part d., list the subgroups of $G:=\operatorname{Gal}(L / K)$ and find the subgroup(s) H of G with the property that $L^{H}=\mathbf{Q}(i)$. (L^{H} is the subfield of L consisting of elements fixed by H.)
14. Let p be a prime number and n a positive integer. Let K be a finite field with p^{n} elements.
a. Prove that every element of K has a p-th root in K (i.e. for every $x \in K$ there exists a $y \in K$ such that $y^{p}=x$).
b. Show that the p-th root of any given element $x \in K$ is unique.
