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Problem 1. The figure below depicts a rectangle divided into two perfect squares and a
smaller rectangle. If the dimensions of this smallest rectangle are proportional to those of the
largest rectangle, and the squares each have side length 1, what is the length of a long side of
the largest rectangle?
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Problem 2. It takes three lumberjacks three minutes to saw three logs into three pieces each.
How many minutes does it take six lumberjacks to saw six logs into six pieces each? Assume
each cut takes the same amount of time, with one lumberjack assigned to each log.

(a) 3 (b) 6 (c) 71
2

(d) 12 (e) 15

Problem 3. What is the number of points (x, y) at which the parabola y = x2 intersects the
graph of the function y = 1/(1 + x2)?

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

Problem 4. Consider the set A = {a1, a2, a3, a4}. If the set of all possible sums of any three
different elements from A is the set B = {−1, 3, 5, 8}, then what is the set A?

(a) {−1, 2, 3, 5} (b) {−3,−1, 0, 2} (c) {−3, 1, 2, 5} (d) {−3, 0, 2, 6} (e) {−1, 0, 2, 4}
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Problem 5. Four cards are laid out in front of you. You know for sure that on one side of
each card is a single number, and on the other side of each card is a single geometric shape.
The same number or the same geometric shape might be found on more than one of these
four cards.

You see (on the top side) respectively a 2, a 5, a triangle, and a square. Your friend says:
“Every card with a square has a 4 on the other side.” Your task is to determine whether your
friend is correct by choosing some of the cards to be flipped over. The chosen cards will only
be flipped after you have made your choice(s). What is the fewest number of cards you can
choose if you want to know for sure whether or not your friend is correct?

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

Problem 6. If in the formula y = Ax/(B + Cx) we have that x is positive and increasing,
while A, B and C are positive constants, then what happens to y as x increases?

(a) y increases

(b) y decreases

(c) y remains constant

(d) y increases, then decreases

(e) y decreases, then increases

Problem 7. If the larger base of an isosceles trapezoid equals a diagonal and the smaller base
equals an altitude, what is the ratio of the smaller base to the larger base?

(a) 2/5 (b) 3/5 (c) 2/3 (d) 3/4 (e) 4/5

Problem 8. What is the maximum value of the following function?

f(x) =
sin3 x cosx

tan2 x+ 1

(a) 1/8 (b) 1/4 (c) 1/3 (d) 1/2 (e) 1

Problem 9. A fair die is rolled 6 times. Let p be the probability that each of the six faces
on the die appears exactly once among the six rolls. Which of the following is correct?

(a) p ≤ 0.02 (b) 0.02 < p ≤ 0.04 (c) 0.04 < p ≤ 0.06 (d) 0.06 < p ≤ 0.08 (e) p > 0.08
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Problem 10. Starting with an equilateral triangle, you inscribe a circle in the triangle, and
then inscribe an equilateral triangle inside the circle. You then repeat this process four more
times, each time inscribing a circle and then an equilateral triangle in the smallest triangle
constructed up to that point, so that you end up drawing five triangles in addition to the one
you started with.

What is the ratio of of the area of the largest triangle to the area of the smallest triangles?

(a) 32 (b) 243 (c) 1024 (d) 59049 (e) 1048576

Problem 11. For x > 0, how many solutions does the equation log10(x+π) = log10 x+log10 π
have?

(a) 0 (b) 1 (c) 2 (d) more than 2 but finitely many (e) infinitely many

Problem 12. What is the range of the following function?

f(x) =

√
x2 + 1

x− 1

(a)
(
−∞,−1

)
∪
[
−
√
2
2
,+∞

)
(b)

(
−∞,−1

]
∪
[√

2
2
,+∞

)
(c)

(
−∞,−1

]
∪
(
1,+∞

)
(d)

(
−∞,−

√
2
2

]
∪
(
1,+∞

)
(e)

(
−∞,

√
2
2

]
∪
(
1,+∞

)
Problem 13. What is the units digit of 22015?

(a) 0 (b) 2 (c) 4 (d) 6 (e) 8

Problem 14. Suppose that you answer every question on this test randomly. What is the
probability that you will get every question wrong?

The answers below are not necessarily exact; choose the number which is closest to the
exact probability.

(a) 1/30 (b) 0.0128 (c) 0.00124 (d) 0.0000321 (e) 0.00000000000719
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Problem 15. How many rotations of Gear #1 are required before all three gears return to
the position shown, with the arrows lined up again and pointing in the same directions as
before?

Gear #1

60 teeth

Gear #2

35 teeth

Gear #3

80 teeth

(a) 28 (b) 70 (c) 175 (d) 1680 (e) 168000

Problem 16. If x2 + xy + y2 = 84 and x−√xy + y = 6, then what is xy?

(a) 16 (b) 25 (c) 36 (d) 49 (e) 64

Problem 17. A bug is flying on a three-dimensional grid and wants to fly from (0, 0, 0) to
(2, 2, 2). It flies a distance of 1 unit at each step, parallel to one of the coordinate axes. How
many paths can the bug choose which take only six steps?

(a) 6 (b) 24 (c) 78 (d) 90 (e) 114

Problem 18. You and your partner went to a dinner party in which there were four other
couples.

After the dinner was over, you asked everyone except yourself: “How many people did you
shake hands with tonight?” To your surprise, no two people gave the same number, so that
someone did not shake any hands, someone else shook only one person’s hand, a third person
only shook two people’s hands, and so on.

Assume nobody shook hands with their own partner or with themselves. How many people
did your partner shake hands with that evening at the party?

(a) 0 (b) 2 (c) 3 (d) 4 (e) 6

Problem 19. The n-th string number, string(n), is formed by writing the numbers 1 to n
after each other in order. For instance, string(1) = 1, string(2) = 12, string(7) = 1234567,
and string(12) = 123456789101112. What is the remainder when string(2015) is divided by
6?

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5
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Problem 20. How many integer triples (x, y, z) satisfy the following equation?

x2 + y2 + z2 = 2xyz

(a) 0 (b) 1 (c) 2 (d) 25 (e) infinitely many

Problem 21. If f(x) = a+ bx, what are the real values of a and b such that

f(f(f(1))) = 29,

f(f(f(0))) = 2?

(a) a = 2/13, b = 3 (b) a = 1, b = 3 (c) a = 3, b = 2/13 (d) a = 3, b = 1 (e) there are none

Problem 22. Two perpendicular chords of a circle intersect at point P . One chord is 7 units
long, divided by P into segments of length 3 and 4, while the other chord is divided into
segments of length 2 and 6. What is the diameter of the circle?

8

7
P

(a)
√

56 (b)
√

61 (c)
√

65 (d)
√

75 (e)
√

89

Problem 23. In triangle 4ABC, AB = 7, BC = 5, and AC = 6. Locate points P1, P2, P3

and P4 on BC so that the side is divided into 5 equal segments, each of length 1. Let qk = APk
for k ∈ {1, 2, 3, 4}. What is q21 + q22 + q23 + q24?

(a) 142 (b) 150 (c) 155 (d) 160 (e) 168
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Problem 24. Let m and n be two positive integers.

Statement A: m2 + n2 is divisible by 8.

Statement B: m3 + n3 is divisible by 16.

Which of the following must be true?

(a) A is necessary but not sufficient for B.

(b) A is not necessary but is sufficient for B.

(c) A is necessary and sufficient for B.

(d) A is neither necessary nor sufficient for B.

(e) None of the above.

Problem 25. Two circles of radius 1 and one circle of radius 1/2 are drawn on a plane so
that each of them is touching the other two at one point as shown below. What is the radius
of the largest circle (dashed) tangent to all three of these circles?
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5
2
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√
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√
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Problem 26. What is the value of the following product?

22015 cos
(
π
4

)
cos

(
π
8

)
cos
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π
16

)
cos
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32

)
· · · cos

(
π
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)

(a) 2−2015 sin
(
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)
(b) tan

(
π
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(c) 2 csc
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π
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(d) 4 sec
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π
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(e) 22014 cot

(
π
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Problem 27. Let k be a positive integer. Let {a1, a2, . . . , ak} be a set of integers that satisfies
the following three conditions:

(1) 0 < a1 < 21, (2) an < an+1 < an + 11, for 1 ≤ n < k, (3) ak = 2015.

Considering all possible choices of k and the set {a1, a2, . . . , ak} as above, what is the smallest
possible value of the sum a1 + a2 + · · ·+ ak?

(a) 2015 · 100 (b) 1015 · 201 (c) 1010 · 202 (d) 2030 · 101 (e) 2030 · 102

Problem 28. If a > 0 and b > 0 are real numbers satisfying

1

a
+

1

b
≤ 2
√

2 and (a− b)2 = 4(ab)3,

then what is the value of loga b?

(a) −2 (b) −1 (c) 0 (d) 1 (e) 2

Problem 29. Let P be a point in a square ABCD. Dissect the square with the four triangles
4PAB, 4PBC, 4PCD and 4PDA. Let Q1, Q2, Q3 and Q4 be the respective centroids of
these triangles. It is a fact that Q1Q2Q3Q4 forms another square.

A B

CD

P

Q1

Q2

Q3

Q4

Find Area(Q1Q2Q3Q4)/Area(ABCD).

(a)
√

2/5 (b) 1/4 (c) 2/9 (d) 1/3 (e) it depends on the location of P
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Problem 30. Four prisoners are numbered 1 through 4. They are informed by the jail warden
that each of them, in turn, will be taken to a room with four boxes labeled 1 through 4.

The numbers 1 through 4 are written on four slips of paper, one number per slip. These
slips are placed into the boxes at random, one slip per box.

Each prisoner may look inside at most two of the boxes. If all of the prisoners see their
own number, then all of them will be pardoned. If any prisoner does not see his/her own
number, then all of the prisoners will be executed.

The prisoners may freely talk and coordinate a strategy beforehand, but once they begin
they have no way of communicating with each other (including by adjusting the boxes, flipping
the lights on or off, etc.)

Assuming the prisioners use an optimal strategy, what is the probability that the prisoners
will go free?

(a) 1/16 (b) 1/9 (c) 3/8 (d) 5/12 (e) 1/2
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